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% Check for updates Jellyfish exhibit innovative swimming patterns that contribute to exploring the

origins of animal locomotion. However, the genetic and cellular basis of these
patterns remains unclear. Herein, we generated chromosome-level genome
assemblies of two jellyfish species, Turritopsis rubra and Aurelia coerulea,
which exhibit straight and free-swimming patterns, respectively. We observe
positive selection of numerous genes involved in statolith formation, hair cell
ciliogenesis, ciliary motility, and motor neuron function. The lineage-specific
absence of otolith morphogenesis- and ciliary movement-related genes in T.
rubra may be associated with homeostatic structural statocyst loss and
straight swimming pattern. Notably, single-cell transcriptomic analyses cov-
ering key developmental stages reveal the enrichment of diapause-related
genes in the cyst during reverse development, suggesting that the sustained
diapause state favours the development of new polyps under favourable
conditions. This study highlights the complex relationship between genetics,
locomotion patterns and survival strategies in jellyfish, thereby providing
valuable insights into the evolutionary lineages of movement and adaptation
in the animal kingdom.

Jellyfish represent one of the most critical evolutionary lineages of responsible for balance range from simple statocysts in aquatic

the animal kingdom and play a central role in the evolution of early
animal movement systems. Locomotion drives several adaptive
biological traits, such as balance, pressure perception, and orienta-
tion, all of which contribute to the achievement of neuromuscular
control of movement®. Maintaining balance is crucial for ensuring
stability during movement and typically involves coordination
between sensory and motor systems*. In Eumetazoans, the structures

invertebrates to complex inner ears in mammals’. These structures
consist of mass blocks of calcium crystals, proteoglycans, and col-
lagen. Additionally, they also comprise sensory hair cells that are
mechanically influenced by the position of the mass blocks. It is
possible that these structures may have been present in the last
common ancestor of bilaterians, cnidarians, and ctenophores®’
(Supplementary Fig. 1).
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In jellyfish, a statocyst is located on top of each sensory hair cell
and functions as a feedback system by responding to gravity and
regulating orientation®. Statocyst removal results in a loss of orienta-
tion and inability to perform righting movements’. As a rare exception,
statocysts are absent in Anthomedusae, which also contain medusa
stages'®. The swimming patterns of the ellipsoidal jellyfish, Turritopsis
rubra, and the oblate jellyfish, Aurelia coerulea, are characterised by a
typical jet propulsion (straight swimming) and rowing propulsion
mechanisms (free swimming), respectively (Fig. 1a)"". In Anthomedu-
sae, a network of pacemakers to control swimming contractions is
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located in the marginal nerve rings, with light-sensitive structures
(ocelli) distributed around the margin. In Scyphomedusae and Cubo-
medusae, swimming pacemakers are restricted to marginal integration
centre called rhopalia, which contain ocelli and statocysts (Fig. 1b), and
damage or experimental removal of the rhopalia reduces the overall
speed and regularity of swimming'>. Although statocysts, hair cells, and
their relatives determine swimming patterns in jellyfish, the genetic
basis underlying the occurrence and formation of jellyfish movement
signatures remains unclear. Statocysts, in particular, provide interest-
ing insights into the specific locomotion patterns of jellyfish. Among
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Fig. 1| Evolution and swimming features of Turritopsis rubra and Aurelia
coerulea. a Movement modes of Hydra vulgaris, T. rubra, and A. coerulea, ranging
from immobility to free swimming. b Images and schematics of the sensory organs
of A. coerulea (rhopalium) and T. rubra (tentacle bulb). ¢ Phylogenetic tree of 17
cnidarians and a ctenophore as the outgroup. The bootstrap value of all nodes is
100. d The top 20 enriched Gene Ontology (GO) terms for positively selected genes
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(PSGs) in the T. rubra genome are shown for biological processes (BPs) and cellular
components (CCs). Categories involved in statocyst formation and movement are
coloured in red. The enrichment was conducted using the GOseq R package, and
corrected P < 0.05 indicated significant enrichment. Source data are provided as a
Source Data file.
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the early branching species, jellyfish were an early and simple species
to employ striated muscle and a nervous system to regulate autono-
mous swimming”, rendering them as unique metazoans for investi-
gating the mechanisms underlying locomotor evolution.

In nature, the evolution of life forms has led to the emergence of
diverse survival strategies™. In jellyfish, the evolution of locomotion
has resulted in a range of adaptations and swimming strategies, such as
ambush and cruising foraging patterns. Passive drifting is a char-
acteristic of ambush predators and usually manifests as straight
swimming, whereas mobility is crucial for cruising predators and
usually manifests as free swimming'. Changes in motility allow jellyfish
to adapt to environmental conditions and play a key role in the survival
of the species, especially when food is scarce”. The straight-swimming
species that struggle to quickly escape under adverse conditions may
evolve survival strategies to reduce energy expenditure and wait for
better conditions, which would become crucial for their survival.

Jellyfish exhibit unidirectional alternation between the stationary
phase (asexual reproduction) and motile phase (sexual
reproduction)’®. However, some species such as T. dohrnii, can reverse
their development from sexually reproducing jellyfish to asexual
polyps when subjected to prolonged starvation, and are therefore,
known as ‘immortal jellyfish’”. However, the existence of reverse
development in other species, such as T. rubra, remains ambiguous as
their complete life cycle has not been conclusively discerned within
natural habitats™. Although some work has been conducted to explore
the mechanisms of reverse development at the genomic and tran-
scriptomic levels'*®, the evolutionary signatures underlying the
swimming pattern and survival strategy in jellyfish remain unclear.
Hence, the genetic and cellular basis of jellyfish development, parti-
cularly reverse developmental stages, could enhance our under-
standing of the distinctive life strategies of jellyfish.

In this study, we aimed to elucidate the functional alterations in
statocysts and hair cells during the evolutionary trajectory of jellyfish
locomotion, and sequenced high-quality, chromosome-level genomes
of two jellyfish species, T. rubra and A. coerulea. These genomes were
subsequently juxtaposed with previously documented cnidarian gen-
omes, focusing on the evolutionary innovations and genetic signatures
associated with statocysts and hair cells in species characterised by
divergent swimming modes. The disparities in gene transcription
dynamics and cellular transitions across the jellyfish species were
investigated. A comprehensive single-cell-resolution transcriptomic
analyses of the five stages of normal and reverse development in T.
rubra was conducted to identify the cell types and gene expression
patterns across diverse developmental stages.

Results

Jellyfish genomic features and phylogenomic analyses

We generated two high-quality, chromosome-level reference genomes
of the hydrozoan jellyfish, T. rubra (2n =30), and the scyphozoan jel-
lyfish, A. coerulea (2n=44), spanning 267 Mb and 566 Mb and con-
taining 18,746 and 32,035 gene annotations, respectively. Pseudo-
chromosome syntenic analyses demonstrated that the genome struc-
ture of T. rubra was highly conserved with that of A. coerulea (Sup-
plementary Fig. 5). These are the chromosome-level genome
assemblies for Turritopsis and Aurelia and have higher complete
Benchmarking Universal Single-Copy Orthologue (BUSCO) values and
genome coverages compared to previously published genomes” %,
suggesting higher assembly qualities (Supplementary Table 13).

