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Abstract

Encoding models have been used to assess how the human brain represents concepts in language 

and vision. While language and vision rely on similar concept representations, current encoding 

models are typically trained and tested on brain responses to each modality in isolation. 

Recent advances in multimodal pretraining have produced transformers that can extract aligned 

representations of concepts in language and vision. In this work, we used representations from 

multimodal transformers to train encoding models that can transfer across fMRI responses to 

stories and movies. We found that encoding models trained on brain responses to one modality 

can successfully predict brain responses to the other modality, particularly in cortical regions 

that represent conceptual meaning. Further analysis of these encoding models revealed shared 

semantic dimensions that underlie concept representations in language and vision. Comparing 

encoding models trained using representations from multimodal and unimodal transformers, we 

found that multimodal transformers learn more aligned representations of concepts in language 

and vision. Our results demonstrate how multimodal transformers can provide insights into the 

brain’s capacity for multimodal processing.

1 Introduction

Encoding models predict brain responses from quantitative features of the stimuli that 

elicited them [1]. In recent years, fitting encoding models to data from functional magnetic 

resonance imaging (fMRI) experiments has become a powerful approach for understanding 

information processing in the brain. While many studies have shown that encoding models 
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achieve good performance when trained and tested on brain responses to a single stimulus 

modality, such as language [2–9] or vision [10–15], the human brain is remarkable in its 

ability to integrate information across multiple modalities. There is growing evidence that 

this capacity for multimodal processing is supported by aligned cortical representations of 

the same concepts in different modalities—for instance, hearing “a dog is chasing a cat” and 

seeing a dog chasing a cat may elicit similar patterns of brain activity [16–21].

In this work, we investigated the alignment between language and visual representations in 

the brain by training encoding models on fMRI responses to one modality and testing them 

on fMRI responses to the other modality. Encoding models that successfully transfer across 

modalities can provide insights into how the two modalities are related [20]. Although 

previous work has compared language and vision encoding models, human annotations 

were required to map language and visual stimuli into a shared semantic space [20]. To 

our knowledge, cross-modality transfer has yet to be demonstrated using encoding models 

trained on stimulus-computable features that capture the rich connections between language 

and vision.

One way to extract aligned features of language and visual stimuli is using transformer 

models trained on multimodal objectives like image-text matching [22–28]. Recent studies 

have shown that multimodal transformers can model brain responses to language and 

visual stimuli [29], often outperforming unimodal transformers [30–32], suggesting that 

multimodal training enables transformers to learn brain-like representations. However, these 

studies do not assess whether representations from multimodal transformers can be used 

to train encoding models that transfer across modalities. Since multimodal transformers 

are trained to process paired language and visual inputs, the representations learned for a 

concept in language could be correlated with the representations learned for that concept 

in vision. This alignment between language and visual representations in multimodal 

transformers could facilitate the transfer of encoding models across modalities, which relies 

on the alignment between language and visual representations in the brain.

To test this, we used the BridgeTower [28] multimodal transformer to model fMRI responses 

to naturalistic stories [9] and movies [12]. We separately obtained quantitative features 

of story and movie stimuli by extracting latent representations from BridgeTower. We 

estimated language encoding models using story features and story fMRI responses, and 

vision encoding models using movie features and movie fMRI responses (Figure 1a). We 

evaluated how well the language encoding models can predict movie fMRI responses from 

movie features (story → movie) and how well the vision encoding models can predict story 

fMRI responses from story features (movie → story) (Figure 1b). We compared this to how 

well the language encoding models can predict story fMRI responses from story features 

(story → story) and how well the vision encoding models can predict movie fMRI responses 

from movie features (movie → movie).

We found that encoding models trained on brain responses to one modality could accurately 

predict brain responses to the other modality. In many brain regions outside of sensory 

and motor cortex, story → movie performance approached movie → movie performance, 

suggesting that these regions encode highly similar representations of concepts in language 
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and vision. To assess these representations, we performed principal components analysis on 

the encoding model weights and identified semantic dimensions that are shared between 

concept representations in language and vision. Finally, we found that cross-modality 

performance was higher for features extracted from multimodal transformers than for 

linearly aligned features extracted from unimodal transformers. Our results characterize how 

concepts in language and vision are aligned in the brain and demonstrate that multimodal 

transformers can learn representations that reflect this alignment.

