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Abstract
Modern phylogeography aims at reconstructing the geographic movement of organisms based on their genomic se
quences and spatial information. Phylogeographic approaches are often applied to pathogen sequences and there
fore tend to neglect the possibility of recombination, which decouples the evolutionary and geographic histories of 
different parts of the genome. Genomic regions of recombining or reassorting pathogens often originate and evolve 
at different times and locations, which characterize their unique spatial histories. Measuring the extent of these dif
ferences requires new methods to compare geographic information on phylogenetic trees reconstructed from differ
ent parts of the genome. Here we develop for the first time a set of measures of phylogeographic incompatibility, 
aimed at detecting differences between geographical histories in terms of distances between phylogeographies. 
We study the effect of varying demography and recombination on phylogeographic incompatibilities using coales
cent simulations. We further apply these measures to the evolutionary history of human and livestock pathogens, 
either reassorting or recombining, such as the Victoria and Yamagata lineages of influenza B and the O/Ind-2001 
foot-and-mouth disease virus strain. Our results reveal diverse geographical paths of migration that characterize 
the origins and evolutionary histories of different viral genes and genomic segments. These incompatibility measures 
can be applied to any phylogeography, and more generally to any phylogeny where each tip has been assigned either a 
continuous or discrete “trait” independent of the sequence. We illustrate this flexibility with an analysis of the inter
play between the phylogeography and phylolinguistics of Uralic-speaking human populations, hinting at patrilinear 
language transmission.
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M
ethods Introduction

The study of the evolutionary biology and phylodynamics 
of pathogens has made significant contributions to disease 
control over the last few decades (Baele et al. 2018; 
Grubaugh et al. 2019; Markov et al. 2023). Pathogens are 
dispersed with their human and animal hosts, both 
of which are seeing increasing mobility as an effect of glo
bal tourism, the access of emerging economies to inter
national markets, and climate change (Gushulak and 
MacPherson 2000; Saker et al. 2004; Carlson et al. 2022). 
These conditions offer increasing opportunities for some 
pathogens to spread rapidly at the global level. Seasonal 
and pandemic influenza (Lemey et al. 2014) and more re
cently the SARS-CoV-2 pandemic (Kraemer et al. 2020; 
McCrone et al. 2022) are well known examples. Increased 

mobility combines with high evolution rates in some 
pathogens, coupling the processes of evolution and spatial 
migration. To understand the emergence, adaptation and 
spread of these pathogens, therefore, we must use the 
methods provided by the field of modern phylogeography, 
that jointly infer the evolutionary history (i.e. phylogeny) 
and the spatial history (i.e. geographic migration of an or
ganism Dudas et al. 2017).

Phylogeographic methods can make use of the mathe
matical representation of a phylogeny as a tree, allowing 
the spatial evolution from the root to the tips to be seen 
as a migration process. This migration process is assumed 
to proceed independently on each branch of the tree, with 
a single origin at the root. The resulting structure greatly 
simplifies mathematical and computational treatments of 
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systems composed of coupled evolution and migration pro
cesses. However, the phylogenetic tree of a set of DNA or pro
tein sequences contains information not only on the 
relatedness of sequences, but also on their evolutionary his
tory. There exist many different methods for reconstructing 
such a tree. If genome isolates have been collected from dif
ferent places, their history could be affected by the geograph
ic structure of the populations, including the rates of 
migration across different locations (Lemey et al. 2014). 
The first step to understanding these effects is the recon
struction of a phylogenetic tree with geographical informa
tion attached to the internal nodes, obtained through 
reconstruction of the spatial movements of lineages in the 
tree. Such an object corresponds to the phylogeographic his
tory of the given set of sequences. For simplicity, in this paper 
we will refer to it as a phylogeography.

