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Detecting depression severity 
using weighted random forest 
and oxidative stress biomarkers
Mariam Bader 1, Moustafa Abdelwanis 1, Maher Maalouf 1* & Herbert F. Jelinek 2

This study employs machine learning to detect the severity of major depressive disorder (MDD) 
through binary and multiclass classifications. We compared models that used only biomarkers of 
oxidative stress with those that incorporate sociodemographic and health-related factors. Data 
collected from 830 participants, based on the Patient Health Questionnaire (PHQ-9) score, inform 
our analysis. In binary classification, the Random Forest (RF) classifier achieved the highest Area 
Under the Curve (AUC) of 0.84 when all features were included. In multiclass classification, the AUC 
improved from 0.84 with only oxidative stress biomarkers to 0.88 when all characteristics were 
included. To address data imbalance, weighted classifiers, and Synthetic Minority Over-sampling 
Technique (SMOTE) approaches were applied. Weighted random forest (WRF) improved multiclass 
classification, achieving an AUC of 0.91. Statistical tests, including the Friedman test and the Conover 
post-hoc test, confirmed significant differences between model performances, with WRF using all 
features outperforming others. Feature importance analysis shows that oxidative stress biomarkers, 
particularly GSH, are top ranked among all features. Clinicians can leverage the results of this study to 
improve their decision-making processes by incorporating oxidative stress biomarkers in addition to 
the standard criteria for depression diagnosis.
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Depression affects a large part of the population around the world and is expected to increase substantially 
due to several factors such as evolutionary mismatch between past and modern environments, declining social 
connections and increased  loneliness1. Globally, approximately 280 million people suffer from depression, with 
an estimated 5% among adults and 5.7% among older  people2. According to the World Health  Organization3, 
depression is considered a significant contributor to the burden of disease and an important cause of disability. 
It can also cause severe socioeconomic problems and a long-term impact on the  economy4,5. Current methods 
for diagnosing depression focus primarily on responses and behavioral activities and the use of questionnaires 
such as the Primary Health Questionnaire and the Beck Depression  Inventory6. Previous studies on depression 
have investigated several tools, techniques, and factors for detecting depression with mixed results. Some of the 
reported inconsistencies are probably related to methodological differences in sample size, study design, and 
analytical  tools7,8. Consequently, research continues to focus on the timely detection of depression using the 
primary association between depression and biological, clinical, and sociodemographic factors.

Risk assessments of depression and severity are complex and require a detailed investigation to determine 
dominant factors associated with depression, including genetic predisposition, comorbidities, and physiological 
factors such as oxidative stress and  inflammation9–11. Oxidative stress is an imbalance between excess production 
of reactive oxygen species (ROS) and antioxidants that manifest themselves in changes in biomarkers of oxida-
tive stress, including 8-isoprostane (8-iso-PGF2α ), 8-hydroxy-2’-deoxyguanosine (8-OHdG) and the ubiquitous 
glutathione redox reaction (GSH-GSSG)12. There is evidence that suggests a positive correlation between 8-iso-
PGF2α , oxidized GSH (GSSG), and 8-OHdG and depression. GSH and the GSH-GSSG ratio are negatively 
associated with  depression13–15. Furthermore, some studies have associated oxidative stress with angiotensin-
converting enzyme (ACE) and treatment  outcome16–18. However, the role of the ACE gene polymorphism and 
the connection between depression and oxidative stress have not been extensively studied, although there is a 
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link between oxidative stress and  depression19–21. Furthermore, depression is also associated with cardiovascular 
disease, diabetes, and  hypertension7,22,23 and other factors, such as gender and  age24.

Glutathione, 8-isoprostane, and 8-hydroxy-2’-deoxyguanosine (8-OHdG)), are among the most investigated 
oxidative stress biomarkers for  depression25–28. However, the combined role of these biomarkers in the classifica-
tion of depression and progression has not been  investigated29,30. Our current study uses machine learning models 
to detect depression, comparing the effectiveness of oxidative stress biomarkers alone, clinical and demographic 
markers, and their combination. This approach fills a gap in previous research, which mainly focused on soci-
odemographic  characteristics19,31.In addition, our study addresses not only depression but also the progression 
of depression (four severity levels defined by PHQ-9), which has not been shown previously.

The paper is structured as follows: “Related works” reviews related work. “Data and participants” details the 
process of collecting and preprocessing the data set, while “Methods” outlines the methodology used. The results 
are presented in “Results”, followed by a discussion of our findings, limitations, and potential scopes of future 
research in “Discussion”. Finally, “Conclusion” presents the conclusions.

Related works
The literature shows that depression could be associated with chronic diseases. Hooker et al.32 performed a cross-
sectional study using the patient health questionnaire (PHQ) and demonstrated a significant association between 
depressed people and cardiovascular disease. In this context, identifying associations between comorbidities, 
depression, and physiological markers requires the inclusion of medication use, as some antidepressants act as 
antioxidants as  well8.

However, there is no consensus on how demographic factors, such as gender and age, contribute to depression. 
For example, a study by Zheng et al.24 reported that depression in women is higher than in men. This finding was 
also supported by a cross-sectional study by Li et al.33. Interestingly, another study by Kodydková34 showed that 
the concentration of GSH was higher in depressed women, supporting the association of gender and oxidative 
stress with depression. In contradiction, Cabello et al.35 found that young men are more likely to have depression 
than women, while Wicke et al.13 found no significant association between gender and depression. Whether these 
factors could act together in the progression of depression has not been investigated.