2 Multimodal transformers

Multimodal transformers are trained on paired language and visual data to perform self-

supervised tasks such as image-text matching. Typically, these models are used to extract 

representations of paired language and visual input for downstream tasks such as visual 

question answering. However, since multimodal training objectives may impose some 

degree of alignment between language and visual tokens for the same concept, these 

models could also be used to extract aligned representations of language and visual input in 

isolation. For instance, latent representations extracted from the sentence “a dog is chasing a 

cat” may be correlated with latent representations extracted from a picture of a dog chasing a 

cat.

2.1 Feature extraction

In this study, we extracted stimulus features using a pretrained BridgeTower model [28]. 

BridgeTower is a vision-language transformer trained on image-caption pairs from the 

Conceptual Captions [33], SBU Captions [34], MS COCO Captions [35], and Visual 

Genome [36] datasets. For each image-caption pair, the caption is processed using a 

language encoder initialized with pretrained RoBERTa parameters [37] while the image 

is processed using a vision encoder initialized with pretrained ViT parameters [38]. The 

early layers of BridgeTower process language and visual tokens independently, while the 

later layers of BridgeTower are cross-modal layers that process language and visual tokens 

together. Results are shown for the BridgeTower-Base model; corresponding results for the 

BridgeTower-Large model are shown in Appendix F.

We used BridgeTower to extract features from the story (Section 3.1) and movie (Section 

3.2) stimuli that were used in the fMRI experiments. Each story and movie stimulus 

was separately processed using BridgeTower by running forward passes with input from 

the corresponding modality. Hidden representations were extracted from each layer of 

BridgeTower as the inputs were processed.

For stories, segments of transcripts were provided to the model without accompanying visual 

inputs. A feature vector was obtained for every word by padding the target word with a 

context of 20 words both before and after. For movies, single frames were provided to 

the model without accompanying language inputs. Movies were presented at 15 frames per 

second, and a feature vector was obtained for every 2-second segment by averaging latent 

representations across the 30 corresponding frames. Feature extraction was done on a node 

with 10 Intel Xeon Platinum 8180 CPUs and an Nvidia Quadro RTX 6000 GPU.
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2.2 Feature alignment

Transformers compute representations for each layer by attending to different combinations 

of the input tokens. While multimodal training tasks may require models to align language 

and visual tokens for the same concept, the nature of this alignment depends on the type of 

attention mechanism used to combine language and visual tokens [39]. BridgeTower uses 

a co-attention mechanism wherein language and visual tokens are passed through different 

projection matrices, and query vectors from each modality are only scored against key 

vectors from the other modality. As a consequence, the language and visual feature spaces 

extracted from each layer of BridgeTower may differ up to a linear transformation.

To correct for these potential transformations, we used the Flickr30K dataset [40]—which 

consists of paired captions and images—to estimate linear transformation matrices that 

explicitly align the language and visual feature spaces extracted from BridgeTower. We 

first used BridgeTower to separately extract language features of each caption and visual 

features of each image. We then used L2-regularized linear regression to estimate image → 
caption matrices that predict each language feature from the visual features, and caption → 
image matrices that predict each visual feature from the language features. We evaluated the 

matrices by measuring how well they align language and visual features for held out samples 

from the Flickr30K dataset, and found that the matrices achieved significant alignment of 

language and visual features (Appendix C).

Before using the language encoding model to predict movie fMRI responses, we first used 

the image → caption matrix to project the movie features into the language feature space. 

Similarly, before using the vision encoding model to predict story fMRI responses, we first 

used the caption → image matrix to project the story features into the visual feature space.

To show that this explicit feature alignment is only necessary for certain attention 

mechanisms, we repeated our analyses using a KD-VLP [24] vision-language transformer 

(Appendix G). KD-VLP uses a merged attention mechanism wherein language and visual 

tokens are passed through the same projection matrices and query vectors are scored against 

all key vectors, making explicit feature alignment unnecessary.

