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Abstract

Schoenoplectus tabernaemontani (C. C. Gmelin) Palla is a typical macrophyte in diverse wetland ecosystems. This species holds 
great potential in decontamination applications and carbon sequestration. Previous studies have shown that this species may 
have experienced recent polyploidization. This would make S. tabernaemontani a unique model to study the processes and 
consequences of whole-genome duplications in the context of the well-documented holocentric chromosomes and dysploidy 
events in Cyperaceae. However, the inference was not completely solid because it lacked homology information that is essen
tial to ascertain polyploidy. We present here the first chromosome-level genome assembly for S. tabernaemontani. By com
bining Oxford Nanopore Technologies (ONT) long reads and Illumina short reads, plus chromatin conformation via the Hi-C 
method, we assembled a genome spanning 507.96 Mb, with 99.43% of Hi-C data accurately mapped to the assembly. 
The assembly contig N50 value was 3.62 Mb. The overall BUSCO score was 94.40%. About 68.94% of the genome was com
prised of repetitive elements. A total of 36,994 protein-coding genes were predicted and annotated. Long terminal repeat 
retrotransposons accounted for ∼26.99% of the genome, surpassing the content observed in most sequenced Cyperid gen
omes. Our well-supported haploid assembly comprised 21 pseudochromosomes, each harboring putative holocentric centro
meres. Our findings corroborated a karyotype of 2n = 2X = 42. We also confirmed a recent whole-genome duplication 
occurring after the divergence between Schoenoplecteae and Bolboschoeneae. Our genome assembly expands the scope 
of sequenced genomes within the Cyperaceae family, encompassing the fifth genus. It also provides research resources on 
Cyperid evolution and wetland conservation.
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Introduction
Schoenoplectus tabernaemontani (C. C. Gmelin) Palla, com
mon name as soft-stem bulrush, is a flagship macrophyte in 
wetland ecosystems. It is a promising plant in decontamin
ation applications. This species performs well in tolerating 
multiple organic pollutants, inorganic heavy metals, and na
noparticle (Zhang et al. 2009; Blanco 2018; Yan et al. 
2022). However, debates exist about the biology and prac
tical potential of S. tabernaemontani. For example, this spe
cies was reported to selectively retain arsenic and selenium 
in belowground tissues while conveying other heavy metals, 
such as lead, copper, and cadmium, to aboveground parts 
(Hammill et al. 2022). This selective strategy may lead to the 
accumulation of harmful elements among trophic levels. The 
notorious immunity of Schoenoplectus plants to herbicides 
also has negative effects on crop production (Scarabel et al. 
2009). Nevertheless, Schoenoplectus plants have critical eco
logical significance. They typically grow fast and yield high 
biomass. Previous studies have shown that they are compe
tent nontimber materials in construction practices, offering 
an alternative way to limit carbon emissions (Hidalgo- 
Cordero and García-Navarro 2018). Research on coastal wet
lands also highlighted the heritable variations in the biomass 
allocation strategy of Schoenoplectus americanus and its rela
tions with estuary carbon sequestration and soil surface ac
cretion (Blum et al. 2021; Vahsen et al. 2023). However, a 
high-quality reference genome for S. tabernaemontani is still 
lacking, hindering further insights into the biological mechan
isms of this promising plant.

Schoenoplectus tabernaemontani belongs to the species- 
rich sedge family (Cyperaceae). The prevalence of holo
centric chromosomes confers evolutionary uniqueness to 
Cyperaceae species (Escudero et al. 2012, 2016; Hofstatter 
et al. 2022). The pervasive distribution of centromeres along 
the entire chromosome facilitates tolerance to breakages of 
chromosomes, which may prompt speciation through dys
ploidy instead of polyploidy (Lucek et al. 2022). For example, 
polyploidy occurrence is strikingly low in the Carex genus, 
despite the high volume of species diversity (∼2,000) and 
an exceptional chromosome number variation (2n = 10 to 
132) (Márquez-Corro et al. 2021). However, it may not 
hold for other Cyperid species, as the chromosome number 