Many researchers have applied different machine learning methods to predict depression. Logistic Regres-
sion (LR), RF, K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Naïve Bayes (NB), and Artificial 
Neural Networks (ANN) are among the most widely used machine learning  algorithms14–18. Machine learning 
models were evaluated based on several performance metrics such as precision, precision, sensitivity, recall, 
and F1 score, particularly for unbalanced data. Sociodemographic data and results from the Beck Depression 
Inventory standardized (Standardized BDI) were used as input for an ANN approach by  Cvetkovic19 to predict 
the depression range among 84 breast cancer patients. The results showed that demographic factors such as age, 
gender, education, marital status, occupation status, and economic status contribute to the detection of depres-
sion and can predict the severity of depression. Another study by Sau and  Bhakta20 applied ten machine learning 
classifiers to diagnose depression among 520 older people according to sociodemographic and health-related 
factors. The highest predicted accuracy was 0.89 and 0.94 Area Under the Curve (AUC), which was achieved by 
RF. Priya et al.21 applied Decision Tree (DT), RF, NB, SVM, and KNN, to predict five levels of depression accord-
ing to the DASS-21 questionnaire. Their findings revealed that RF had the best accuracy with imbalanced data.

Interestingly, Shen et al.36 used ANN and NB models to distinguish between bipolar disorder, schizophrenia, 
and MDD using five candidate genes (LYPD1, HMBS, HEBP2, SETD3, and ECM2). The results obtained from the 
ANN network showed that these candidate genes could perfectly distinguish bipolar disorder, schizophrenia, and 
MDD (0.77 and 0.82, respectively). Furthermore, Richter et al.30 employed machine learning to identify cognitive 
biases in subclinical anxious and depressed individuals, obtaining 0.71 accuracy for symptomatic individuals 
and 0.70 for controls. The findings reveal specific behavioral measures and highlight key cognitive mechanisms.

However, class imbalance is a common issue for machine learning classifiers, which greatly affects prediction 
performance. Zulfiker et al.37 used the SMOTE technique to overcome this obstacle. In their study, six machine 
learning models were applied to classify the study participants as depressed or did not use demographic and 
psychosocial information. The results indicated that the AdaBoost classifier provided the best classification with 
0.92 accuracy and 0.96 AUC. An RF classifier combined with SMOTE also provided good results in predicting 
depression using the Korea Welfare Panel Study (KoWePS)31. Furthermore, this technique has been implemented 
to handle the imbalance class in a study conducted by Nandanwar and  Nallamolu38 in which the AdaBoost 
Classifier showed the best performance with an F1 score of 0.93. SMOTE is based on the generation of new 
samples among minority classes without any change in the majority to balance the distribution of classes that 
could affect the original data  used39. Taking into account its effectiveness in other studies, another approach is 
proposed to solve the problem of imbalanced data using the weighted  class40. The idea of a weighted class is to 
penalize misclassification rather than to generate more  samples41.

Data and participants
The data used in this study were collected from the DiabHealh Center, Albury,  Australia42. The data set included 
2,621 observations from patients collected between 2002 and 2015. It consisted of 43.1% men and 56.9% women 
with a mean age of 66 years. To address multiple visits from the same patient, the data rows were filtered based 
on the most recent visit, resulting in 830 patients for the analysis. The study was carried out with the approval 
of the institutional Human Ethics Committee (ethics approval number: 2006/042), in strict adherence to the 
Declaration of Helsinki, ensuring that all participants provided their written informed consent. The level of 
depression was determined using the PHQ-9 and ranged from 0 to 24. Patients whose depression score was 4 or 
less were considered not depressed. A range of 4 to 13, indicated mild depression, 14 to 20 moderate depression, 
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and a score of 21 or more was classified as severe  depression43. The data set contains not only sociodemographic 
details such as age and gender, but also oxidative stress biomarkers, health-related factors, including medications 
for diabetes, hypertension, and cardiovascular diseases, and information on the haplotype of the angiotensin-
converting enzyme (ACE) gene. There are 14 independent variables and one target variable is the PHQ score. 
Possible values/ranges, type of variable, and description of each variable are presented in Table 1.

Figure 1 shows the distribution of depression levels between participants in the data set. Among the 830 par-
ticipants, the PHQ-9 scores indicated that 579 had no depression, 219 had mild depression, 21 had a moderate 
level of depression, and 11 had severe depression.

Table 2 shows the distribution of depressed and non-depressed participants according to different criteria. For 
the binary model, participants with a PHQ score of more than four are considered to have depression regardless 
of its severity. Female participants were found to be more depressed than male participants.

The percentage of depression among women was 32.8%, while 26.8% among men. The prevalence of depres-
sion in participants without cardiovascular disease was 33.6%, while it was higher in patients with cardiovascular 
disease. Approximately half of the participants with PhQ-9 scores indicating the presence of depression had 
diabetes, while one-third of hypertensive patients had PHQ-9 scores indicative of depression. The percentage 
of depression among participants taking diabetes, hypertension, and depression medications was 52.2%, 31.9%, 
and 39.3%, respectively. Consequently, medications can be considered a critical indicator that could affect bio-
marker levels. In this context, 45% of the participants did not take any medication, while 4.5% took three types 
of medication simultaneously and 17% used two types of medication.