3 fMRI experiments

We analyzed publicly available fMRI data from five subjects (2 female, 3 male) who 

participated in a story listening experiment and a movie watching experiment [20]. Previous 

studies have modeled the story fMRI data as a function of the story stimuli [9, 4, 41] and 

the movie fMRI data as a function of the movie stimuli [12]. Blood-oxygen level dependent 

(BOLD) brain signals were recorded using gradient-echo EPI on a a 3T Siemens TIM Trio 

scanner at the UC Berkeley Brain Imaging Center with a 32-channel volume coil, TR = 

2.0045 seconds, TE = 31 ms, flip angle = 70 degrees, voxel size = 2.24 × 2.24 × 4.1 mm 

(slice thickness = 3.5 mm with 18 percent slice gap), matrix size = 100 × 100, and 30 

axial slices. All experiments and subject compensation were approved by the UC Berkeley 

Committee for the Protection of Human Subjects. Further details about the data are provided 

in Appendix A.
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3.1 Story experiment

Stimuli for the story experiment consisted of 10 naturally spoken narrative stories from 

The Moth Radio Hour totaling just over 2 hours [9]. The stories were presented over 

Sensimetrics S14 headphones. Subjects were instructed to listen to the stories with their eyes 

closed. Each story was played during a single fMRI scan.

3.2 Movie experiment

Stimuli for the movie experiment consisted of 12 videos totaling 2 hours [12, 14]. Each 

video was made by concatenating a sequence of 10–20 s clips from movies drawn from the 

Apple QuickTime HD gallery and YouTube. The videos were presented at 15 frames per 

second. The videos originally contained dialogue and music, but were presented silently to 

the subjects. Subjects were instructed to fixate on a dot at the center of the screen. Each 

video was played during a single fMRI scan.

4 Voxelwise encoding models

Our study builds upon the voxelwise modeling framework used in many previous fMRI 

studies [1]. Voxelwise encoding models learn a mapping from stimuli to the brain responses 

that they elicit in each individual subject [9]. Brain images recorded at times t = 1…T are 

given by y(t) ∈ ℝm where m is the number of voxels in the cerebral cortex. Responses for 

one subject are represented by the response matrices Y story ∈ ℝTstory × m and Y movie ∈ ℝTmovie × m.

The story and movie features were resampled to the fMRI acquisition times using a Lanczos 

filter. To account for the hemodynamic response, a finite impulse response model with 4 

delays (2, 4, 6, and 8 seconds) was applied to the downsampled features. This resulted in 

the delayed stimulus matrices Xstory ∈ ℝTstory × 4k and Xmovie ∈ ℝTmovie × 4k where k = 768 is the 

dimensionality of the BridgeTower features.

We modeled the mapping between stimulus features and brain responses with a linear 

model Y = Xβ. Each column of β represents a voxel’s linear weights on the 4k 
delayed features. The weights β were estimated using L2-regularized linear regression. 

Regularization parameters were independently selected for each voxel using 50 iterations of 

a cross-validation procedure.

Voxelwise modeling was done on a workstation with an Intel Core i9-7900X CPU. Further 

details about voxelwise modeling are provided in Appendix B.

4.1 Evaluation

Voxelwise encoding models were evaluated by predicting the response matrices Ytest from 

the stimulus matrices Xtest for stimuli that were excluded from model estimation. Prediction 

performance for each voxel was quantified by the linear correlation between the predicted 

and the actual response time-courses [9, 4, 6, 2].

To quantify source → target performance from a source modality to a target modality, we 

estimated encoding models using all source scans and evaluated prediction performance on 
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each target scan. We averaged linear correlations across the target scans to obtain a score 

rsource→target for each voxel. A high rsource→target score indicates that a voxel’s tuning for 

concepts in the target modality is aligned with its tuning for concepts in the source modality.

We compared this cross-modality performance against the within-modality performance of 

an encoding model trained on the target modality. To quantify target → target performance, 

we held out each target scan, estimated encoding models using the remaining target scans, 

and evaluated prediction performance on the held out target scan. We averaged linear 

correlations across the held out target scans to obtain a score rtarget→target for each voxel.

Many previous studies evaluated encoding models on averaged responses to a single test 

stimulus [9, 42, 4]. Here we evaluated encoding models on single repetition responses to 

many test stimuli, as our stimuli vary in semantic content. While our evaluation produces 

less biased estimates of cross-modality and within-modality performance, the correlation 

values will be lower than previously reported results due to the lower signal-to-noise ratio of 

single repetition response data.