To determine the phylogenetic position of T. rubra and under-
stand the emergence of balancing organs and the adaptive evolution
of locomotor patterns, we performed a phylogenetic analyses using
whole-genome datasets of 17 cnidarians (from immobilised anthozo-
ans to free-swimming scyphozoans), with one ctenophore included as
an outgroup (Fig. 1c). In accordance with previously published phylo-
genetic reconstructions”, the separation of the major cnidarian clades,

estimated using molecular dating, occurred approximately 600 mil-
lion years ago (Mya). Our phylogenomic analyses indicated that T.
rubra was a sister taxon of Clytia hemisphaerica within the Hydrozoa
clade, with maximal bootstrap support. The species divergence times
estimated using calibration points revealed that T. rubra and C. hemi-
sphaerica diverged approximately 326.7 Mya [95% highest posterior
density (HPD) 251.0-473.4 Myal.

Genetic basis of statocyst and movement regulation

To investigate the genetic basis of the adaptive evolution of locomo-
tion, we performed a comparative genomic analyses of T. rubra and
seven other jellyfish species (C. hemisphaerica, Morbakka virulenta,
Sanderia malayensis, A. coerulea, Cassiopea xamachana, Nemopilema
nomurai, and Rhopilema esculentum). A total of 548 positively selected
genes (PSGs) enriched for epithelial cell migration, motor behaviour,
and tissue migration were identified (Supplementary Data 1 and 2). Of
these, PSGs related to cilium assembly and movement (actin filament
bundle, motor behaviour) that are essential for statocyst formation®,
may contribute to the absence of a statocyst in T. rubra (Fig. 1d, Sup-
plementary Data 3). Alternatively, genes enriched in the AMPA gluta-
mate receptor complex may be involved in the nerve-mediated
regulation of movement*.

Statolith, a small, stone-like object that rests on the bristles of
sensory cells (hair cells), is crucial for jellyfish movement and
orientation®. Scanning electron microscopy of the tentacle bulbs of T.
rubra and the rhopalia of A. coerulea revealed that in the former,
sensory areas were characterised by hair cells carrying only one long
kinocilium on their surface. In contrast, in the statocysts of A. coerulea,
hair cells carried long, straight motile kinocilia surrounded by short
crowns (a sort of folded crater) of non-motile stereocilia around the
central shaft (Fig. 2a). Genes involved in regulating statolith formation,
cilium morphogenesis and movement, including CHSYI, GNPTAB,
LOXHDI, and USH2A, were also positively selected in T. rubra (Fig. 2b).

Swim motor neurons are located in the inner nerve ring, along
each side of the radial canals and in the outer nerve ring, forming a
centre that is mainly concerned with integrating sensory information
and functioning with muscles to regulate the movement of T. rubra®
(Fig. 2c). Some PSGs were specifically expressed in the nerve cells of A.
coerulea but not T. rubra, such as DCTN1, NRPIA, and KIFI3B, that are
involved in regulating movement via nerves and muscles, indicating
their essential roles in the evolution of the movement pattern
observed in A. coerulea (Fig. 2c).

Transcriptome analyses of sensory organs and bell margins
(controls) in four species (Chrysaora quinquecirrha, R. esculentum, A.
coerulea, and T. rubra) also indicated significant differences in the
expression of statocyst-related genes (Fig. 2d, Supplementary
Data 4 and 5). Genes involved in normal otolith morphogenesis
(LRIG3 and NOTUM?2 implicated in otolith biomineralisation), cilio-
genesis (KIF14), ciliary movement (NPCI, FAM166B, and DNAHs), and
hair cell function (LOXHDI and LRPS) were highly expressed in the
rhopalia of three scyphozoan jellyfish (Fig. 2d, e, Supplementary
Fig. 8). The tentacle bulbs of T. rubra exhibited downregulation of
genes involved in motile cilia (Fig. 2f, Supplementary Fig. 9, Sup-
plementary Data 6). We also identified differentially expressed genes
(DEGs) enriched in the sensory organs of each species (compared
with the control samples) (Supplementary Fig. 10, Supplementary
Table 16, Supplementary Data 7-9). These results suggest that genes
related to nerves and sensory organs (eyes or ears) were up-regulated
in respective sensory organs of each species, indicating a functional
homology between jellyfish ocellus and statocysts and vertebrate
eyes and ears. Furthermore, in T. rubra, various genes associated with
motile cilia were found to be down-regulated. These genes are part of
clusters related to cilia- and flagella-associated proteins (CFAPs),
dynein axonemal heavy chains (DNAHSs), intraflagellar transports
(IFTs), and kinesins (KIFs). Interestingly, in the other three jellyfish
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from BioRender.com. ¢ Schematic diagram of the RNA interference experiment in
Aurelia coerulea. ES early stage of strobilation, AS advanced stage of strobilation.
d A. coerulea with knocked down OM genes (and OM proteins containing LRR
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species, these same genes were up-regulated. These results indicate
that the low expression of motile cilia-related genes may result in
non- or dysfunctional cilia in sensory organs, contributing to the loss
of statocysts in T. rubra.

Absent and positively selected genes involved in the swimming
pattern of T. rubra

A total of 278 gene families that underwent marked contractions and
156 gene families that were lost in the T. rubra genome were identified
(Supplementary Fig. 6 and Supplementary Data 10-13). Gene family
annotated as ‘otolith morphogenesis’ (OM) was observed in both the
contracted and lost gene families (Fig. 3a). The OM family was pre-
dicted to comprise leucine-rich repeat-containing (LRR) proteins
required for ciliary motility and otolith biogenesis***” (Supplementary
Fig. 12a). Furthermore, the loss of CFAP141 and CEP97 in T. rubra may
also result in the absence of statoliths, as ciliary motility is required for
normal otolith assembly and localisation”® (Fig. 3a). The loss of KCNK1,
NSMF, and MAOA, which are involved in the regulation of the loco-
motor network by the nervous system, may also contribute to the
unique swimming patterns of T. rubra®".

To explore the genetic evolution of statolith and otolith forma-
tion, the scope of the data was manually extended to a broader
selection of taxa, including mammals, birds, and fishes. Alignment of
the amino acid sequences of the PSGs mentioned earlier, which are
involved in statocyst formation (CHSYI), ciliogenesis (USH2A, CDH23,
DCTN1, and CEP83), and ciliary movement (KIAA2026), revealed that
mutations in the conserved sites (Fig. 3b, Supplementary Fig. 12b) may
contribute to altered gene functions and the inability to form statocyst
in T. rubra.

We further conducted in situ hybridisation analyses to confirm
whether these genes were involved in statocyst formation. LOXHDI
was expressed exclusively in the area surrounding the statocyst in A.
coerulea but not in T. rubra (Fig. 4c). Similarly, USH2A was expressed in
the area surrounding the rhopalium in A. coerulea and the area sur-
rounding the stomach in T. rubra (Fig. 4c). Two lost genes, OMs and
CFAP141 were specifically expressed in the area surrounding the sta-
tocyst in A. coerulea (Fig. 4c), indicating their role in statocyst
formation.