Figure 2 shows the Pearson correlation matrix among all features included in this study. Two variables are 
highly correlated if Pearson’s correlation coefficient is greater than 0.8, moderate if between 0.5 and 0.8, weak 
between 0.3 and 0.5, and no correlation if less than 0.329. The correlation matrix indicated a slightly nonsignifi-
cant negative correlation between 8-isoprostane, 8-OHdG, GSH, and GSSG and depression. A very low negative 
correlation was observed between depression and age, while the presence of cardiovascular disease, diabetes, 
hypertension, and medication use showed a moderate positive correlation.

Table 1.  Variables used for depression detection.

Variable name Variable description Possible values/ranges

ACE Angiotensin converting enzyme haplotype 1, 2, 3

8-u-isoprostane 8-u-Isoprostane 0.06–84.21

8-OHdG 8-Hydroxydeoxyguanosine 3.08–850.02 pg/ml

GSH Glutathione 317.25–4336.47 mg/100 ml

GSSG Oxidized glutathione 37.37–1518.43 mg/100 ml

GSH-GSSG-r Oxidized glutathione:glutathione ratio 0.72–22.55

Depression Med Whether the participant takes antidepression medication Yes, No

DM-Status Whether the participant has diabetes Yes , No

DM-MedUse Whether the participant takes diabetes medication Yes , No

HT-Status Whether the participant is suffering from hypertension Yes , No

HT-MedUse Whether the participant takes hypertension medication Yes , No

CVD Whether the participant is suffering from cardiovascular illness Yes, No

Age Age range of the participant 25–96 years

Gender Gender of the participant Male, Female

Depression The patient health questionnaire score (PHQ-score) 0–24

Figure 1.  Distribution of depression levels of participants in the data set.
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Methods
Two classification models are proposed; binary classification to determine whether the patient has depression 
or not and multiclass classification to detect the level of depression. Different combinations of factors were 
tested to determine the optimal combination of factors that contribute to the occurrence of depression and their 
importance. Biomarkers of oxidative stress [8-isoprostane, 8-OHdG, GSH, GSSG in addition to the glutathione 
ratio (GSH-GSSG)] were included in the first model as the main features. In the second model, all biomarkers, 
sociodemographic, genetic and health-related characteristics were included. Data imputation was performed 
following Jelinek et al.44 where classes are defined by the Cartesian product of class values and incomplete infor-
mation dismissal and data completion techniques are applied to reduce features and impute missing values. This 
method comprehensively handles missing values in clinical data sets by considering all possible combinations 
of class values, filtering out incomplete information, and employing data competition to fill in missing values, 
thereby creating a more complete and reliable data set for analysis. In addition, it has proven effective in feature 

Table 2.  Distribution of depressed and not-depressed participants according to different criteria.

Criteria Category Total Depressed Non-depressed

Gender
Male 358 96 262

Female 472 155 317

CVD
Yes 390 103 287

No 440 148 292

DM-Status
Yes 243 127 116

No 587 124 463

DM-MedUse
Yes 178 93 85

No 652 158 494

HT-Status
Yes 421 134 287

No 409 117 292

HT-MedUse
Yes 386 123 263

No 444 128 316

Depression MedUse
Yes 107 42 65

No 723 209 514

Figure 2.  Pearson correlation matrix.
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reduction and missing value imputation in similar clinical settings, improving the detection accuracy of data 
mining algorithms. Figure 3 shows a pictorial representation of the entire methodology.

Python and Scikit-learn libraries were used to implement machine learning algorithms. Firstly, the data set 
has been split into training and testing data. This study has used 70% of the data set as training data and 30% for 
testing. To improve machine learning models, fivefold cross-validation with grid search over hyperparameter 
values in the training set (“Multimedia Appendix 1”). The optimal hyperparameters found for each model dur-
ing the training phase were then used to evaluate the model’s performance on the testing set. The performance 
of machine learning models has been evaluated primarily using the AUC. Additional performance metrics such 
as recall, precision, F1 score, the area under the Precision-Recall Curve (AUC-PR) and confusion matrices were 
also reported. SMOTE, WLR and WRF have been implemented to improve detection performance given the 
class imbalance in the data set, achieving higher accuracy. To identify the relative importance of different fac-
tors, we determine the weight assigned to each factor, which reflects the contribution of each factor to the final 
detection. To evaluate the importance of features in our study, we used the permutation importance technique 
available in the scikit-learn  library40. Permutation importance measures the influence of individual features 
on the model’s performance by randomly permuting the values of each feature and measuring the subsequent 
change in performance. This provides valuable information on the contribution of each feature to the overall 
detection of the severity of  depression45. In this study, we considered the importance of the model feature with 
the highest accuracy.

Data pre-processing
We extracted common features from the data sets and used a standardization procedure to ensure that the vari-
ables exhibited a mean of zero and a standard deviation of one. This standardization ensures a consistent scale 
across the data set, which is essential for machine learning models. By eliminating the influence of varying scales, 
it improves model robustness and reduces sensitivity to scale variability.

Subsequent to the standardization procedure, the data set was partitioned into a training set (70%) and a 
testing set (30%). The training set served as the basis for model development, while the testing set was used to 
evaluate the performance of the resulting trained model. To avoid overfitting of machine learning models, a 
fivefold cross-validation technique coupled with grid search across hyperparameter values was implemented in 
the training set (see “Multimedia Appendix 1”), in order to determine optimal configurations for each model.

Machine learning models
In this study, we used Logistic Regression (LR), Random Forest (RF), K-Nearest Neighbour (K-NN), Support 
Vector Machine (SVM), Naïve Bayes (NB), and Artificial Neural Network (ANN). These models, known for their 
efficacy, have shown high performance in previous studies focusing on predicting and detecting the severity of 
depression, as reported in the existing literature.