We separately identified voxels with statistically significant story → story and movie → 
movie within-modality scores. We computed null distributions of the within-modality scores 

using a blockwise permutation test to account for autocorrelation in the voxel responses 

(Appendix C).

4.2 Layer selection

Separate encoding models were trained using stimulus features extracted from each layer 

of BridgeTower. We summarized performance across layers by estimating the best layer for 

each voxel using a bootstrap procedure. For each test scan, we estimated the best layer for 

each voxel based on mean prediction performance across the remaining test scans. We then 

used the selected layer for each voxel to compute prediction performance for that voxel on 

the held out test scan. We used this procedure for all analyses unless noted otherwise.

5 Results

We separately estimated language and vision encoding models for each subject. We used 

these models to compute rstory→movie, rmovie→story, rstory→story, and rmovie→movie scores for 

each voxel.

5.1 Cross-modality performance

Cross-modality performance was visualized by projecting rstory→movie and rmovie→story 

scores for each voxel in one subject onto a flattened cortical surface (Figure 2a; see 

Appendix E for other subjects; see Appendix F for BridgeTower-Large model results and 

Appendix G for KD-VLP model results). We found positive rstory→movie and rmovie→story 

scores in many parietal, temporal, and frontal regions, which have previously been shown 

to represent the meaning of concepts in language [9] and vision [12]. The high story → 
movie scores and positive (albeit lower) movie → story scores suggest that these voxels 

have similar tuning for the same concepts across modalities [20].
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Conversely, we found negative rstory→movie and rmovie→story scores in visual cortex. Previous 

studies have reported that the tuning to perceptual information in visual cortex may be 

inverted during conceptual processing in the absence of perception [43, 44]. If there is 

systematically inverted tuning between language and vision, it should be possible to first 

estimate which voxels would have negative cross-modality scores using separate validation 

data, and then multiply their weights by −1 before computing rstory→movie and rmovie→story 

on test data. We performed this correction using a bootstrap procedure across the test scans. 

For each test scan, we estimated which voxels have inverted tuning based on the mean 

prediction performance across the remaining test scans. We then multiplied the weights of 

these voxels by −1 before computing prediction performance on the held out test scan.

Figure 2b shows story → movie and movie → story performance across cortex before 

and after this correction. We summarized performance for each layer of BridgeTower 

by averaging the linear correlations across all cortical voxels and subjects. Averaging 

across cortical voxels is an unbiased way to compare different encoding models [4], but 

it produces conservatively low correlation values since many cortical voxels are not involved 

in processing language or vision. Across layers, the correction significantly improved story 
→ movie performance (one-sided paired t-test; p < 0.05, t(4) = 7.5295, rcorrected = 0.0230, 

runcorrected = 0.0053) and movie → story performance (one-sided paired t-test; p < 0.05, t(4) 

= 6.6356, rcorrected = 0.0097, runcorrected = 0.0031), providing evidence for systematically inverted 

tuning for the same concepts across modalities.

5.2 Comparing cross-modality and within-modality performance

While the previous analysis identified voxels with similar tuning for concepts in language 

and vision, it did not characterize the extent of this cross-modal similarity. To do this, we 

next compared cross-modality performance to within-modality performance for each voxel 

(Figure 3a).

To quantify the amount of information that the language encoding model learns about tuning 

for movies, we divided rstory→movie by rmovie→movie for each voxel. If the movie responses 

in a voxel are well-predicted by the vision encoding model but poorly predicted by the 

language encoding model, this value should be low. Conversely, if the movie responses are 

predicted about as well using both the vision and language encoding models, then this value 

should be close to 1. In visual cortex, which represents structural features of visual stimuli 

[14], the language encoding model performed much worse than the vision encoding model 

at predicting movie responses. In significantly predicted voxels outside of visual cortex, 

which represent the meaning of visual stimuli [45, 12, 20], the language encoding model 

often approached the performance of the vision encoding model (Figure 3b).