To investigate the functional impact of OM genes on statocyst
development, we knocked down the OM genes via short interfering
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RNA (siRNA against OMs and the LRR domain) during strobilation in A.
coerulea (Fig. 3c). Following a 7 d incubation, the morphology of the
polyps in the si-OM (OM siRNA interference) and si-LRR (LRR siRNA
interference) groups was significantly different compared to that in
the other treatment groups. In the control and siRNA negative control
groups, all the polyps formed bodily segments and developed into
advanced stage of strobilation (AS), with long lappets and well-
developed rhopalia. In contrast, more than half of the polyps of the si-
OM and si-LRR groups were still in the early stage of strobilation (ES),
with undegenerate tentacles (Fig. 3d, Supplementary Fig. 13a). Subse-
quently, we assessed the expression of target genes using RT-qPCR
and found that the si-OM and si-LRR groups exhibited significant
downregulation of genes compared to the control and negative siRNA
groups, validating the efficacy of the siRNA (Supplementary Fig. 13b,
Supplementary Data 14) (p < 0.001).

Genetic profiles of hair, neural, and muscle cells

Hair cells are located at the bottom of the statocyst chamber and may
be vital for oriented movement of statolith®**. To demonstrate the
cellular heterogeneity among hair cells in different species, a single-
cell atlas of the medusae of T. rubra and A. coerulea was generated; it
contained 22,245 and 18,936 cells, respectively (Fig. 4a, Supplementary
Fig. 15; Supplementary Data 15). Notably, CFAP141, which is absent in
the T. rubra genome, as well as PSGs, including TRPC4, CACNAIE,
LOXHDI, and KIF13B, were specifically expressed in the hair cells of A.
coerulea (Fig. 4b). Comparative transcriptome analyses demonstrated
that the hair cells of A. coerulea exhibited enrichment of genes asso-
ciated with microtubule motor activity, cilium assembly, and the
dynein complex. DYNH8 and DYNHI, encoding the inner dynein arm
heavy chain proteins, as well as members of the kinesin family, such as
KIF17, KIF4, KIF28P, and FA10, which encode proteins involved in
microtubule-based movement and motor binding, were expressed
highly in A. coerulea hair cells (Fig. 4d, Supplementary Data 16 and 17).
The up-regulated (DNAH3, DNAHS, DNAH7, DNAH12, and KIF14) and
specifically expressed dynein- and kinesin-encoding genes (above-
mentioned) in A. coerulea are likely to play a vital role in ciliogenesis,
maintaining the programmed oscillation and motility of cilia, and
ensuring the assembly and precise positioning of statoliths®****. Toge-
ther with these dynein- and kinesin-encoding genes, the down-
regulation of components of the Wnt, Hippo, Ca*, and PI3K/Akt sig-
nalling pathways, which are involved in hair cell development in T.
rubra, may result in the formation of non- or dysfunctional hair cells*,
contributing to the absence of statocysts in T. rubra (Fig. 4e, Supple-
mentary Fig. 10).

Nerve and muscle cells are pivotal for mediating the swimming
behaviour of cnidarians. Nerve cells are crucial for the coordination
and transmission of signals that control movement, and muscle cells
are directly involved in the physical aspects of the swimming beha-
viour of cnidarians swimming®?*. A comparison of the nerve and
muscle systems of T. rubra and A. coerulea revealed distinct differences
in gene expression patterns (Supplementary Figs. 16 and 17). In neural
cells, specific genes associated with the regulation of muscle con-
traction (CACNAIE and TRPC4), sensory function (AVIL and HMCNI),
and synaptic plasticity (APBA2 and PARD3) were exclusively expressed
in A. coerulea. Conversely, genes involved in signal transduction
(TRPCS, TRPAI, and SNX27) and those related to neural function (hip-
pocalcin and neurcalin) were highly expressed in the neural cells of T.
rubra and A. coerulea, respectively (Supplementary Fig. 16, Supple-
mentary Data 18 and 19). In the striated muscle, PSGs of T. rubra,
including SMTNLI, MYL6, PFN, RIM2, and CHRNN, were specifically
expressed in A. coerulea (Supplementary Fig. 17, Supplementary
Data 20). Gene Ontology (GO) analyses revealed considerable enrich-
ment in metal ion binding and dynein complex in T. rubra, whereas the
myosin complex, actin cytoskeleton, and actin binding were enriched
in A. coerulea (Supplementary Fig. 17, Supplementary Data 21).

Collectively, these findings suggest substantially different neuromus-
cular system profiles between the two jellyfish species, which may
explain their distinct physiological and evolutionary characteristics.

Cellular and genetic changes of forward and reverse
development in T. rubra

To investigate the developmental pattern of T. rubra and reveal the
cellular and genetic processes, scCRNA-seq analyses was conducted on
single cells sampled across the ontogenic stages of normal and reverse
development, namely the medusa (Me), four-leaf structure (Ff), cyst
(Cy), polyp (Po), and planula (PI) stages. A total of 44,954 cells in 20
distinct cell clusters were assigned to nine broad cell types except one
undefined cluster (Fig. 5a, b, Supplementary Data 22). Pseudo-time
analyses showed that differentiation mainly involves neural, nemato-
cyte, germ, and immune cells in Po and PI stages, expanding to Ep/
muscle cells and gastrodermis in Me and Ff stages (Fig. 5c, Supple-
mentary Fig. 18a, b). However, in the Cy stage, stem cells stop differ-
entiating into nematocytes (Fig. 5c). Given the pivotal role of
nematocytes as remarkable cellular tools involved in predation and
defence in cnidarians, we constructed a differentiation trajectory from
stem cells to nematocytes during normal development and observed
obvious changes in transcription factors (TFs) during nematocyte
differentiation (Fig. 5c, Supplementary Fig. 18c). For example, TFs,
including TBX3, WNTI16, SOXCI, and LMXIB were significantly up-
regulated during the intermediate phase but down-regulated at the
initial and final phases; TFs, including SOXB3, POU4f2, and FOXO
exhibited increased expression at the final phases during differentia-
tion (Fig. 5c). It is noteworthy that during reverse development, the
expression of TFs such as F2F2 and TBXIO significantly decreased
(Supplementary Fig. 18d).

Notably, the cyst and planula stages exhibited striking similarities
in terms of gene expression patterns, with enrichment of pathways
related to tissue regeneration, cell proliferation, and embryonic
development (Fig. 5d, f, Supplementary Data 23). Genes regulating
tissue formation (WNT4, WNT5A, WNTI1A, and MYC), organ develop-
ment (WNTS8 and FZD4), and stem cell differentiation (NANOS, CNIWI,
SOXC1, SOXB1, FOXO, and FOXKI) were expressed in both stages
(Fig. 5f, Supplementary Data 24). Collectively, these findings suggest
that the cyst stage can develop into a polyp stage, similar to the planula
stage. Gene expression pattern analyses further revealed that several
genes implicated in diapause®~*, such as somatic ferritin-like protein,
CHI3L1, GST, HSP70, and HSP90a, were up-regulated during reverse
development (Fig. 5e, Supplementary Data 25). The expression of
genes associated with cell metabolism, cell cycle regulation, and pro-
liferation, including CDK, ATPSMG, ATPSMO, COX6BIL, and COX6CL,
was markedly down-regulated. The distinctive characteristics of the
cyst stage imply that it represents a state of diapause and may sup-
posedly develop into the polyp stage under suitable conditions.

Discussion

As early metazoans that transition from benthic, sessile corals to free-
swimming jellyfish, cnidarians are appropriate models for studying the
early adaptive evolution of animal locomotion patterns. The hydro-
zoan jellyfish, T. rubra, displays straight-swimming behaviour,
ascending with contracted tentacles and descending with extended
tentacles’. Notably, T. rubra lacks a statocyst for orientation and
righting movements. A comparative analyses of this primitive, simple
organism and closely related jellyfish species can help shed light on the
early adaptive evolution of aquatic locomotor patterns. Hair cells play
a pivotal role in statocyst formation. They are closely linked to otoliths,
functioning as mechanoreceptors for balance and spatial orientation
and potentially contribute to otolith assembly and localisation via
ciliary motility”*°. In the present study, we identified distinct differ-
ences in the number and structure of cilia within the hair cells of the
sensory organs of the T. rubra and A. coerulea harbouring statocysts.
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These morphological distinctions provide compelling evidence for
differences in hair cells between these two species.