could evolve at heterogeneous rates along different clades 
(Márquez-Corro et al. 2019; Shafir et al. 2023). Notably, pre
vious studies have provided some clues for polyploidization 
in the Schoenoplectus genus. Yano and Hoshino (2005)
have examined 13 Schoenoplectus species, revealing a set 
of varied chromosome numbers, but individual chromosome 
sizes nearly hold constant, indicating a larger chance of poly
ploidy than dysploidy. The first record of polyploid intraindi
vidual variation has also been found in Schoenoplectus 
acutus (Tena-Flores et al. 2014). Nevertheless, most of the 
evidence comes from chromosome counting, lacking hom
ology information that is critical in inferring polyploidy 
events, especially autopolyploidy (Spoelhof et al. 2017). 
Thus, we present here the first chromosome-scale genome 
assembly of S. tabernaemontani, expanding the scale of 
the Cyperaceae reference genomes to the fifth genus. We 
aim to provide a valuable genetic resource for research on 
Cyperaceae evolution and wetland conservation.

Results and Discussion

Competence of the Genome Assembly

In total, we acquired 55.48 Gb (∼112×) of Oxford Nanopore 
Technologies (ONT) long-read data for preliminary assembly, 
46.50 Gb (∼94×) of Illumina short-read data for genome pro
filing and back-mapping check, 45.04 Gb (∼91×) of Hi-C 
(all-vs.-all chromosome conformation capture) data for pseu
dochromosome construction, and 14.08 Gb (∼28×) of 
RNA-seq data for gene prediction. The average Q30 value 
for our short-read data was 92.76. The mean Q value for 
ONT data was 11.50. (supplementary fig. S1 and table S1, 
Supplementary Material online). Results of genome profiling 
showed the sequenced genome was moderately complex 
(∼1.3% heterozygosity). The inferred genome size was about 
513 Mb, with repetitive content of ∼48.40% and GC content 
of ∼33.26% (supplementary fig. S2, Supplementary Material
online). The estimated genome size is consistent with all four 
records in the comprehensive research by Elliot et al. (2022)
about genome and chromosome evolution in Cyperid species, 
which provide essential guidance for our further assembling.

Using ONT data, we assembled a preliminary genome 
(supplementary table S2, Supplementary Material online). 

Significance
The soft-stem bulrush (Schoenoplectus tabernaemontani) holds promise as a valuable wetland plant. The inadequacy of ac
cessible genetic information impedes a comprehensive understanding of its ecological significance and evolutionary unique
ness. We present the inaugural chromosome-level genome assembly for S. tabernaemontani, characterized by competent 
quality and detailed annotation of protein-coding genes and repeated sequences. Our genome assembly substantiates a ro
bust karyotype inference for the sequenced individual of S. tabernaemontani (2n = 2X = 42). We validate a clade-specific 
whole-genome duplication occurring after the divergence between Schoenoplecteae and Bolboschoeneae, contributing 
an example of duplication-driven evolution within the dysploidy-prevalent Cyperaceae family.
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Then, we incorporated high-quality Hi-C data (supplementary 
table S3, Supplementary Material online) and polished this 
genome to chromosome level (Table 1). We successfully de
tected the association between most contigs. These contigs 
were then clustered into pseudomolecules. Eventually, we 
constructed a haploid assembly of 21 pseudochromosomes 
(Fig. 1a; supplementary table S4, Supplementary Material on
line). Up to 99.43% of the total bases were mapped into 
these pseudochromosomes. Our final assembly showed 
that S. tabernaemontani has a 1C genome size of 507.96 
Mb (including both the well-mapped and unmapped bases). 
The contig N50 value is 3.62 Mb. The scaffold N50 value is 
24.61 Mb. Detailed information on the assembly was listed 
in Table 1. We also provided a Circos graph (supplementary 
fig. S3, Supplementary Material online) that shows the gene 
density, GC content, transposable elements (TEs), and intra
genome collinearity relations.

The quality of our genome assembly was supported by 
the following evidence: (i) The construction of pseudochro
mosomes was reliable. The mapping rate of Hi-C data 
(99.43%) was higher than formerly published genomes 
Bolboschoenus planiculmis (93.34%) (Ning et al. 2024) 
and Carex littledalei (96.28%) (Can et al. 2020). The results 
of our chromosome-staining experiment also supported the 
haploid chromosome number of 21 (supplementary fig. S4, 
Supplementary Material online). This value was also consist
ent with previous studies (2n = 42) (Elliot et al. 2022); (ii) the 
complete BUSCO score (94.40%) was at a comparable level 