Similarly, to quantify the amount of information that the vision encoding model learns about 

tuning for stories, we divided rmovie→story by rstory→story for each voxel. In auditory cortex, 

which represents acoustic and articulatory features of language stimuli [42], the vision 

encoding model performed much worse than the language encoding model at predicting 

story responses. In some significantly predicted voxels outside of auditory cortex, which 

have been shown to represent the meaning of language stimuli [42, 9], the vision encoding 
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model performed relatively better, but still did not approach the performance of the language 

encoding model (Figure 3b).

These results suggest that visual tuning can often be estimated solely based on how a 

voxel responds to stories, while it is much harder to estimate language tuning solely based 

on how a voxel responds to movies [46]. One potential confound that could contribute to 

this asymmetry is that the story stimuli contain both concrete concepts (such as places) 

and abstract concepts (such as emotions) while the movie stimuli mostly contain concrete 

concepts. Another potential confound is that the story stimuli contain information at a longer 

timescale than the movie stimuli, which consist only of 10–20 second clips. To isolate 

whether the asymmetry in Figure 3 is driven by differences between language and visual 

representations in the brain, future work could use story and movie stimuli that are matched 

in terms of semantics and timescale coverage.

5.3 Encoding model principal components

The earlier analyses showed that encoding models can readily transfer across modalities, 

at least in the direction from language to vision. But what kind of information is it 

that these cross-modal models are capturing? To understand the semantic dimensions that 

underlie the shared tuning for concepts in language and vision, we next examined the 

principal components of the language encoding model weights. We first determined the 

10,000 best predicted voxels in each subject using a bootstrap procedure (Appendix C). We 

next averaged the encoding model weights across the 4 delays for each feature to remove 

temporal information. We finally applied principal components analysis to the averaged 

encoding model weights, producing 768 orthogonal principal components (PCs) that are 

ordered by the amount of variance they explain across the voxels. We projected stimulus 

features onto each PC to interpret the semantic dimension that the PC captures, and we 

projected encoding model weights onto each PC to assess how the corresponding semantic 

dimension is represented across cortex. We estimated encoding models using layer 8 of 

BridgeTower, which has the highest average performance across cortex, and did not correct 

for negative cross-modality scores.

Projecting Flickr30k caption features onto the first PC of the language encoding model 

weights (language PC 1), we found that phrases with positive language PC 1 projections 

tend to refer to people and social interactions, while phrases with negative language PC 1 

projections tend to refer to places and objects (Figure 4a). Projecting the language encoding 

model weights onto language PC 1, we found that voxels with positive projections were 

mostly located in inferior parietal cortex, precuneus, temporal cortex, and regions of frontal 

cortex; voxels with negative projections were mostly located in superior parietal cortex and 

middle frontal cortex. These findings are consistent with previous studies that mapped how 

different concepts in language are represented across cortex [9, 41].

Since our previous results show that many voxels have shared tuning for concepts in 

language and vision, the semantic dimensions captured by the language PCs may also 

underlie the space of visual representations. Projecting Flickr30k image features onto 

language PC 1, we found that images with positive language PC 1 projections tend to 

contain people, while images with negative language PC 1 projections tend to contain 
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places such as natural scenes (Figure 4b). Projecting the vision encoding model weights 

onto language PC 1, we found similar patterns to the language encoding model projections 

outside of visual cortex. However, we additionally found voxels with positive projections in 

visual cortex regions known to represent faces (OFA, FFA) and body parts (EBA) in vision. 

These results suggest that the semantic dimension captured by language PC 1 is partially 

shared between language and visual representations.

We next quantified the degree to which each of the top 10 language PCs is shared between 

language and visual representations. For each PC, we spatially correlated the projections 

of the language and the vision encoding model weights. We separately computed spatial 

correlations across multimodal voxels that were well predicted by both the language 

and vision encoding models—operationalized as the 10,000 voxels with the highest 

min(rstory→story, rmovie→movie)—as well as across unimodal voxels that were well predicted 

by either the language or vision encoding model but not both—operationalized as the 10,000 

remaining voxels with the highest max(rstory→story, rmovie→movie). The spatial correlations 

quantify how similarly each population of voxels represents each semantic dimension in 

language and vision.

We tested the significance of these correlations using a blockwise permutation test 

(Appendix C). For multimodal voxels (Figure 4c), the projections of the language and the 

vision encoding model weights were significantly correlated for language PCs 1, 3, and 5 

(q(FDR) < 0.05; see Appendix D for further analyses). For unimodal voxels (Figure 4d), the 

projections of the language and the vision encoding model weights were not significantly 

correlated for any of the language PCs.