A range of techniques have been developed for the re
construction of phylogeographies (Faria et al. 2011). These 
can be classified according to how the migration process of 
ancestral lineages is modeled on the tree: either in the 
form of instantaneous migration of discrete traits (such 
as finite spatial locations), i.e. discrete phylogeography 
based on the coalescent (Lemey et al. 2009), structured co
alescent (Vaughan et al. 2014; De Maio et al. 2015; Müller 
et al. 2017, 2018) or birth–death processes (Kühnert 
et al. 2016; Scire et al. 2022); or as relaxed random walk 
movement in two-dimensional geographic space, i.e. con
tinuous phylogeography (Lemey et al. 2010; Bouckaert 
2016; Dellicour et al. 2016; Gill et al. 2017). Many of these 
approaches focus on a single tree, obtained from 
concatenation-based phylogeny or selected sections of a 
genome, and therefore do not take into account the de
coupling of the evolutionary history of different genomic 
regions due to recombination and/or related processes. 
Phylogeography and analogs have received a lot of interest 
lately, clearly motivated by the serious threats to public 
health from infectious diseases such as seasonal flu and 
SARS-CoV-2. Approaches focused on extending structured 
coalescent to account for ancestral recombination have 
been recently published: Guo et al. (2022) used a general 
probabilistic model of structured coalescent that explicitly 
includes recombination in the genealogical process, whilst 
Stolz et al. (2022) focused on reassortment, a process oc
curring in viruses with segmented genomes such as influ
enza that leads to exchange of discrete genomic segment.

For many species of eukaryotes, as well as for some viruses 
and bacteria, phylogenies are not tree-like. In the presence of 
recombination, reassortment, or horizontal gene transfer, dif
ferent regions of the genome might have potentially evolved 
from unique ancestors. This decouples the evolutionary his
tories of different genes or regions of the genome, resulting 
in trees with cross-branch reticulations if the number of re
combination events is small, or in phylogenetic networks if 
recombination is widespread (Edwards et al. 2016). 
Recombination leads to organisms that inherit genomic frag
ments from multiple parent lineages, causing phylogenetic 
inference methods applied to different parts of the genome 
to give rise to incompatible trees. By applying a measure of 

tree distance to these trees, it is possible to make certain 
claims about the amount of recombination in the ancestral 
population (Chung et al. 2013), for instance by setting a lower 
bound on the number of recombination events between loci. 
Ignoring the role of inference errors, any nonzero tree dis
tance reveals an incompatibility. If the genealogies of differ
ent parts of the same genome are incompatible, these 
incompatibilities can be evidence of recombination, horizon
tal gene transfer, reassortment, or gene conversion. A variety 
of incompatibility measures and tree distances exist for phy
logenies, most notably the well-known Robinson–Foulds 
metric and the family known as tree edit (or Levenshtein) dis
tances (Day 1984), including the Subtree-Prune-and-Regraft 
(SPR) distance (Semple and Steel 2003).

Recombination can lead to a decoupling of geographic 
histories between loci (Hare 2001), just as it can lead to a de
coupling of phylogenetic histories. The resulting ensemble of 
spatial trajectories may reveal functional and evolutionary 
features of different genes. However, phylogeographic infer
ence is highly nontrivial in the presence of reticulations. 
Reticulations form phylogenetic loops, meaning that two 
lineages can split at some time in the past, move in geograph
ic space, then converge to the same location and combine 
into a single lineage. They can share pieces of genetic material 
with different geographical origins, or copies of material 
which have reached their current geographical distribution 
and evolutionary trajectory in different ways. This means 
that the spatial evolution of a given pair of lineages can no 
longer be assumed independent, and some of the advantages 
of working with migration processes on a tree are lost.

In this article, we define two mathematical measures of 
the degree of difference between reconstructed phylogeo
graphies arising from multiple loci. Only one of these is a 
true distance in the sense of providing a metric on a vector 
space, so we will use the more general term “incompatibility 
measure.” A nonzero value of an incompatibility measure be
tween two phylogeographies implies that they are incompat
ible, and could be evidence of recombination. Comparing 
incompatibilities between the phylogeographies of different 
loci can reveal which regions have highly divergent histories, 
and conversely which regions tend either not to recombine, 
or to remain associated during spatial migration. We apply 
these measures of phylogeographic incompatibility to recon
structed histories of a reassorting human pathogen, the influ
enza B virus, as well as a recombining animal pathogen, the 
foot-and-mouth disease virus (FMDV). In addition, we fur
ther illustrate potential interdisciplinary applications to 
other types of data by analysing the phylogenetic, phylogeo
graphic, and phylolinguistic landscape of Uralic-speaking 
populations.

New Approaches
Any measure of phylogeographic incompatibility must be 
related to phylogenetic distances, due to the mathemati
cal relation between phylogeographies and phylogenies 
(explained below). In this section, we outline our approach 
to calculating phylogeographic incompatibilities, starting 
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with a comparison to the phylogenetic case and detailing 
two possible ways to incorporate geographic information. 
We then provide an approach that accounts for uncertain
ties in phylogeographic reconstruction.