to those recently reported for four Cyperid genomes (Planta 
et al. 2022). The back-mapping scores were good. About 
98.33% Illumina short reads got projection in the genome 
assembly, and ∼96.74% of the whole genome was covered 
through back mapping; (iii) successful detection of telomeres 
and centromeres consolidated the high quality. Although 
highly repetitive in base content, centromeres and telomeres 
are vital components in gene regulation and cell biology (Lin 
et al. 2023). Both elements act as key criteria in the evalu
ation of telomere-to-telomere genome assembly. In our 
case, telomeres were detected in 11 pseudochromosomes 
(∼52.38% of the total), with Chr17 showing signals at 
both ends (Fig. 1c). Notably, our assembly supported a dif
fused distribution of centromeres along each chromosome, 
indicating that S. tabernaemontani may host holocentric 
chromosomes. Holocentricity has long been recognized 
as a critical and flexible trait in the diversification of 
Cyperaceae species (Escudero et al. 2016, 2012; Hofstatter 
et al. 2022). Our new assembly provides data resources 
that may benefit future research to fully ascertain the specific 
mechanisms of holocentricity in S. tabernaemontani.

Repetitive Elements and Gene Annotation

Repetitive elements constituted about 68.94% (∼350.19 
Mb) of the S. tabernaemontani genome. Approximately 
55.33% of the genome was composed of TEs. Tandem re
peats consisted of ∼13.61% of the genome (see details in 
supplementary tables S5 and S6, Supplementary Material
online). Based on the repeat-masked genome, we predicted 
protein-coding genes through a combination of three meth
ods: ab initio, homology, and transcriptome-based predic
tion. In total, 36,994 protein-coding genes were identified 
in the S. tabernaemontani genome. Detailed information 
about gene prediction and BUSCO scores is presented in 
supplementary table S7, Supplementary Material online. 
The complete and duplicated type notably scored 22.00%, 
suggesting a potential large-scale duplication event. Approxi
mately 91.76% of all the predicted genes got annotated at 
canonical databases (Pfam, EggNOG, Swiss-Prot, KEGG, 
NR, KOG, GO, and TrEMBL; see details in supplementary 
table S7, Supplementary Material online). We also estab
lished a computationally predicted noncoding RNA library, 
consisting of 550 rRNAs, 625 tRNAs, 200 miRNAs, and 464 
snRNAs (supplementary table S8, Supplementary Material
online).

Notably, the proportion of long terminal repeat retrotran
sposons (LTR-RTs) in S. tabernaemontani genome ranked 
high in all the available Cyperaceae genome assemblies 
(supplementary table S9, Supplementary Material online). 
Previous studies have shown that chromosomes originated 
from fusion (leading to large chromosome) may possess 
higher amounts of repetitive DNA, whereas fission (leading 
to small chromosome) may favor effective purge of repeat 

Table 1 Statistics for the S. tabernaemontani genome assembly and 
BUSCO scores. “Anchored rate” refers to the proportion of bases that are 
well mapped into pseudochromosomes. Those unmapped bases are also 
included in the final assembly. “Size range” delimits the minimum and 
maximum size of pseudochromosomes

Type Statistics

Sequence
Assembly size (bp) 507,964,631
GC content (%) 33.32
Number of scaffolds 57
Scaffold N50 size (bp) 24,610,677
Scaffold N90 size (bp) 21,215,737
Number of contigs 249
Contig N50 size (bp) 3,615,529
Contig N90 size (bp) 1,429,834

Pseudochromosome
Number 21
Anchored rate (%) 99.43
Size range (M) 17.35 to 28.85

BUSCO score
Complete BUSCOs (%) 94.40
Complete and single-copy BUSCOs (%) 70.30
Complete and duplicated BUSCOs (%) 24.10
Fragmented BUSCOs (%) 1.90
Missing BUSCOs (%) 3.70
Total groups searched 1,614
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contents (Bureš and Zedek 2014; Veleba et al. 2016). Our 
genome assembly (26.99% LTR-RTs, mean chromosome 
size ∼24.19 Mb) provides preliminary clues for putative fu
sion events in the genome of S. tabernaemontani.