5.4 Comparing transfer performance using multimodal and unimodal transformers

Finally, we isolated the effects of multimodal training on cross-modality performance. To 

provide a unimodal baseline, we estimated language encoding models using RoBERTa [37] 

and vision encoding models using ViT [38]. Since these unimodal transformers were used to 

initialize BridgeTower, they provide a baseline for how well language and visual features are 

aligned prior to multimodal training.

To perform cross-modal transfer with features from the unimodal transformers, we first 

estimated linear alignment matrices (Section 2.2) on the Flickr30k dataset. We estimated 

image → caption matrices that predict each RoBERTa language feature from the ViT visual 

features, and caption → image matrices that predict each ViT visual feature from the 

RoBERTa language features. We then used these alignment matrices to evaluate how well 

a RoBERTa language encoding model can predict movie fMRI responses using ViT movie 

features, and how well a ViT vision encoding model can predict story fMRI responses using 

RoBERTa story features.

Across cortex, we found that multimodal features led to significantly higher story → 
movie performance (one-sided paired t-test; p < 0.05, t(4) = 2.1377, rmultimodal = 0.0230, 

runimodal = 0.0219) and movie → story performance (one-sided paired t-test; p < 0.05, t(4) 

= 5.3746, rmultimodal = 0.0097, runimodal = 0.0074) than unimodal features (Figure 5a). In particular, 

multimodal features led to higher story → movie performance outside of visual cortex, and 
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higher movie → story performance outside of auditory cortex (Figure 5b). These results 

suggest that multimodal training objectives induce the BridgeTower model to learn more 

complex connections between language and visual representations than a simple linear 

alignment between modalities.

To isolate the impact of any kind of training on transfer performance, we compared cross-

modality performance for a trained BridgeTower model to cross-modality performance for 

a randomly initialized BridgeTower model. We found that the trained model substantially 

outperformed the randomly initialized model (Appendix H).

6 Discussion

Our study demonstrates that encoding models trained on brain responses to language or 

visual stimuli can be used to predict brain responses to stimuli in the other modality, 

indicating similar conceptual representations of language and visual stimuli in the brain [21, 

20]. Our analyses identified the regions in which these representations are aligned, as well 

as the semantic dimensions underlying this alignment. Notably, however, while tuning for 

concepts in language and vision is positively correlated in most regions outside of visual 

cortex, it is negatively correlated in visual cortex. Understanding the nature of this inverted 

tuning is an important direction for future work that could provide deeper insights into the 

relationship between language and vision [43, 44].

To estimate the cross-modal encoding models, we used the BridgeTower multimodal 

transformer to extract features of the story and movie stimuli. The successful transfer 

performance demonstrates that multimodal transformers learn aligned representations 

of language and visual input. Moreover, stimulus features extracted from multimodal 

transformers led to better cross-modality performance than linearly aligned stimulus features 

extracted from unimodal transformers, suggesting that multimodal training tasks enable 

BridgeTower to learn connections between language and visual concepts that go beyond a 

simple linear alignment between unimodal representations.

One limitation of our study is the size of the fMRI dataset. Many naturalistic neuroimaging 

experiments collect a large amount of brain data from a small number of subjects, which 

allows for the replication of the effects in each individual subject [12, 8, 9, 47, 48]. While 

our results are consistent across subjects (Appendix E), it would be ideal to replicate these 

effects in a larger and more diverse population. A second limitation of our study is that 

the story and movie stimuli are not matched in terms of semantics and timescale coverage, 

which could lead to asymmetries between story → movie and movie → story performance. 