Ciliary motility is a prerequisite for normal otolith assembly and
localisation. It requires the coordinated activity of multiple dynein
motors arranged precisely along the outer doublet microtubules®, In
Mnemiopsis leidyi, lithocytes are transported and added individually to
the statolith through the active movement of the motile

mechanoresponsive cilia surface that is powered by kinesin and dynein
motors in anterograde and retrograde directions, respectively*’.
Consistently, we observed specific gene expression patterns related to
dynein and kinesin families in the hair cells of A. coerulea, particularly
within the rhopalia of three scyphozoans. In contrast, these genes were
down-regulated in the sensory organ of T. rubra. Genes involved in
microtubular and ciliary movements, motile cilium assembly, as well as
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Fig. 5| Cell atlas of Turritopsis rubra in different developmental stages.

a Uniform Manifold Approximation and Projection (UMAP) visualisation of the
merged dataset in different stages. b Heatmap displaying the expression of selec-
ted marker genes per cell type. ¢ Cell differentiation trajectories at different stages
in T. rubra. Top: cell trajectory analyses of different developmental life stages based
on Monocle3. Scale bar: 100 um. Left bottom: pseudo-temporal ordering of stem
cell to the nematocyte along differentiation trajectories during the normal devel-
opment of T. rubra. The red-marked circles highlight the distinct changes in the
differentiation trajectories in the podocyst stage (compared to other stages). Right
bottom: expression of selected transcription factors (TFs) involved in nematocyte
differentiation, ordered via Monocle2 analyses in pseudo-time. Transcription fac-
tors (TFs) changed during nematocyte differentiation are coloured in red. d Gene
modules detected by extraction of genes from cyst and planula stages. Left lollipop
chart representing the pathways of the cyst (top) and planula stages (bottom).

Right UMAP visualisation of the cell atlas between the cyst (top) and planula stages
(bottom). All KEGG pathways are provided in Supplementary Data 23. e Volcano
map (left) displaying the differential gene expression between the cyst and planula
stages of T. rubra, and the bar plot (right) depicting the Gene Ontology analyses for
gene expression across the different stages. Source data are provided as a Source
Data file. f Part of the life cycles of T. rubra, T. dohrnii, and Aurelia coerulea. All
species exhibit the same pattern of sexual reproduction from gametes to polyps.
After reproduction, the medusa of T. dohrnii can develop into a polyp via reverse
development rather than decomposing during normal development like jellyfish,
such as A. coerulea. The reproductive medusa of T. rubra can experience a cyst-like
diapause that may potentially develop into a polyp. Both the cyst stage and planula
stage exhibit striking similarities in the proportion of stem cells and gene expres-
sion patterns of development, indicating that the cyst stage can develop into a
polyp, similar to the planula stage.

pathways related to hair cell development were up-regulated in the
rhopalia of the three scyphozoans but down-regulated in the tentacle
bulbs of T. rubra, suggesting their significance in statocyst formation.
Notably, loss or knockdown of genes (such as CEP97 and CFAP141) and
PSGs (such as LOXHDI and USH2A), which are required for the normal
function of hair cells, results in developmental defects in otoliths and
reduced swimming speed and distance in zebrafish**%, which, given
the structural, functional, and genetic similarities of the statolith and
the otolith**, may lead to the inadequate function of motor cilia and
impact statolith and statocyst formation in T. rubra.

Statoliths consist of calcium salts, sulphated acid mucopoly-
saccharides, and collagenous material*. Polysaccharides, such as
heparan sulphate proteoglycans, chondroitin sulphate proteoglycans,
and keratan sulphate proteoglycans®, are vital for calcium carbonate-
based biomineralisation*®. The convergent amino acid substitutions in
proteins encoded by two PSGs, i.e., CHSY1 (a chondroitin sulphate
proteoglycan synthase), which is critical for normal epithelial projec-
tion outgrowth, otolith growth, and tethering*’, and GNPTAB (GIcNAc-
1-phosphotransferase), may contribute to failed statolith formation in
T. rubra. Morpholino-based knockdown of GNPTAB in zebrafish results
in irregular otoliths*®, Particularly, the lost OM gene family is predicted
to encode LRR-containing proteins that promote the protein-protein
interactions involved in biomineralisation*®. Specific expression of
OMs in the rhopalia and their expression during in situ hybridisation
downstream of the statocyst, as well as the knockdown of OMs
(including LRR domains), resulted in the inability to form well-
developed statocysts in the normal time frame in A. coerulea, sug-
gesting that OMs play a pivotal role in statolith formation. Notably, the
OM family was substantially expanded in C. xamachana that shows an
upside-down swimming pattern, possibly because this benthic species
needs more statoliths to sink underwater in an inverted position. Thus,
the presence and abundance of statoliths may be associated with the
differences in the swimming patterns of jellyfish. The swimming
musculature of cnidarians is activated by the marginal nervous
tissues’, and the related genes likely play a role in nerve- and muscle-
mediated movement regulation. These genes may also play essential
roles in the evolution of the simple swimming pattern of T. rubra.
Furthermore, genome-editing techniques such as CRISPR/Cas9 and
transgenesis are not currently available for the jellyfish T. rubra or A.
coerulea. These limitations collectively hinder the execution of gene
functional validation experiments, impacting our in-depth under-
standing of these organism.

In the face of adverse environmental conditions, organisms
exhibiting low motility often enter a state of diapause to adapt to
unfavourable seasons and environments*. However, whether the
reproductive medusae of T. rubra can develop retrogradely into
polyps remains debatable. In an earlier study, T. rubra was found to be
non-immortal, with 74% degeneration observed by day 50 of the
experiment”. However, Miglietta proposed that Japanese Turritopsis,
and likely T. rubra, could rejuvenate both before and after

reproduction, albeit at a reduced rate’®*°, In our study, we found that
the reproductive medusae of T. rubra can be successfully induced to
develop into live cysts via starvation. This can facilitate investigation of
the dynamics of transcription and cellular transition during the five
crucial life stages of T. rubra. In the present study, we discovered that
key TFs such as LMXIB and TBXIO, which play critical roles in cell
differentiation and organ development, are significantly down-
regulated in the cyst stage of T. rubra®*. This downregulation may
potentially disrupt the differentiation of stem cells into nematocytes,
likely contributing to the observed loss of predatory capabilities in T.
rubra during the cyst stage. Moreover, high expression of diapause-
associated genes (HSP70, HSP90, GST7, soma ferritin, and
CHIT3)>*535* and the low expression of genes associated with phy-
siological activity (ATPSMG, COX6B1, and CDK)>~’ in the cyst stage
further suggest the preservation of a diapause-like state.