Logistic regression (LR)
LR is used for classification problems where the goal is to determine whether a new sample fits in a particular 
class. It is useful for binary classification that can be generalized to multinominal  outcomes11,46. It also has the 
ability to predict the probability of a specific  class47. Mathematically, the logistic function is given by Eq. (1). There 
are variants of LR to help overcome the problem of overfitting, such as L1 and L2 regularization. L1 regulariza-
tion, also known as Lasso regularization, adds a penalty equal to the absolute value of the coefficients to the loss 

Figure 3.  Framework for detecting depression severity.
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function. On the other hand, L2 regularization, or Ridge regularization, adds a penalty equal to the square of the 
coefficients to the loss function. In this study, both variants of LR were utilized.

where x is the input variable, β0 is the intercept and β1,β2,β3, . . . are the slopes of the logarithmic odds as a 
function of x.

Random forest (RF)
RF is a predictive modeling tool that builds decision trees and determines the average of the predictions of each 
decision  tree48. Consequently, it combines simplicity and flexibility to increase predictive  accuracy49. The RF 
algorithm has some stochastic behavior. The algorithm randomly selects samples from the original data set and 
creates a decision tree. It continuously repeats the creation of decision trees considering an independent subset 
of variables every time from the original data set, resulting in a wide variety of trees. This variety makes RF more 
effective than an individual decision tree  model50.

Furthermore, randomness in the generation of decision trees increases the generalizability of RF so that the 
classifier is less likely to  overfit51. Built-in cross-validation is one of the characteristics of RF that adds value to 
allow the classification of variables from the most effective to the least associated with the outcome variable. 
However, to obtain high classification accuracy from the model, it is important to increase the amount of data 
so that different classes can be distinguished well from each  other11.

K‑nearest‑neighbor (K‑NN)
KNN is a supervised machine learning algorithm that is widely used for both regression and classification. It is 
an effective algorithm when dealing with data sets with linear or nonlinear relationships. It assumes that simi-
lar data are close to each other. Consequently, KNN classifies new data points based on their proximity to the 
most similar instances in the data  set52. Three parameters are used. N neighbors, which indicates the number of 
neighbors required for classification, the distance metric and the p-value53.

Support vector machine (SVM)
SVM is a machine learning algorithm for regression and classification. It has been widely used in the bioinfor-
matics field for its effectiveness in handling nondimensional data and its robustness when dealing with  outliers54. 
This algorithm uses a hyperplane to classify future predictions. The hyperplane can be represented as a line or a 
plane in multidimensional space to classify the data into the corresponding classes by investigating the maximum 
space margin between the support  vectors53.

In the context of SVM, when working with a training data set containing (n) data points, denoted as 
{(x1, y1), . . . , (xn, yn)} , where each xi is a sample in the n-dimensional input space associated with a binary out-
put value yi ∈ {1, 0} , for each i = 1, 2, . . . , n , the SVM optimization problem can be mathematically expressed 
as follows (Eq. 2):

Where C serves as a constant that penalizes errors, and ξi represents slack variables that indicate the extent of 
misclassification; if an instance is misclassified, then ξi > 1.

Naive Bayes (NB)
NB is a probabilistic supervised machine learning classification algorithm based on the Bayes theorem. It applies 
conditional probability between features given the values of class variables. This algorithm determines the prob-
ability of events based on the occurrence of previous events assuming independent  features53.

Artificial neural network (ANN)
ANN is a deep learning algorithm inspired by the structure and function of the human brain. It consists of inter-
connected layers, each layer consisting of neurons (as shown in Fig. 4). Each neuron incorporates an activation 
 function55. ANN used three layers with a rectified linear unit activation function (RELU) with 350 epochs to 
train the model.

Performance metrics
Accuracy
Accuracy is a performance metric that can be used to identify the percentage of correctly classified predictions. 
It can be expressed by Eq. (5).

(1)F(x) =
1

1+ e−(β0+β1x1+β2x2+β3x3+··· )

(2)Objective: Minimize
1

2
�β�2 + C

n∑

i=1

ξi

(3)Subject to: yi(�xi ,β� + β0) ≥ 1− ξi , i = 1, 2, . . . , n

(4)ξi ≥ 0, i = 1, 2, . . . , n
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Precision
Precision is used to identify the percentage of positive attempts that were correctly classified against the total 
number of positive predictions and can be expressed by Eq. (6).

Recall
Recall is used to calculate the ratio of positive predicted outcomes to the total predictions in a given class (Eq. 7)48.

F1‑score
F1 score is a better performance metric as it considers both recall and precision, particularly for imbalanced 
data (data with nonuniform distribution of class labels). It can be determined by the harmonic mean of recall 
and  precision53 as presented in Eq. (8).

Confusion matrix
The confusion matrix is a performance measurement tool that provides a breakdown of the predicted and actual 
outcomes of a classification model. It offers an in-depth understanding of the performance of any classification 
model, particularly in contexts where the implications of false positives and false negatives  vary53.

Area under the ROC curve (AUC)
The Area Under the Curve of the Receiver Operating Characteristic (AUC-ROC) is a performance metric that 
quantifies the overall ability of a classification model to discriminate between classes. The ROC curve itself 
plots the True Positive Rate (TPR) against the False Positive Rate (FPR) across various classification thresholds, 
providing a visual representation of the model’s performance. The AUC value, which represents the area under 
this curve, serves as a measure of the accuracy of the  model56. In the context of multi-class classification models, 
the (Macro-average) is employed as a performance metric. This approach calculates the average performance 
across all classes, treating each class with equal importance, which is particularly beneficial when dealing with 
imbalanced data sets.