Phylogenetic Incompatibilities
Many different measures of tree distance/incompatibility 
have been developed in the past. In most comparisons, 
we will use only two measures that are conceptually re
lated to the phylogeographic incompatibilities introduced 
in the next sections.

The first incompatibility measure is the Kendall–Colijn 
metric (“KC”) (Kendall and Colijn 2016). This Euclidean 
vector-based tree distance metric compares the height 
of the most recent common ancestors (MRCAs) of each 
pair of leaves (i.e. terminal nodes, tips, or taxa) on rooted 
trees.

The second is the distance based on the size of the max
imum agreement sub-tree (“MAST”) between the two 
trees (this concept is explained further in the subsection 
titled Maximum Agreement Sub-Phylogeography below) 
(Steel and Warnow 1993). The MAST estimate is very large 
for similar trees, while it involves fewer and fewer leaves as 
the dissimilarity between the trees increases. Note that the 
normalized MAST distance is usually defined as the frac
tion of leaves that do not belong to the MAST.

We also consider four other distance measures defined 
on phylogenies (without a geographical element): 

• Robinson–Foulds metric (“RF”) (Robinson and Foulds 
1981)

• Robinson–Foulds metric weighted by branch lengths 
(“WRF”) (Robinson and Foulds 1979)

• Subtree-Prune-and-Regraft edit distance (“SPR”) 
(Allen and Steel 2001; De Oliveira Martins et al. 2014)

• Kuhner–Felsenstein branch score distance (“KF”) 
(Kuhner and Felsenstein 1994)

For each of these incompatibility measures, a version exists 
that defines a proper metric in the space of either rooted 
or unrooted binary trees with branches of finite length 
(Goddard et al. 1994). However, all these distances capture 
different ways in which phylogenies can differ (Smith 
2022). Given the high-dimensional and heterogeneous na
ture of phylogenetic spaces, it is not surprising that differ
ent measures give different results, as illustrated in 
Supplementary Material online. As an example, trees dif
fering in topology near the root and especially in tree bal
ance tend to have a very large KC distance (Smith 2022). 
Single recombination events near the root can have a dra
matic impact on the MAST, while recombination events 
involving lower branches or tips have a small effect on 
the MAST, even if they causes changes in the root.

Throughout this paper, we used the version of these 
measures adapted to unrooted binary trees, with the excep
tion of KC. These measures are currently implemented in 
the R packages APE (Paradis and Schliep 2018), phangorn 
(Schliep 2010), and treespace (Jombart et al. 2017).

Phylogeographic Space
The first step in building natural methods of comparison 
for phylogeographies is to define what a phylogeography 
is and to situate it in a well-defined mathematical space. 
The incompatibility measures should facilitate the defin
ition of distance measures over this space. Such a space 
needs to be able to represent both phylogenetic and geo
graphical information.

We define a phylogeography as a tree with geographical 
information assigned to each node of the tree. For practical 
purposes, inferred phylogenies are represented by rooted 
phylogenetic trees with branch lengths and labeled tips. 
Geographical space can be represented either as a network 
of discrete locations or as a continuous space. Our ap
proach covers both cases. Two questions then arise: how 
to combine the genetic distances in the phylogenetic trees 
with the geographic distances, and how to define a joint 
measure on the resulting combination. These two ques
tions are not independent, as different spaces comprising 
different kinds of mathematical objects require different 
approaches for comparing phylogeographies.

We present a simple definition of phylogeographic 
space. The most general space is denoted by PGn, with in
teger n, and its elements are rooted binary trees with n la
beled leaves and with locations assigned to all nodes (both 
leaves and internal nodes). The illustrations in Fig. 1 are of 
phylogeographies of this kind. This space corresponds to 