These gene expression patterns provide compelling evidence that
the cyst stage can develop into the polyp stage. The cyst and planula
stages exhibit striking similarities in terms of gene expression patterns.
In our study, pathways related to tissue regeneration, cell proliferation,
and embryonic development, such as the Wnt, mTOR, Hippo, and
FoxO pathways, were specifically enriched in both stages. And func-
tional genes regulating tissue formation, organ development, and
stem cell differentiation were expressed in both stages. The Wnt/beta-
catenin pathway has been conclusively demonstrated to play a crucial
role in head regeneration in cnidarians, particularly in the freshwater
polyp Hydra*®. The mTOR pathway has been identified as a key reg-
ulator of organ growth in the model organism Drosophila
melanogaster*. The Hippo pathway, known for its role in axis forma-
tion and morphogenesis, has been reported to exert its effects by
modulating actin organisation and cellular proliferation in Hydra®.
Moreover, genes involved in the maintenance of stem cell plur-
ipotency, such as SOXCI and SOXBI expressed in the cyst stage of T.
rubra, were substantially up-regulated during the reverse development
of the ‘immortal’ jellyfish 7. dohrnii'®; the Wnt pathway and stem cell
differentiation were also reported to be enriched in T. dohrnii cysts®. A
comparison with the T. dohrnii reverse-development transcriptome
analyses indicated that the cyst stage of T. rubra is genetically pre-
disposed to redevelop into a polyp stage. Further, similarities in the
gene expression patterns of the cyst and planula stages provided evi-
dence that the cysts of T. rubra could redevelop into new polyps under
suitable conditions.

In summary, we generated two high-quality, chromosome-level
genome assemblies of T. rubra and A. coerulea and identified numer-
ous PSGs and lost genes that were involved in otolith morphogenesis,
ciliogenesis, and ciliary movement in T. rubra, indicating that these
genes provided the genomic basis for statocyst formation. Tran-
scriptomic and scRNA-seq analyses revealed that genes involved in
motile cilia and hair cell function had low expression in the sensory
organs and hair cells of T. rubra, which might explain absence of a
statocyst (Supplementary Fig. 19). The dynamics of transcription at the
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five developmental stages indicated that cysts can preserve them-
selves in during diapause and are genetically predisposed to sprout
again as new polyps under suitable conditions. These adaptations
partly explain the reasons underlying the absence of statocysts in T.
rubra and its ability for reverse development. Overall, our findings
provide substantial insights into the regulatory mechanisms governing
these intricate developmental processes. Further exploration of the
specific genes and molecular pathways implicated in these processes
will deepen our understanding of the developmental biology of this
species and could further provide insights into its developmental
plasticity, regenerative capabilities, and adaptive responses to envir-
onmental perturbations.

Methods

Animal use ethics

All animal experiments were conducted in accordance with the
guidelines and after obtaining the approval of the Yantai Institute of
Coastal Zone Research, Chinese Academy of Sciences (2023-KJ-
LL-002).

Sample collection and nucleic acid sample preparation

In this study, two individuals of T. rubra and A. coerulea were subjected
to whole-genome sequencing. Free-swimming medusae of T. rubra
were collected from waters near Yantai and Dongying between May
and August 2021 and transported back to laboratory aquariums for
cultivation. The medusae were identified as T. rubra based on mor-
phological observations and cytochrome C oxidase subunit I (COI) and
16S rRNA sequencing, one healthy medusa was selected for genome
sequencing. The released planula larvae were collected and artificially
fed to obtain asexually reproducing polyps and other medusae were
used to induce the reverse development of the samples used for
SCRNA-seq.

The polyp strains of A. coerulea identified using COI and 16S
sequencing were reared in laboratory cultures from planula-bearing
medusae collected from waters near Yantai. One healthy polyp was
selected and placed separately in a plastic bottle, fed newly hatched A.
salina nauplii once a day with water change after 4 h, and maintained at
20 °C to promote its asexual reproduction. When approximately 100
polyps from the same individual were produced, strobilation was
induced using a solution containing indomethacin (50 pmol/L).
Ephyrae were produced a week later, and were collected and fed daily
to ensure their development into small jellyfish. Approximately
500 small jellyfish were starved for 2-3 days before DNA extraction.

Genome sequencing and Hi-C sequencing
For both T. rubra and A. coerulea, DNA isolated from entire medusa was
used for sequencing by Novogene Technology Co. (Beijing, China) and
Generead Biotechnology Co. (Beijing, China), respectively. Two paired-
end libraries with a 350 bp insert size were constructed for T. rubra and
A. coerulea using the Illumina Hiseq and Illumina NovaSeq, respec-
tively. Quality-filtered reads were used for genome size estimation by
employing the K-mer method®. Genome size was estimated in the
following manner: Genome Size=K;ym/Kuepen. We also calculated and
plotted 17-mer depth distributions (Supplementary Fig. 2). PacBio
sequencing was performed on T. rubra and A. coerulea. Tested DNA
samples were randomly broken into fragments by Covaris ultrasonic
fragmentation, and large fragments of DNA were enriched and purified
using magnetic beads. Thereafter, the fragmented DNA was subjected
to damage and end repair; stem-loop sequencing junctions were liga-
ted at the ends of the DNA fragments; and failed ligation fragments
were removed using exonuclease. The constructed library was
sequenced using PacBio Sequel.

Hi-C libraries were prepared from two adult individuals of T. rubra
and A. coerulea at the previous companies. DNA was isolated from the
samples, and the fixed chromatin was digested overnight using Dpnll.

Subsequently, the DNA was randomly divided into 300-500 bp frag-
ments using protease digestion. Biotin-labelled DNA was captured by
adsorption onto affinity beads, and the Hi-C library was prepared using
end repair, A addition, splice ligation, PCR amplification, and pur-
ification, in strict accordance with the Illumina library operation pro-
cedure. All libraries were quantified using Qubit 2.0 for initial
quantification and then diluted to a final concentration of 1 ng/pL for
evaluation of integrity and insert size using Agilent 2100. The quality of
the libraries was tested using qPCR. Thereafter, the libraries were
pooled according to the effective concentration and target volume of
the data to be sequenced using Illumina PE150. The Hi-C data for T.
rubra were mapped to PacBio-based contigs using HiCup
(hicup_truncater)®®. Uniquely mapped data were used for
chromosome-level scaffolding analyses. HiCUP (hicup_filter) was used
for duplicate removal and quality control, and the remaining reads
were used as valid interaction pairs for further assembly. The Hi-C data
of A. coerulea was mapped and filtered using Juicer. Further details are
provided in Supplementary Note 1.

Genome assembly

The PacBio data were self-corrected, with each read being compared
to the others, based on the probability of insertion, deletion, and
sequencing error of the base quality. Pre-assembled reads were
obtained after error correction, after which they were assembled using
the overlap-layout-consensus algorithm, i.e., the overlapping rela-
tionship of the reads was leveraged for splicing to obtain the con-
sensus sequence. The results of the previous assembly step were
corrected again using lllumina paired-end reads on the Pilon software;
this improved result accuracy and ended in the attainment of a high-
quality consensus sequence.

Based on the Hi-C data of T. rubra obtained from the PacBio
continuous long reads, the contigs/scaffolds sequences obtained from
the assembly were mounted to the chromosome level using ALLHiC to
obtain the genome at the chromosome level. For A. coerulea, “HiFi
assembly” assembly strategy was used. The genome was assembled
directly to the contig level using CCS read (also called HiFi read) by
assembly software and then mounted to the chromosome level using
Hi-C technology. The assembly statistics are presented in Supple-
mentary Table 5. BUSCO assessment showed that our assembly cap-
tured 93.3% and 86.4% of the complete BUSCO values of T. rubra and A.
coerulea, respectively. The sequence interaction matrices are shown in
Supplementary Fig. 3, and the statistical analyses results of the chro-
mosome assemblies are summarised in Supplementary Table 6, 7.