Area under the precision–recall curve (AUC‑PR)
The area under the precision-recall curve (AUC–PR) is an essential metric for assessing the performance of clas-
sifiers, especially in situations involving imbalanced data sets where positive class is rare. In contrast to the ROC 
curve, which plots the True Positive Rate (TPR) against the False Positive Rate (FPR), the Precision-Recall (PR) 
curve emphasizes precision and recall. This focus makes the PR curve more informative for imbalanced data 
scenarios. A higher AUC-PR value signifies superior performance, indicating the classifier’s ability to maintain 
both high precision and high recall across various  thresholds57.

(5)Accuracy =
Number of Correct Predictions

Total Number of Predictions

(6)Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)

(7)Precision =
True Positives (TP)

True Positives (TP) + False Positives (FN)

(8)F1score =
2(Recall + Precision)

Recall + Precision

Figure 4.  ANN architecture with three inputs, one output and RELU activation function.
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Statistical tests between different models
The Friedman test was used on the training data to evaluate the significant performance differences in accuracy 
among the various models and classifiers used in this study. The training data was split using a tenfold cross-
validation method, and the resultant performance of the ten groups was analyzed using the Friedman test. The 
Friedman  test58, a non-parametric statistical test, calculates a chi-square statistic and the corresponding p-values 
to determine statistical significance between the models. Subsequently, pairwise comparisons were made using 
the Conover post hoc test, implemented through the scikit_posthocs library, to assess significant differences 
between individual model pairs.

Class imbalance
In the context of the development of prediction models within healthcare settings, the mitigation of class imbal-
ance emerges as a crucial concern to ensure robust and impartial model performance. Class imbalance occurs 
when there is an uneven distribution of target classes in the data set, posing the risk that the model favors the 
majority class at the expense of overlooking significant minority classes. Accurate prediction or classification of 
depression is particularly important in clinical practice, influencing the determination of appropriate treatment 
strategies and optimal results.

Class weight
To this end, another approach is proposed to improve the accuracy of the predictive models and avoid the effect 
of class imbalance. This approach is derived from the incorporation of class weight, which is based on penalizing 
the algorithm for incorrect prediction by placing a heavier penalty on misclassifying the minority class. Each 
class is assigned a weight, but minority classes are given larger weights (higher misclassification penalty)59,60as 
represented by Eq. (9) below:

where Wj is the weight of class j , n is the total number of observations, K is the number of classes, and nj is the 
number of observations in class j.

Synthetic minority over-sampling technique (SMOTE)
SMOTE is a widely adopted method for addressing class imbalance in classification tasks. SMOTE tackles this 
issue by generating synthetic examples for the minority class rather than simply replicating existing instances. In 
doing so, SMOTE effectively increases the sample size of the minority class and promotes a more balanced class 
distribution. This synthetic augmentation helps mitigate the overfitting associated with random oversampling 
and improves the classifier’s ability to  generalize61.

Results
Binary classification
For binary classification, participants were grouped into two categories; PHQ-9 between 0 and 4 was considered 
to be without depression (class 1), and more than four on the PHQ-9 scale were classified as the presence of 
depression regardless of its severity (class 2).

The severity of depression, like other chronic diseases, is more often present in its mild form. Therefore, a 
critical part of data preparation was to check whether the two groups were matched in terms of participants. 
Figure 5 represents the distribution of depressed and non-depressed participants in the data set as a binary 
classification. As can be seen, 30.2% of the study population was classified as depressed, while 69.8% of the 
participants were not.

(9)Wj =
n

K × nj

Figure 5.  Distribution of depressed and not depressed participants.
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Binary classification using oxidative stress biomarkers
In this scenario, binary machine learning models were trained by including only oxidative stress markers. The 
performance metrics of the classifiers on the testing data (accuracy, precision, recall, F1 score, AUC, and AUC-
PR are shown in Table 3. RF classifier had the best performance measures with an accuracy of 0.81, AUC of 0.81 
and AUC-PR of 0.76, while the lowest classification performance was achieved with NB.

Using RF, the contribution of the variables of oxidative stress to the classification is shown in Table 4. The 
highest importance value was given to GSSG, followed by 8-OHdG and 8-isoprostane.

Binary classification using sociodemographic health related and oxidative stress biomarkers
The second model developed also included age, gender, chronic disease and medication use, and ACE genet-
ics. Table 5 compares the performance metrics for the second model in the testing data set. The accuracy of all 
machine learning models was considered improved. RF outperforms other models with an accuracy of 0.83, 
an AUC of 0.84, and an AUC–PR of 0.78. Although the inclusion of sociodemographic and clinical factors in 
conjunction with oxidative stress has resulted in an incremental improvement in the binary classification, these 
features contributed to a much lower extent. This is highlighted by features importance, which ranks all oxidative 
stress biomarkers at the top, with ACE genetics in the third place in this model. Multimedia Appendix 2 presents 
the confusion matrices of all binary classification models (Table 6).

Multiclass classification
For treatment purposes, it is important to detect the level or severity of depression. Patients who were included 
in the analysis were classified into four groups: 0–4, no depression; 5–13, mild depression; 14–20, moderate 
depression; and 21 or greater, severe depression, according to the PHQ-9  criteria43. Figure 6 shows the distribu-
tion of participants among the four classes.

Table 3.  Performance of the binary classifiers using five oxidative stress biomarkers as main features on the 
testing data.