Fig. 1. An illustration of the two measures of phylogeographic in
compatibility presented in this paper: (Upper Panel) two phylogeo
graphy diagrams illustrating the MRCA-based incompatibility 
measure. Paths to MRCA of pairs of leaves with conflicting locations 
are highlighted in colors corresponding to leaf pairs (purple, {l1, l2}; 
blue, {l2, l3}; green, {l2, l4}; yellow, {l3, l4}). The nodes causing the in
compatibility are likewise highlighted. There are four conflicting 
MRCAs here, so the unweighted incompatibility is 4. (Lower 
Panel) Two phylogeography diagrams illustrating the difference be
tween the MAST (in yellow) and the MASPG (in green). The MASPG 
includes internal node locations, and the internal nodes that con
tribute to the MASPG are highlighted in green. Due to the require
ment of matching internal node locations, the MASPG has size 3, 
while the MAST, which does not have this constraint, has size 4.
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the Cartesian product of the space of bifurcating rooted 
trees with n leaves T n and the Cartesian power of the 
geographic space G to the number of nodes, i.e. 
PGn = T n × G2n−1. In practice, we will work on subspaces 
of PGn with a given vector of tip locations g, since the lo
cations of the leaves are usually known and given as input 
into phylogeographic analyses. For a given set of locations 
g, the corresponding phylogeographic subspace PGg is iso
morphic to T n × Gn. In the following, when discussing 
PGg for a specific (although implicit) choice of g, we will 
refer to it simply as PG.

Pairwise MRCA Incompatibilities
We assume that the geographic space G has a metric 
dG(g, g′) already defined on it for phylogeographic ana
lyses—for example, it can be the geographical distance, 
the distance between centroids of discrete areas (e.g. coun
tries and other political units), or the shortest path dis
tance in the case of a mobility network. We can use this 
distance to define a purely geographic measure of incom
patibilities on PG. However, this requires a pairwise com
parison of spatial locations. Since locations are assigned to 
nodes on different trees, we must solve the matching of 
nodes across trees with different shapes. A straightforward 
approach is to map the MRCAs for pairs of leaves, i.e. com
pare nodes which are the MRCA of the same pair of leaves 
on different trees.

The first step to performing such a comparison for a 
pair of trees with n leaves is to project the phylogeography 
PG to a n2-ary vector gMRCA(PG), where the element 
gMRCA(l1,l2) is the location of the MRCA of the tips l1 and 
l2. Such vectors span a subspace of the n2-ary Cartesian 
power of G. The L1 product metric is a natural metric for 
this space, and therefore it can be used to compute geo
graphic incompatibilities between phylogeographies.

The incompatibility measure between two phylogeo
graphies PG1 and PG2 is then defined as

IMRCA(PG1, PG2)

=
􏽐

{l1,l2} dG(gMRCA(l1,l2)(PG1), gMRCA(l1,l2)(PG2))
n
2

􏼒 􏼓 , (1) 

where {l1, l2} range over the set of pairs of leaves, 
gMRCA(l1,l2)(PGk) is the location assigned to the MRCA of 
leaves l1 and l2 in the phylogeography PGk, and dG is 
the metric on the geographic network. The normalization 
factor n2 ensures that the minimum and maximum pos
sible values of the measure are 0 and maxg,g′ dG(g, g′), 
respectively.

For a simple example of how to calculate IMRCA, consider 
the phylogeographies in Fig. 1. Take A, B, and C to refer to 
the arbitrary locations Argentina, Bolivia, and Chile, and 
place these countries on a network where there is a pair
wise distance of 1 between each country, since they 
all share borders. The MRCA vectors are therefore 
gMRCA(PG1) = (B, A, A, A, A, A) for the phylogeography 
on the left, and gMRCA(PG2) = (A, A, A, B, B, B) for the 

phylogeography on the right. So the total incompatibility 
is IMRCA(PG1, PG2) = 4dG(A, B)

6 = 2/3. Here, the incompatibil
ity comes about due to four comparisons between 
Argentina and Bolivia, and the only MRCA paths that do 
not contribute to the incompatibility are between l1 and 
l3, and between l1 and l4, which meet at the root in both 
phylogeographies.

IMRCA is especially sensitive to the locations assigned to 
nodes with many descendants, the strongest example of 
this being the root of the tree, which can contribute to 
up to half of the comparisons made in calculating the in
compatibility. This sensitivity depends in part on the tree 
shape, with the root contributing more in symmetric trees 
than in asymmetric ones. This is because leaf pairs are 
more likely to find their MRCA at the root when the 
tree is more symmetric, and more likely to find their 
MRCA on the trunk of the tree when the tree is less 
symmetric.