Genome annotation

Sequence annotation methods can be classified into two categories,
i.e., homologous sequence matching and de novo prediction. Homo-
logous sequence matching methods were based on a database of
repetitive sequences (RepBase library). Repeatmasker and repeat
protein mask were used to identify sequences that were similar to
known repetitive sequences. De novo prediction was performed using
LTR_FINDER®*, RepeatScout®, and RepeatModeler®® to build a de novo
repeat sequence library, which was then predicted using Repeatmas-
ker. In addition, Tandem Repeat (TRF)*” was used to find tandem
repeats in the genome.

Protein-coding genes were annotated using a combination of de
novo gene prediction programmes and homology-based methods.
Further, RNA-Seq data were used to predict gene models in the gen-
omes of T. rubra and A. coerulea. De novo prediction was performed
using the Augustus®®, GlimmerHMM?®’, SNAP”°, Geneid, and GenScan”
software. For the homology-based analyses, the protein sequences of
H. vulgaris, C. hemisphaerica, R. esculentum, M. virulenta, A. aurita, and
Pocillopora damicornis were aligned to those of the T. rubra genome.
Similarly, the genome sequences of A. aurita, Aurelia sp.1, C. xama-
chana, C. quinquecirrha, H. vulgaris, and R. esculentum were aligned to
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those of A. coerulea via a precise spliced alignment. After combining
the above prediction results with the transcriptome alignment data,
EVidenceModeler? integration software was used to integrate the
gene sets predicted by the various methods into a non-redundant,
more complete gene set. Finally, using PASA”®, the EVM annotation
results were corrected with the transcriptome assembly results, and
UTR and variable cut information were added to obtain the final gene
set. For A. coerulea, MAKER™* was used to combine the gene sets. Gene
functions were further annotated by searching publicly available
databases, including SwissProt, TrEMBL, Kyoto Encyclopaedia of
Genes and Genomes (KEGG), InterPro, GO, and NR.

An all-versus-all sequence search with an E-value cutoff of 1e-5 was
performed between the predicted gene sets of the two species using
Diamond (v2.0.7.145). Highly divergent gene pairs were excluded. The
filtered BLASTp results were used to compute the collinear blocks
using MCScanX with default parameters. Circos was used to visualise
the synteny between species. More details are provided in Supple-
mentary Note 2.

Phylogenetic analyses

In addition to the genome sequences of T. rubra and A. coerulea
obtained in the present study, we also included genome datasets
obtained from NCBI [Acropora digitifera, P. damicornis, Nematostella
vectensis, H. vulgaris], MGU (Marine Genomics Unit, https://groups.
oist.jp/mgu) [H. viridissima, M. virulenta, A. aurita], published sources
[M. leidyi”®, Xenia sp’®, C. hemisphaerica’, Alatina alata’®, C.
xamachana’®, C. quinquecirrha’”, S. malayensis® N. nomurai®, and R.
esculentum®). Orthologues were identified using OrthoFinder (version
2.2.7) at the default settings for the 18 coelenteron species®. Protein
sequences of one-to-one orthologues were extracted from each
orthogroup using an in-house Perl script (Supplementary Software 1).
Multiple alignments were generated for each of the orthogroups using
MAFFT (version 7.475) with parameter “--localpair’. These were then
trimmed using Gblocks 0.91b with the ‘allowed gap positions’ set at
“With Half”. A total of 1990 genes were obtained, with a tandem length
of 383,088 amino acids. Individual protein alignments were con-
catenated using in-house Perl scripts (Supplementary Software 2).
ProteinModelSelection.pl was used to deduce the best-suited sub-
stitution model for the trimmed alignment (the JTT + F +1+ G4 model).
For maximum likelihood analyses, the best-fit substitution model was
employed as deduced by ProteinModelSelection. pl. with 1000 repli-
cates, as implemented in RAXML (version 8.2.12). The divergence times
were estimated using the Markov chain Monte Carlo (MCMC) tree in
PAML with calibration. A constraint of 240 million years ago (mya) was
set for the split between Acropora and Nematostella. This constraint
aligns with the appearance of the first scleractinian corals in the fossil
record. Other fossil calibrations were based on those previously used
by Khalturin et al. *. Concatenated supergenes and species trees were
used as input files. More details are provided in Supplementary Note 3.

Expansion and contraction of gene families and transposable
element (TE) analyses

Expansion and contraction in gene families were calculated using the
CAFE programme (version 5.1.0) based on the birth-and-death
model®*. The parameters “-p 0.01, -r 10000, -s” were established to
search the birth-and-death parameter (A) of genes based on a Monte
Carlo resampling procedure; birth-and-death parameters in gene
families with a p-value < 0.01 have been reported. Gene families with-
out homology in the SWISS-PROT database were filtered to reduce
potential false-positive expansions or contractions caused by gene
prediction. The GO and KEGG terms for all proteins used in the com-
parative analyses were annotated using Eggnog 5.0%. A gene family
with more than 90% of its members sharing the same annotations was
considered a single functional family, and its weighting was set to one.
For gene families containing sequences with multiple functional

annotations, different weighting values were assigned to each func-
tional annotation according to the ratio of the annotation times of
each term to the total annotation times of all members. The total
weighting value was one for each family. More details are provided in
Supplementary Note 4.

The repeats in C. xamachana, C. hemisphaerica, M. virulenta and S.
malayensis were predicted as follows. Customised de novo repeat
libraries were built using RepeatModeler (version 2.0.2a) and EDTA
(v1.9.7). DeepTE®® was used to classify custom repeat libraries using the
built-in Metazoans database. The annotated custom repeat library and
RepBase were merged to obtain a combined repeat library. Repeat-
Masker (version 4.1.2) was used to predict repeats using a combined
repeat library from the genome sequences. The TE information of the
other jellyfish was based on previous studies.

Gene loss

When a gene had no homologues within the T. rubra clade, the
homologues of that gene were present in the closest sister lineage of
the T. rubra clade, and we considered that the gene was lost in T.
rubra®. One-to-one orthologous genes were extracted from each
species, and multiple sequence alignments were generated. Gene loss
analyses was performed using an in-house script in R language (Sup-
plementary Software 3). Genes that were present in other species but
absent in T. rubra were also manually searched and confirmed using
blast the sequences in the compared genome FASTA files. More details
are provided in Supplementary Note 5.

Positive selection of genes

PSGs in the T. rubra lineage were tested and compared with those of all
other background species. One-to-one orthologous genes were
extracted from the same species set (except H. vulgaris) and selected
for gene family expansion/contraction analyses. The coding sequences
of the one-to-one orthologues were aligned using Prank v.170427 with
a codon model. For codon-aligned nucleotide sequences, all mis-
matched and gapped codons were removed. Positive-selection ana-
lyses were conducted using the branch-site model in PAML (version
4.9j)%. model A (allows sites to be under positive selection; fix_-
omega=0) was compared with the null model Al (sites may evolve
neutrally or under purifying selection; fix omega=1 and omega=1)
using a likelihood ratio test with the Codeml programme in PAML. The
significance (p < 0.05) of the compared likelihood ratios was evaluated
using x2 tests from PAML. Then, the p.adjust function embedded in the
R language was used to adjust the p-value using the Benjamini-
Hochberg method. The significance of the false discovery rate (FDR)
was set at <0.05. BS + MNM tests were also used to detect the PSGs.
Orthologous genes present in other GO and KEGG enrichment ana-
lyses of PSGs were identified. More details are provided in Supple-
mentary Note 6.