Model Accuracy Precision Recall F1 Score AUC AUC–PR

LR 0.70 0.50 0.70 0.58 0.66 0.40

RF 0.81 0.80 0.80 0.80 0.81 0.76

KNN 0.78 0.77 0.78 0.77 0.81 0.70

SVM 0.78 0.82 0.78 0.74 0.72 0.56

NB 0.69 0.66 0.69 0.66 0.65 0.70

ANN 0.74 0.73 0.74 0.73 0.66 0.74

Table 4.  Feature importance in RF for binary classification-oxidative stress.

Feature Importance value (RF)

GSSG 0.213

8-OhdG 0.213

8-Isoprostane 0.211

GSH-GSSG-r 0.185

GSH 0.177

Table 5.  Performance of the binary classifiers using socio-demographic, health-related, and oxidative stress 
biomarkers.

Model Accuracy Precision Recall F1 Score AUC AUC–PR

LR 0.79 0.77 0.78 0.76 0.76 0.59

RF 0.83 0.83 0.83 0.83 0.84 0.78

KNN 0.78 0.77 0.78 0.77 0.79 0.67

SVM 0.73 0.80 0.73 0.64 0.71 0.57

NB 0.72 0.72 0.72 0.72 0.74 0.57

ANN 0.77 0.78 0.77 0.77 0.74 0.78
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Multiclass classification using oxidative stress biomarkers
The five oxidative stress biomarkers were selected as the main features. Performance metrics were used to com-
pare the results of the different machine learning algorithms. Table 7 compares the performance metrics of the 
machine learning algorithms used for multiclass classification in the testing data set. The highest AUC of 0.84 
and AUC-PR of 0.88 were obtained with the RF classifier compared to approximately 0.58 for the ANN.

Table 8 shows the ranking of the feature importance for RF. RF ranks 8-isoprostane as the highest, while the 
lowest was GSH similar to the binary model when only oxidative stress markers are included.

Multiclass classification using socio‑demographic—health related and oxidative stress biomarkers
The remaining sociodemographic and health-related factors were included in this model to investigate the 
performance of the multiclass models. Consequently, the analysis was repeated using the fourteen features and 
applying the same machine learning algorithms. Table 9 presents the performance measures in terms of accuracy, 
precision, recall, F1 score, AUC, and AUC-PR on the testing data set.

Table 6.  Features importance in RF for binary classification-all factors.

Feature Importance value (RF)

GSH 0.147

8-Isoprostane 0.134

ACE haplotype 0.133

8-OHdG 0.122

GSSG 0.129

GSH-GSSG-r 0.111

BirthAge 0.061

DM-MedUse 0.034

DM-Status 0.028

HT-MedUse 0.023

HT-Status 0.021

OtherMeds-Depression 0.019

CVD 0.019

Gender 0.018

Figure 6.  Distribution of multiclass depression levels among participants.

Table 7.  Performance of the multiclass classifiers using five oxidative stress biomarkers as main features.

Model Accuracy Precision Recall F1 Score AUC AUC–PR

LR 0.70 0.71 0.70 0.58 0.61 0.73

RF 0.79 0.78 0.79 0.77 0.84 0.88

KNN 0.75 0.74 0.75 0.73 0.78 0.80

SVM 0.76 0.78 0.76 0.70 0.70 0.73

NB 0.67 0.65 0.67 0.66 0.71 0.66

ANN 0.70 0.70 0.70 0.70 0.58 0.59
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All classification models showed improvement compared to the model with only oxidative markers except 
NB, with RF having an AUC of 0.88 compared to 0.84. The role and importance of oxidative stress biomarkers 
remained significant for the model with the highest importance values. Table 10 shows the feature importance 
values for the RF classifier. ACE genetics is the most important feature in the classification, while gender was 
ranked the least. The confusion matrices of the different algorithms are shown in Multimedia Appendix 2.

Statistical comparison among machine learning models
The Friedman test was applied to evaluate the significance of performance differences between models. Given 
the superior performance of RM among all models, we subsequently conducted a pairwise comparison using the 
Conover post hoc test, specifically between RF and all other algorithms. The Chi-square for the Friedman test 
and the P-values of all models are presented in Table 11. The resulting values of the Chi-square and the P-value 
derived from the Friedman test imply significant differences between the algorithms. Furthermore, the results 
of the post hoc Conover analysis between RF and all other alternatives demonstrate the marked improvement 
of RF over others at α = 0.05 . However, it should be noted that the statistical difference was not significant with 
SVM when only oxidative stress biomarkers were used for binary and multiclass classifications.

Table 8.  Features importance—oxidative stress.

Feature Importance value (RF)

8-Isoprostane 0.218

8-OHdG 0.217

GSSG 0.204

GSH-GSSG-r 0.194

GSH 0.167

Table 9.  Performance of the multiclass classifiers using sociodemographic, health-related, and oxidative stress 
biomarkers.

Model Accuracy Precision Recall F1 Score AUC AUC–PR

LR 0.73 0.73 0.74 0.69 0.73 0.80

RF 0.82 0.81 0.81 0.79 0.88 0.90

KNN 0.76 0.75 0.76 0.74 0.77 0.83

SVM 0. 67 0.75 0.67 0.55 0.65 0.75

NB 0.65 0.67 0.65 0.65 0.66 0.60

ANN 0.73 0.72 0.73 0.72 0.63 0.69

Table 10.  Feature importance—all factors.