WGD and Clade-Specific Evolution Mode

Our genome assembly confirmed a clade-specific whole- 
genome duplication (WGD) event. The synonymous substitu
tion rate (Ks) distribution clearly showed a burst after the 

divergence between S. tabernaemontani and B. planiculmis 
(Fig. 1b). It is also supported by the apparently higher amount 
of complete and duplicated BUSCOs (22.00%) compared 
with other species lacking genetic duplication, e.g. Cyperus 
esculentus (1.50%) (Zhao et al. 2023) and B. planiculmis 
(1.49%) (Ning et al. 2024). The strongest evidence came 
from the considerable amounts of collinear blocks within 
the S. tabernaemontani genome (supplementary fig. S5, 
Supplementary Material online). Previous studies have shown 

Fig. 1. Summary of the S. tabernaemontani genome assembly. a) Heatmap of Hi-C (all-vs.-all chromosome conformation capture) interac
tions within S. tabernaemontani pseudochromosomes. Gradients in the scale bar indicate the frequencies of Hi-C links alter from low to high. b) 
Density plot of the synonymous substitution rate (Ks) showing the different evolution modes for B. planiculmis (Bpla) and S. tabernaemontani 
(Stab). A clear peak is detected in the S. tabernaemontani genome subsequent to its divergence from B. planiculmis. c) Chromosome ideograms 
showing the karyotype of the assembled genome. Length of ideograms is proportional to chromosome size. Filling color scales with gene densities 
(300-kb window size). The putative telomeres are indicated with green triangle. The detected centromeres (purple circle) manifest pervasive 
distribution.
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that intragenome collinear segments amend the possible de
ceiving effect of Ks plot, especially in inferring WGD events 
among recent divergent lineages (Zwaenepoel et al. 2019). 
Thus, the clade-specific WGD in S. tabernaemontani is highly 
possible. The prevalence of dysploidy evolution is well docu
mented in some lineages in Cyperaceae. Our result exhibited 
a contrary instance. However, our result did not support poly
ploidy in S. tabernaemontani, as the genome profiling shows 
the karyotype to be 2n = 2X = 42 (supplementary figs. S2 and 
S4, Supplementary Material online). Furthermore, this result 
may provide valuable information in the transitions of evolu
tion mode among closely related clades. Márquez-Corro 
et al (2019) have highlighted that, in the Fuireneae– 
Abildgaardieae–Eleocharideae–Cypereae clade, Cypereae 
showed a strikingly high rate of dysploidy events compared 
with the remarkably low rate of chromosome evolution in 
the rest lineages (Schoenoplectus included). Our inference 
of WGD offered a possible explanation other than chromo
some number variation.

Materials and Methods

Collection and Preparation of Plant Materials

The sequenced samples were taken from a healthy individual 
of S. tabernaemontani at the Yongding wetland (39.887°N, 
116.177°E). The sampled individual was well maintained in 
its original habitat for long-term research purpose. We se
lected vigorous leaves and treated them with caution to 
avoid exogenous contamination. All the field samples were 
swiftly transferred to lab environment and stored at −80 °C.

Genome Sequencing

We followed the cetyltrimethylammonium bromide meth
od to extract genomic DNA. We checked the quality of 
DNA extraction through agarose gel electrophoresis. The 
SQKLSK109 ligation kit was used to generate ONT libraries. 
Primed R9.4 Spot-On Flow Cells were prepared following 
standard protocols to settle the purified libraries. We chose 
the PromethION platform to execute the sequencing. The 
raw data were treated using the Oxford Nanopore GUPPY 
software (v.0.3.0). Technical details could be found at 
https://github.com/nanoporetech. For Illumina short-read 
sequencing, pair-end libraries were constructed using the 
Nextera DNA Flex Library Prep Kit (Illumina, San Diego, 
CA, USA) and sequenced on the NovaSeq 6000 platform. 
We chose SOAPnuke (v.2.1.4) tool to clean and filter the 
raw reads (https://github.com/BGI-flexlab/SOAPnuke).

Transcriptome Sequencing

For gene prediction, total RNA was extracted and sequenced 
from four independent tissue samples (stem, tuber, spikelet, 
and root). The extraction of RNA was established following 
the manufacturer’s instructions on RNA prep Pure Plant 

Plus Kit (Tiangen Biotech [Beijing] Co., Ltd., China). Then, 
the samples were pooled and sequenced on the Illumina 
NovaSeq 6000 platform. The library type was paired-end. 
The insertion size was about 350 bp on average. The gener
ation of library followed the standard protocols of Illumina.