Comparative whole-genome search for jellyfish statocyst
formation-related genes

The scope of the data was manually extended to a broader range of
taxa, including mammals, birds, and fish. We then scanned the gen-
omes of a subset of statocyst formation-related genes found in PSGs,
which may be important in the statocysts of seven jellyfish and the
otoliths of four vertebrate species. The best-hit search in TBLASTN
v2.2.30 was used to find matching reads of lost gene protein
sequences in the four vertebrate genomic datasets. BLAST para-
meters were set to an expectation cutoff of 1e -5, allowing a max-
imum number of 1000 returned sequences. The resulting sequences
were BLASTed against sequences hosted on NCBI to identify the
genes. The amino acid substitutions of PSGs in different species were
compared using MEGA-X v10.1.8%. Based on AlphaFold2 and EzMol,
the protein structures of the lost gene family OMs and the related
PSGs were predicted.
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Scanning electron microscopy

Whole rhopalia containing the statocysts of A. coerulea and the ten-
tacle bulbs of T. rubra were detached and chemically fixed for obser-
vation and analyses. Special care was taken to prevent mechanical
damage to the tissues. Fixation was performed in 2.5% glutaraldehyde
for 24-48 h at 4 °C. The samples were dehydrated in graded ethanol
solutions and critical-point-dried with CO, in a Bal-Tec CPD 030 unit
(Quorum K850; Quorum Technologies Ltd., UK). The dried samples
were mounted on specimen stubs with a double-sided tape, gold-
palladium coated with a Polaron SC500 sputter-coated unit (HITACHI
MC1000, Hitachi, Japan), and viewed with a variable pressure HITACHI
Regulus 8100 scanning electron microscope (HITACHI Regulus 8100,
Hitachi, Japan) at an accelerating voltage of 3 kV at Wuhan Servicebio
Technology Co., Ltd.

Transcriptome analyses

We collected RNA samples from two tissues (sensory organs and bell
margins (control)) of four species; these included rhopalia of three
adult scyphozoan medusa (C. quinquecirrha, R. esculentum, and A.
coerulea) and tentacle bulbs of T. rubra which lack statocyst, with at
least four replicates for each tissue. In total, we collected 32 samples
for RNA-seq. All sequencing was performed by BioMarker Technolo-
gies Company (Beijing, China). We constructed RNA-seq libraries with
insert sizes of approximately 300-400 bp. The qualified library was
pooled based on pre-designed target data volume and then sequenced
on an lllumina sequencing platform. Raw reads from 32 different
samples, in a FASTQ format, were first processed using in-house Perl
scripts. Protein-coding genes for every other species were determined
with BLASTp using protein sequences of four jellyfish as queries and
selecting RBH pairs as orthologous genes. In total, we identified 6,428
1:1 orthologues among the four species. After mapping clean reads to
respective genomes using HISAT2 (v2.0.4)°°, gene expression levels
were estimated with fragments per kilo-base of exon per million
fragments (FPKM values) using the Cufflinks programme for each gene
in 32 samples. Pearson correlation coefficients were used to evaluate
transcriptome similarity between different samples.

After combining all 32 samples, the FPKM values were trans-
formed to a log2 scale, and one was added (log2(FPKM +1)). Data were
subjected to quantile normalisation using the R package preproces-
sCore, followed by Principal Component analyses’. DEGs that were
significantly up-regulated or down-regulated between species were
identified by the Wilcoxon rank-sum test using the R function, with the
threshold Q-value for rejecting the null hypothesis set at 0.05. Pairwise
comparisons across three combinations (C. quinquecirrha vs. T. rubra,
R. esculentum vs. T. rubra, A. coerulea vs. T. rubra) were conducted. For
each species, DEGs of the sensory organs were compared with control
samples using DESeq2 and identified based on corrected p-values (Q-
values) and false discovery rates with a log2 (fold change) >1and a Q-
value < 0.01. GO enrichment analyses for each DEG was performed
using the GOSeq R package, with a corrected p < 0.05 indicating sig-
nificant enrichment. An interaction network of DEGs protein-protein
associations was constructed using STRING with a medium confidence
level (0.4). The coloured ellipses show the regrouping of the closest
clustered network of all interactors using Markov Clustering MCL
(inflation parameter set to 3.0). More details are provided in Supple-
mentary Note 7.

RNA interference (RNAi) experiment

In the RNAi experiment, two siRNAs (a mix of three design sequences)
targeting OM genes and the LRR domain were designed by Ribo Bio,
Guangzhou, China. The lyophilised siRNA were resuspended in RNase-
free water, so that the stock concentration was 20 uM. Given that A.
coerulea continuously resides in seawater, the siRNA soaking trans-
fection method was employed for knockdown. Healthy A. coerulea
polyps of similar size and from the same strain were seeded in a 12-well

culture plate from the rearing tank (four polyps per well in 2 mL of
30%o filtered artificial sea water (FASW)). To investigate the function of
OM, four treatment groups were established, i.e., control group,
negative control siRNA treatment group, si-OM treatment group, and
si-LRR treatment group. Strobilation was induced using an induction
buffer containing 25 uM 5-methoxy-2-methyl indole prepared in FASW.

For each group, 10 wells from the 12-well plate were selected for
the addition of transfection complex buffer, and each group contained
a total of 40 polyps. For the control group, 1 mL induction buffer was
added per well. For negative control treatment group, 60 pL of 1x
riboFECTTM CP Buffer, 30 pL of 20 uM negative control siRNA, 6 pL of
riboFECTTM CP Reagent, and 904 pL of induction buffer were mixed
per well. For the si-OM and si-LRR groups, 60 pL of 1x riboFECTTM CP
Buffer, 30 pL of 20 uM siRNA stock solution, 6 pL of riboFECTTM CP
Reagent, and 904 pL of induction buffer mixed combined per well. The
transfection complex buffer was added to the respective treatment
groups. All polyps were cultured at 19 °C for 7 d, with the transfection
complex being replaced every 3 d. Subsequently, the polyps were
collected for morphological observation and RT-qPCR. More details
are provided in Supplementary Note 8.

RT-qPCR

At the end of the RNAi experiment, polyps were observed, and the
number of individuals at each stage of strobilation was recorded. In
each group, four polyps were randomly selected to be fixed in 4%
paraformaldehyde for morphological observation, and the remaining
36 polyps were chosen for RT-qPCR. mRNA was extracted using the
lllustra Polyphenol Polysaccharide Plant Total RNA Extraction Kit
(ZOMANBIO, Beijing, China) and cDNA was synthesised with One-Step
gDNA Removal and cDNA Synthesis SuperMix kit (TransGen Biotech,
Beijing, China). qPCR was performed using SYBR Green Master Mix
(Thermo Fisher Scientific, Waltham, MA, USA) and the Applied Bio-
systems 7300 real-time PCR system (Thermo Fisher Scientific). All
primers were diluted to 10 pM (Supplemental Table 17). Each analyses
was repeated with three biological replicates. All samples were ana-
lysed using beta-actin as a reference gene. Expression levels were cal-
culated using the AACt method. The data was analysed by IBM SPSS
Statistics 25.