Feature Importance value (RF)

ACE haplotype 0.149

GSH 0.137

8-Isoprostane 0.136

GSSG 0.130

8-OHdG 0.127

GSH-GSSG-r 0.120

BirthAge 0.045

DM-Status 0.032

HT-Status 0.022

OtherMeds-Depression 0.022

DM-MedUse 0.021

HT/CVD-MedUse 0.021

CVD-Status 0.020

Gender 0.019
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Weighted class logistic regression and random forest
Binary classification
The weights for the detection of the binary class that includes all 14 characteristics were determined based on the 
Eq. (9) as 0.72 for class 1 and 1.65 for class 2. The application of WLR and WRF using all features has resulted in 
AUC values of 0.77 and 0.85, respectively, which are close to those without weighing. This might be attributed 
to the effectiveness of the weighted-class technique in tackling imbalanced data present in our multiclass distri-
bution. In addition, a slight improvement in the quality of the detection in terms of smaller percentages of false 
positives has been achieved. Figure 7 compares the ROC curves of the binary classifiers for WLR and WRF using 
all features, indicating the outperforming performance of WRF compared to WLR. Figure 8 shows the resultant 
confusion matrix of the WRF of the binary classification model using all features.

Table 12, presents the important features of the WRF. In this model, oxidative stress biomarkers and ACE 
are the most valuable features, while gender, age, medication use, and comorbidities played a minor role in the 
classification of MDD and disease progression according to PHQ-9.

Multiclass classification
For this model, we measure the performance of the weighted algorithms in detecting the multi-class depression 
levels. Table 13 presents the measured accuracy, precision, recall, F1 score, AUC, and AUC–PR of applying the 
WLR, WRF, and RF with SMOTE algorithms to the testing data set. WRF has the best performance with AUC 
values of 0.85 and 0.91, considering only oxidative stress and all features, respectively. Both data mining models 
perform better than when no weighting is applied. Figure 9 shows the confusion matrix of the WRF algorithm 
utilizing all features. The rest of the confusion matrices are shown in Multimedia Appendix 2.

Table 14 presents the important features used for the WRF. In this model, oxidative stress biomarkers, GSH 
in particular, are the most valuable features, while the presence of diabetes was the least. Figure 10 shows the 
ROC curves of the weighted multi-class classifiers (WRF and WLR) and RF with SMOTE using all 14 features, 
indicating a better performance of WRF than that of WLR and RF-SMOTE.

Table 11.  Statistical comparison test results between different algorithms.

Binary classification Multiclass classification

Oxidative stress All features Oxidative stress All features

Friedman test among all models

   Chi-square 40.85 30.93 47.19 36.32

   P-value 1.00× 10
−7

9.65× 10
−6

5.2× 10
−9 8.2× 10

−7

Conover post-hoc test

   P-value RF-LR 7.96× 10
−8 0.96× 10

−5
1.13× 10

−3
0.10× 10

−4

   P-value RF-SVM 1.16× 10
−1 0.40× 10

−5
1.55× 10

−1
0.90× 10

−4

   P-value RF-KNN 2.83× 10
−2

0.38× 10
−3 6.62× 10

−7
3.25× 10

−2

   P-value RF-NB 2.44× 10
−11 8.45× 10

−7
4.56× 10

−21
1.87× 10

−12

   P-value RF-ANN 8.98× 10
−15

3.54× 10
−10

1.90× 10
−25

2.71× 10
−9

Figure 7.  ROC curves of the weighted classifiers (WLR and WRF) for the binary models.
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Statistical comparison among machine learning weighted models
We applied the Friedman test for the weighted class models to assess the significant difference in the algorithm’s 
performance. Table 15 presents the resulting values obtained from the statistical tests. First, we compare the 
results of the WLR, WRF, and RF with SMOTE when using only oxidative biomarkers as the main features. 
Subsequently, a pairwise comparison was conducted using the Conover post-hoc test between the WRF and all 
different algorithms since it has the best performance. The same comparison was applied to the WLR, WRF, and 

Figure 8.  Confusion matrix of the weighted binary RF model with all features.

Table 12.  Feature importance in RF for binary classification—all factors—WRF.

Feature Importance value (RF)

GSH 0.154

GSSG 0.138

ACE haplotype 0.135

8-Isoprostane 0.129

8-OHdG 0.119

BirthAge 0.065

GSH-GSSG-r 0.113

DM-MedUse 0.027

HT-Status 0.0197

DM-Status 0.025

Gender 0.016

HT-MedUse 0.019

OtherMeds-Depression 0.018

CVD 0.016

Table 13.  Performance of weighted multiclass classifiers.

Oxidative stress biomarkers All features

WLR WRF RF with SMOTE WLR WRF RF with SMOTE

Accuracy 0.70 0.79 0.69 0.70 0.82 0.76

Precision 0.66 0.78 0.74 0.72 0.81 0.77

Recall 0.70 0.79 0.69 0.70 0.82 0.76

F1 Score 0.65 0.78 0.70 0.70 0.80 0.76

AUC 0.65 0.85 0.86 0.73 0.91 0.80

AUC-PR 0.67 0.85 0.78 0.77 0.90 0.85
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RF with SMOTE when utilizing all features on the model. WRF showed significant improvement to different algo-
rithms with a α = 0.05 for both data mining models while RF with SMOTE with a α = 0.1 when using all features.

In addition, we applied a statistical comparison to assess the significance of differences among various feature 
sets used in the data set. The WRF classifier was used in three scenarios: using only oxidative stress biomarkers, 
using only social and demographic features, and using all features in the data set. When comparing the WRF 

Figure 9.  Confusion matrix of weighted RF with all features.