Note that IMRCA is not a distance on PG, since trees with 
a different topology may still have no incompatibilities. 
However, it is easy to construct a distance on PG using 
IMRCA; in fact, any positive linear combination of IMRCA 
and a tree distance on T n is a proper metric on PG (see 
the Supplementary Material online for proofs that incom
patibility measures are distances on PG and further discus
sions on their properties).

Maximum Agreement Sub-Phylogeography
To incorporate both phylogenetic and geographic differ
ences into a metric in a unified way, an alternative ap
proach is to extend an existing metric on T n into PGn. 
One of the measures of phylogenetic incompatibility is 
based on the notion of a maximum agreement subtree 
(MAST), which we will here extend to phylogeographies.

There exists a comprehensive body of literature on find
ing MASTs between pairs of trees (Hein et al. 1996; Semple 
and Steel 2003; Steel 2016). An agreement subtree be
tween the trees T1 and T2 with labeled leaves is a tree S, 
with labeled leaves, such that the subtrees induced on 
T1 and T2 by the set of leaves corresponding to those in 
S (i.e. the subtrees containing only those leaves and intern
al nodes) are both identical to S. The MAST is the largest 
such subtree. Figure 1 provides an example of a MAST.

We can use the MAST to define a metric over T n (Steel 
and Warnow 1993). To find the distance between T1 and 
T2, we start to find MAST(T1, T2), and then write 
dMAST(T1, T2) = n − |MAST(T1, T2)|. Here, |T| is the num
ber of leaves on T, and n = |T1| = |T2|. Thus, for the trees 
in the example in Fig. 1, dMAST(T1, T2) = 1, since the trees 
are of size five and the MAST is of size four.

Now we extend this distance to a metric on PG. First, 
we define a maximum agreement sub-phylogeography 
(MASPG). Take two phylogeographies PG1 and PG2, with 
locations assigned to each node. Let us define an agree
ment sub-phylogeography as a sub-phylogeography with
out unary nodes such that (i) the corresponding subtree is 
an agreement subtree and (ii) for each node in the subtree, 
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the location assigned to the node matches the locations 
on the corresponding subtrees in both PG1 and PG2. 
That is, the induced subtrees must be identical not only 
in topology but also in the geographical assignment of 
the nodes. The MASPG is defined as the largest such 
sub-phylogeography.

We can then define the phylogeographic incompatibil
ity between two phylogeographies PG1 and PG2, both with 
leaf number n = |PG1| = |PG2|, as

IMASPG(PG1, PG2) = 1 − |MASPG(PG1, PG2)|/n, (2) 

where |T| is the number of leaves on the tree T. With this 
normalization, the minimum and maximum possible va
lues of IMASPG are 0 and 1, respectively. For the phylogeo
graphies in Fig. 1 the MASPG is of size 3 and the 
phylogeographies are of size 5, so the incompatibility is 
1 − 3/5 = 0.4.

Incompatibility Between Distributions of 
Phylogeographies
In practical applications, phylogeographies are not known 
with absolute precision, but they are inferred from noisy 
and biased data (e.g. biased sampling of subpopulations). 
In fact, Bayesian approaches to phylogeographic inference 
actually return a posterior distribution of phylogeogra
phies. For this reason, we consider the more general case 
of comparisons between two distributions of phylogeogra
phies. In such a case, the objects of comparison are two 
random variables PG1 and PG2 derived from different 
loci along a genome. These variables are likely to be highly 
correlated even if their posterior (marginal) distributions 
are inferred independently, due to linkage between loci 
and the fixed assignment of tip locations from sample 
metadata. This causes strong biases if the average value 
of IMRCA on the posterior distributions is computed assum
ing the two distributions as independent.

The most conservative choice is to compute the incom
patibility as a Wasserstein metric (or earth mover’s distance) 
between the distributions, using one of the incompatibility 
measures defined above as the cost function. This choice re
duces the likelihood of spurious incompatibilities due to 

correlations between the inferred phylogeographies at 
different loci. As an example, if the two loci have identical 
posterior distributions, this would result in a nonzero dis
tance defining the distributions as independent, while the 
Wasserstein metric implicitly assumes maximum depend
ence and therefore results in zero distance, i.e. full phylogeo
graphic compatibility.