Sc-RNA sample preparation, sequencing, and cell sorting
Planula of T. rubra were collected from spawning medusa, and part of
planula were allowed to settle and develop in 6-well culture plates
(Eppendorf) with 0.45um-filtered natural seawater (FSW) for
approximately two weeks to collect polyps. Individual medusae found
in the field were isolated into 6-well culture plates with FSW and
starved to induce the four-leaf stage (5 day) and cysts (12 day). We
obtained medusae of approximately 1cm in diameter from our
laboratory, where they are continuously cultured in a specialised jel-
lyfish breeding tank.

For T. rubra scRNA-seq library preparation -200 planulae, ~30
polyps, 5 four-leaf structures, 10 cysts, and 1 medusa (-1 cm in diameter)
were collected and washed twice with CMFASW (Ca**, Mg?* free-artificial
seawater, 25 g/L NaCl, 0.8 g/L KCl, 0.04 g/L NaHCO5; pH 8.5). Immedi-
ately thereafter, samples from different life stages were separately
transferred to centrifuge tubes containing 2mL digestive buffer
(3.6 mg/mL Dispase 2 and 1.25mg/mL collagenase 1 prepared in
CMFASW). Dissociation was carried out at 25°C with occasional dis-
ruption for 20 min and was subsequently stopped by adding 8% foetal
bovine serum. After dissociation, the single-cell suspension was cen-
trifuged at 500 g for 5 min at 4 °C, resuspended in pre-chilled CMFASW,
and then passed through a 40 um cell strainer (FALCON, Corning,
Corning, NY, USA). Cell viability was assessed using low concentrations
of Calcein AM (2 mM) and Draq7™ (0.3 mM). Only cell suspensions with
viability exceeding 90% were used for subsequent cell capture with the
BD Rhapsody system (BD, Franklin Lakes, NJ, USA).
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In this study, 10x genomics was used to capture single cells of T.
rubra medusae and the BD Rhapsody system was used to capture single
cells of A. coerulea medusae. FASTQ files were processed using the
standard Rhapsody analyses pipeline (BD Biosciences) on Seven Bridges
(https://www.sevenbridges.com) and CellRanger v1.3 software pipeline®,
following the manufacturer’s guidelines. Unique molecular identifier
(UMI) count matrices were imported into R (v.3.6.2) and processed using
the R package Seurat (v.4.0.6) (https:/satijalab.org/seurat/). To remove
ambient RNA contamination and low quality, transcriptomes were fil-
tered for each life-stage sample, with the following settings: nFeature_-
RNA >200; nCount_ RNA <100; min.cells=3 to filter out low-quality
data’. Next, DoubletFinder package and manual screen were used to
remove discrete cells’’. To compare the differences in cell types at dif-
ferent stages of development, quality-filtered datasets of different life
stages were merged into Seurat, and the LIGER package was used to
avoid batch effects among the samples and experiments’™. To generate
cell-type clusters, the “SCTransform” function with its default parameters
was used for data standardisation. Dimensionality reduction was subse-
quently achieved using the “RunUMAP” function, with results visualised
through uniform manifold approximation and projection (UMAP). The
“FindNeighbors” function (with dimensions set to 1:30) and the
“FindClusters” function (at a resolution of 0.7) were also used. Following
this, the “FindAlIMarkers” function from Seurat was employed to identify
DEGs across various clusters (Supplemental Data 13). The annotation of
cell clusters was manually performed by integrating data from recog-
nised Aurelia marker genes or their orthologues in other taxa (i.e., Hydra,
C. hemisphaerica, and N. vectensis)™ °. More details are provided in
Supplementary Note 9 and 10.

Whole mount in situ hybridisation and imaging

The cDNA of T. rubra and A. coerulea were produced using TransScript
One-Step gDNA Removal and cDNA Synthesis Super Mix (TransGen;
#AT311-03). Riboprobes generated from templates produced via
standard cloning and restriction digestion were synthesised using a
DIG RNA labelling kit (SP6/T7) (Roche; #11175025910). Colorimetric
in situ hybridisation was performed with minor modifications”.
Briefly, in situ hybridisation samples of T. rubra and A. coerulea were
relaxed in 2% MgCl, and fixed overnight at 4 °C in 4% paraformalde-
hyde. Hybridisation was carried out at 57 °C for 72 h. The samples were
incubated with an AP-conjugated anti-digoxigenin antibody (Roche;
#11093274910) and detected with NBT/BCIP substrate using a DIG
Nucleic Acid Detection Kit (Roche; #11175041910). They were then
transferred to 80% glycerol and imaged using LEICA DMi8 and SAPO
microscopes. Further details are provided in the Supplementary
Information. More details are provided in Supplementary Note 11.

Single-cell comparative analyses

To investigate gene expression between T. rubra and A. coerulea from
the aspect of single-cell transcriptome profiles, SAMAP was used to
generate matrix homologous genes between T. rubra and A. coerulea
(Supplementary Data 26). Next, we used the canonical correlation
analyses (CCA)'° algorithm to integrate the datasets corresponding to
the medusa of T. rubra and A. coerulea with function IntegrateData and
obtained the new integrated expression matrix (Supplementary Soft-
ware 4). Cell clustering and dimensionality reduction of the integrated
matrix were performed with the functions “FindClusters” and “RunU-
MAP”, respectively. We used the R package river plot to compare the
cluster assignments and visualise the cell-type assignments for T. rubra
and A. coerulea datasets with the CCA joint clusters. Integration and
analyses for the T. rubra and A. coerulea hair cells were performed in a
similar manner. For each cell subset, we used the “FindAllmarker”
(logFC threshold = 0.25) function in the Seurat R package to identify
DEGs among different cell clusters or stages. The DEGs were then
selected for mapping to the GO and KEGG databases using the corre-
sponding genome annotation information. The R packages gene set

variation analyses (GSVA) and ClusterProfiler were used to identify the
GO and KEGG terms between samples and cell clusters.

Pseudo-time analyses

The R package Monocle 3'" was utilised to infer cell differentiation
trajectories across different stages and all cell clusters. The R package
Monocle 2'°? was employed to construct the trajectories for stem cell
differentiation into nematocytes and to analyse the dynamics of gene
expression during the normal development of T. rubra. Furthermore,
the R package cytoTRACE'*® was used to verify and identify the starting
points of differentiation and differentiation potential across various
stages in T. rubra.

Statistics and reproducibility

For each sample, scanning electron microscopy was conducted twice.
In the RNAi experiment, four polyps of each group were collected for
morphological observation. The micrographs of the in situ experiment
were captured twice. In the in situ hybridisation experiment, eight
replicates were set up for each gene in both species. Micrographs of
each developmental stage of T. rubra were taken three times. No sta-
tistical method was used to predetermine sample size. No data were
excluded from the analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The whole-genome assemblies of T. rubra and A. coerulea have been
deposited in the NCBI database under accession code PRJNA1005405.
The raw reads of the RNA-seq of the four jellyfish have been deposited
in the NCBI database under accession code PRJNA1010405. The raw
reads of the single-cell RNA-seq of T. rubra and A. coerulea have been
deposited in the NCBI database under accession code
PRJNA1045549. Source data are provided with this paper.

Code availability

The codes used in the study are provided in the Supplementary Soft-
ware files 1-4, and are available in our lab’s GitHub repository (https://
github.com/Changhao051/Turritopsis-rubra).
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