Finally, a third limitation of our study is that there may be relevant stimulus features that 

are not captured by current multimodal transformers. This could lead us to underestimate 

the degree of multimodality in the brain. As future multimodal transformers learn to extract 

increasingly relevant features from story and movie stimuli, new experiments similar to our 

study might reveal additional brain regions with shared tuning across modalities.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Cross-modality encoding model transfer. (a) Multimodal transformers were used to extract 

features of story and movie stimuli. Language encoding models were fit (using L2-

regularized linear regression) to predict story fMRI responses from story stimuli; vision 

encoding models were fit to predict movie fMRI responses from movie stimuli. (b) As the 

language and vision encoding models share a representational space, language encoding 

models could be used to predict fMRI responses to movie stimuli, and vision encoding 

models to predict fMRI responses to story stimuli. Encoding model performance was 

quantified by the linear correlation between the predicted and the actual response time-

courses in each voxel.
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Figure 2: 
Cross-modality prediction performance. Encoding models estimated on brain responses to 

one modality were evaluated on brain responses to the other modality. Cross-modality 

performance is measured by the linear correlation (r) between predicted and actual 

responses. (a) rstory→movie and rmovie→story scores for each voxel in one subject are 

displayed on the subject’s cortical surface. A voxel appears red if its score is positive, blue 

if its score is negative, and white if its score is zero. White outlines show regions of interest 

(ROIs) identified using separate localizer data. AC and VC denote auditory cortex and visual 

cortex. rstory→movie and rmovie→story scores were positive in regions that have previously 

been found to represent the meaning of concepts in language and vision, but negative in 

visual cortex. (b) Prediction performance for each layer of BridgeTower. Negative scores 

were corrected by using held out data to fit a one-parameter model for each voxel that 

predicts whether the encoding model weights should be negated before computing transfer 

performance. Scores were averaged across voxels and then across subjects to provide 

unbiased albeit conservatively low summaries of model performance. Error bars indicate 

standard error of the mean across subjects.
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Figure 3: 
Comparing cross-modality and within-modality prediction performance. Cross-modality 

scores were compared against within-modality scores in voxels with statistically significant 

within-modality scores. (a) Cross-modality scores and within-modality scores for each 

voxel in one subject are projected onto the subject’s flattened cortical surface. A voxel 

appears dark if its cross-modality score is much lower than its within-modality score, and 

bright if its cross-modality score approaches its within-modality score. Only well-predicted 

voxels under the within-modality model (q(FDR) < 0.05, one-sided permutation test) are 

shown. (b) Histograms compare cross-modality scores to within-modality scores. For movie 

responses, rstory→movie scores were much lower than rmovie→movie scores near visual cortex 

but approached rmovie→movie scores in other regions. For story responses, rmovie→story scores 

were generally much lower than rstory→story scores across cortex.
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Figure 4: 
Encoding model principal components. Principal components analysis identified the first 

10 principal components (PCs) of language encoding model weights. (a) Each caption in 

Flickr30k was projected onto language PC 1. This PC distinguishes captions that refer to 

people and social interactions—which are represented in inferior parietal cortex, precuneus, 

temporal cortex, and frontal cortex—from places and objects—which are represented in 

superior parietal cortex and middle frontal cortex. (b) Each image in Flickr30k was 

projected onto language PC 1. Here language PC 1 distinguishes images of people—which 

are represented in EBA, OFA, FFA, inferior parietal cortex, precuneus, temporal cortex, 

and frontal cortex—from images of places—which are represented in superior parietal 

cortex and middle frontal cortex. (c) In voxels that were well predicted by both the 

language and the vision encoding models (red on inset flatmap), projections of language and 

vision encoding model weights were significantly correlated (*) for several language PCs, 

indicating semantic dimensions that are shared between language and visual representations. 

(d) In voxels that were well predicted by only the language or the vision encoding models 

(blue on the inset flatmap), projections of language and vision encoding model weights were 

not significantly correlated for any language PCs. For all results, error bars indicate standard 

error of the mean across subjects.
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Figure 5: 
Transfer performance using features from multimodal and unimodal transformers. Cross-

modality scores were compared between multimodal encoding models that extract features 

using BridgeTower and unimodal encoding models that extract features using RoBERTa and 

ViT. (a) The difference between the multimodal score and the unimodal score for each voxel 

in one subject is projected on the subject’s flattened cortical surface. A voxel appears red 

if it is better predicted by multimodal features, blue if it is better predicted by unimodal 

features, white if it is well predicted by both, and black if it is well predicted by neither. 

(b) Histograms compare multimodal scores to unimodal scores. For story → movie transfer, 

multimodal features outperform unimodal features in regions outside of visual cortex.
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