Genome Profiling and Draft Assembly

Genome profiling was realized using Genome Scope (v.2.0) 
(Ranallo-Benavidez et al. 2020) and Jellyfish (v.2.1.4) 
(Marçais and Kingsford 2011). The primary assembly was 
acquired using the NextDenovo pipeline (https://github. 
com/Nextomics/NextDenovo). Double rounds of error 
check of the primary assembly were performed using 
both the ONT data and the Illumina data. Heterozygous se
quences were removed from the error-checking assembly 
using Purge_haplotigs pipeline (v.1.0.4) (Roach et al. 
2018) to decrease ambiguities.

For Hi-C library construction, we followed a previously 
published protocol involving HindIII enzymatic digestion 
(Xie et al. 2015). The clean Hi-C data were then aligned 
with the draft assembly using Burrows–Wheeler Aligner 
(v.0.7.17) (Li and Durbin 2009). Only read pairs that were 
uniquely aligned were deemed valid-interaction reads. 
HiCUP (v.0.8.0) (Wingett et al. 2015) was used to screen 
and filter out read pairs. We clustered the contigs of the 
draft assembly into several groups (pseudochromosomes) 
using ALLHiC (v.0.9.8) (Wang and Zhang 2022). The orien
tation and ordination of contigs were further improved 
using 3D-DNA (v.180922) (Dudchenko et al. 2017) and 
Juciebox (v.1.11.08) (Durand et al. 2016).

Detection of Repetitive Elements

A de novo repeat library was acquired using RepeatModeler 
(v.2.0.1) (Flynn et al. 2020). We utilized a pipeline incorpor
ating LTR_finder, LTR_harvester, and LTR_retriever to iden
tify high-quality LTRs (Ou and Jiang 2017). RepeatMasker 
(v.4.15) and RepBase (v.20181026) were jointly used to fi
nalize the repeat library. We utilized TRF (v.4.1.0) (Benson 
1999) and MISA (v.2.1) (Beier et al. 2017) to annotate tan
dem repeats. Python scripts of quarTeT (Lin et al 2023) were 
used to detect potential centromeres and telomeres. 
Visualization was established using RIdeogram (v.0.2.2) 
(Hao et al. 2020).

Gene Prediction and Annotation

Based on the repeat-masked genome, Augustus (v 3.5.0) was 
utilized to generate de novo gene models (Stanke et al. 
2008). The homology-based inference was achieved by using 
five well-annotated species as references (Arabidopsis thali
ana, Oryza sativa, Triticum aestivum, Rhynchospora brevius
cula, and B. planiculmis). TransDecoder (v.5.7.1) (https:// 
github.com/TransDecoder/TransDecoder) was applied to 
parse the transcripts. Finally, these three types of evidence 
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were integrated and reconciled using Maker (v.3.01) pipeline 
to obtain ultimate gene prediction results (https://github. 
com/Yandell-Lab/maker?tab). For noncoding RNA, we used 
tRNAscan-SE (v.1.3.1) (Lowe and Eddy 1997) to detect 
tRNA with eukaryote parameters. We used RNAmmer 
(v.1.2) to identify rRNA genes (https://services.healthtech. 
dtu.dk/services/RNAmmer-1.2/). We used a combination of 
Infernal (v.1.1.4) (Nawrocki and Eddy 2013) and Rfam 
(v.14.9) (Kalvari et al. 2021) to determine the miRNA, 
snoRNA, and snRNA in this genome. Both the Infernal and 
the Rfam incorporate covariance models. These models con
sider RNA secondary structure and primary sequence simul
taneously, which greatly improves the scope of potential 
candidates (Kalvari et al. 2018).

Detection of Intragenome Synteny and WGD

We utilized the WGDI toolkit (Sun et al. 2022) to reveal 
the intragenomic synteny among pseudochromosomes 
and the potential WGD events. By implementing a hier
archical algorithm, WGDI has been shown to have high 
sensitivity and accuracy in collinearity detection. We ap
plied the built-in functions of “-d”, “-icl”, “-ks”, “-bi”, 
and “-bk” to generate our inferences. Finally, we got 
an ideogram of pseudochromosomes to intuitively re
present the multidimensional genomic information. The 
visualization of synonymous substitution (Ks) burst was 
accomplished using ggplot2 (https://github.com/tidyverse/ 
ggplot2).

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.
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