Table 14.  Feature importance in RF for multiclass classification—all factors—WRF.

Feature Importance value (RF)

v-GSH 0.132

v-GSSG 0.118

u-8-Isoprostane 0.155

u-8-OHdG 0.109

ACE haplotype 0.140

v-GSH-GSSG-r 0.105

DM-MedUse 0.032

BirthAge 0.051

HT-Status 0.024

HT-MedUse 0.032

CVD 0.012

Gender 0.024

OtherMeds-Depression 0.018

DM-Status 0.015

Figure 10.  ROC curves of the weighted classifiers (WLR and WRF) and RF with SMOTE for the multi-class 
models and the (Macro-Average) AUC values.
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with all features with the other models, including all features resulted in a significant improvement compared to 
other models. Furthermore, the comparison of the WRF with all features to the models using only oxidative stress 
biomarkers and only social and demographic features revealed that using only oxidative stress biomarkers has 
resulted in significant improvement in performance compared to the use of only social and demographic features.

Discussion
The PHQ-9 score has previously been validated for the classification of depression and disease progression using 
machine learning  tools62. A meta-analysis investigating the relationship between oxidative stress and depression 
has indicated a statistically significant effect of oxidative stress on depression despite the substantial heterogeneity 
of the findings due to differences in measures of depression and oxidative stress  biomarkers25. The current study 
develops machine learning-based models to detect the existence of depression and its severity using oxidative 
stress biomarkers together with social and clinical characteristics. The study includes glutathione, 8-isoprostane, 
and 8-hydroxy-2’-deoxyguanosine (8-OHdG), which are among the biomarkers most used for oxidative  stress25.

RF has consistently been shown to outperform all other models in various scenarios and metrics tested in our 
study. This result is consistent with previous studies in clinical  settings21,31. Although ANN is a more sophisticated 
algorithm, it requires large data sets to train the model, which could be the reason why it did not perform as well 
as RF in this clinical sample. Another approach was implemented based on assigning a class weight to address 
imbalanced data. A significant improvement was achieved by applying WRF with an AUC value of 0.91 for 
multiclass classification. In fact, the weighted class method has resulted in almost the same accuracy and AUC 
for binary classification. This might be attributed to its effectiveness in dealing with imbalanced data.

The analysis of the feature importance validates the role of oxidative stress biomarkers in depression detection 
performance. Oxidative stress biomarkers were ranked first in terms of their importance in various scenarios, 
underscoring their role, particularly GSH, in contributing substantially to the presence of  depression11,12. The 
ACE gene haplotype has also been highlighted for its influence on the efficacy of treatment with selective sero-
tonin reuptake inhibitors and (SSRI)50 and its role in depression.

Interestingly, the statistical analysis showed a significant difference between the models, with a better improve-
ment in the RF performance. Numerous previous studies have applied machine learning to predict depression 
based on social and clinical characteristics. However, the inclusion of all features demonstrated the best perfor-
mance, highlighting the significant advantage of using biological, social, and clinical features over using partial 
feature sets in the data set.

The limitation of this study was the disproportionately low number of participants with severe depression 
compared to other classes. This imbalance limits our ability to practically validate our results and compare them 
to those obtained using the weighting-class method. Therefore, future research can expand upon this study by 
specifically targeting participants with severe depression to better understand and validate the detection models 
tailored to this specific class. Further research needs to incorporate deep learning and explainable artificial intel-
ligence (XAI) techniques to refine and advance detection performance progressively.

Conclusion
In this study, we develop a novel approach that integrates clinical, sociodemographic, and oxidative stress mark-
ers. Our statistical analysis shows the significant role of oxidative stress biomarkers in the detection of depres-
sion. The results revealed that this integration of oxidative stress biomarkers with other features contributes to 
an improved detection of the severity level of depression. The analysis of feature analysis ranks oxidative stress 
biomarkers the first among other features, underscoring the role that they could serve as a reliable marker for 
depression, which aligns with the literature that points to the potential benefits of antidepressants with anti-
inflammatory properties. The use of weighted models such as WRF and WLR as well as SMOTE shows the 
usefulness of these methods in the presence of imbalanced data, which is common in medical research. WRF 
technique has shown better performance compared to SMOTE.

Our study introduced a detection model that integrates sociodemographic variables with a comprehensive 
database of biomarkers of oxidative stress. This makes a transition from previous research that the current 
study uses biological factors to detect depression, leading to an enhanced and more robust detection model. 
This synthesis not only deepens our understanding of the multiple factors that influence depression and disease 

Table 15.  Statistical comparison between the results for weighted models.

WLR, WRF, and RF with 
SMOTE WRF across various feature sets

Oxidative stress All features

Friedman test among all models

   Chi-square 13.63 13.40 17.21

   P-value 0.11× 10
−2

0.12× 10
−2

0.18× 10
−3

Conover post-hoc test

   P-value (WRF-WLR) 0.8× 10
−5

0.14× 10
−4 P-value (All features Vs. oxidative stress) 3.68× 10

−4

   P-value (WRF-RF-SMOTE) 0.17× 10
−2

0.18× 10
−1 P-value (All features Vs. social and clinical) 4.25× 10

−3

P-value (oxidative stress vs. social and clinical) 8.83× 10
−6
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progression, but also establishes the basis for future research aimed at improving the integration of machine 
learning into understanding and detecting depression and its severity levels.

Data availability
The data set containing the 830 entries with the features used for this study is available upon reasonable request 
from the corresponding author.
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