Hence, we can use IMRCA or IMASPG as a cost function for 
differences between phylogeographies, yielding a definition 
of incompatibility between PG1 and PG2 as the first 
Wasserstein metric on the corresponding distributions. In 
practice, we estimate this by taking N samples from each 
posterior, pairing these samples in all possible N! ways 
(e.g. s1 with s′1, s2 with s′2 etc.), computing the mean of 
the incompatibilities 

􏽐N
i=1 I(si, s′i)/N between all pairs of 

samples from the two distributions, then minimizing this 
quantity over all N! choices of pairings. This is an assignment 
problem that can be computed by classical linear program
ming algorithms. In Table 1, we compare the Wasserstein 
distance computed on a random sample of 10 trees ob
tained from the full posterior with the distance computed 
on a single summary phylogeography for the examples of 
the pathogen phylogenies presented in the next sections.

It is also possible to use a similar approach to evaluate 
the impact of the uncertainties in phylogenetic recon
struction, as discussed in Supplementary Material online.

Results
Effect of Evolutionary Parameters on Phylogeographic 
Incompatibilities
To understand the impact of recombination and migration 
rates on phylogeographic incompatibilities, we generated 
random phylogeographies from structured coalescent 
models with three populations/locations. We simulated 
both coalescent trees and node locations of 20 sequences 
from each location, all sampled at the present time. 
Simulations were performed by varying population-scaled 
recombination rate ρ and migration rate μ, as well as migra
tion patterns.

Incompatibilities are generated by different mechan
isms for the patterns of migration represented in the 

Table 1 Comparison between the incompatibilities computed on the MCC tree and on a random sample of 10 trees obtained from the posterior 
distributions

Tree Data Gene Comparison Metric MCC Distance Wasserstein distance (SD)

FMDV VP1 vs 3D KC 163 115 (13)
MAST 0.436 0.450 (0.009)
MRCA 0.359 0.299 (0.076)

MASPG 0.656 0.642 (0.029)
Influenza B - Victoria HA vs NA KC 186 182 (4)

MAST 0.601 0.624 (0.008)
MRCA 0.358 0.462 (0.056)

MASPG 0.796 0.824 (0.017)
Influenza B - Yamagata HA vs NA KC 142 151 (5)

MAST 0.528 0.548 (0.010)
MRCA 0.406 0.523 (0.084)

MASPG 0.742 0.788 (0.023)
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diagrams shown in the lower panel of Fig. 2. In model (iii), 
there is only one possible chain of geographical transmis
sions for each lineage, but incompatibilities are generated 
by the different pace of lineages along this chain. These dif
ferences originate from neutral (stochastic) or selective dif
ferences in the patterns of coalescence or migration of the 
lineages. In model (iv), multiple patterns of transmission 
represent another important contribution to phylogeo
graphic incompatibilities, with lineages following different 
routes between the source and the final location. In model 
(i), an additional source of incompatibility is provided by 
bidirectional spread, with lineages bouncing back and 
forth or wandering between distant locations.

The upper panel of Fig. 2 reveals that the incompatibil
ity between simulated trees increases with both recombin
ation rate and migration rate, at least for low/moderate 
rates of migration. This is to be expected, since increased 
recombination implies more different trees, while low mi
gration leads to less spatial transitions along branches and 
therefore more similar geographic histories.

In most models, changes in recombination rates have a 
much stronger impact on phylogeographic incompatibil
ities than changes in migration rates. This can be explained 
by the fact that recombination is necessary to actually ob
serve a difference in migration histories. Without any 
topological variation of the tree, the phylogeographic 

reconstruction would not differ and any change in migra
tion patterns would be undetectable. In fact, incompatibil
ities are very small for recombination rates ρ < 1 and 
increase steeply for larger values of ρ. Incompatibilities 
tend to be small as well for low migration rates μ ≪ 1.

As outlined above, migration patterns have a major 
impact on incompatibilities, depending on the migration 
rate and the specific measure of incompatibility. 
Incompatibilities tend to be small if there is a single 
source population (Fig. 2-ii), since this imposes strong 
constraints on the migration histories and on the origin 
of the ancestors of the sample. Scenarios with longer 
transmission chains (Fig. 2-iii) or more complex patterns 
of transmission (Fig. 2-iv) lead to a slight increase in dif
ferences among phylogeographies and a more complex 
dependence on migration rates. Finally, in scenarios 
with multiple bidirectional migration patterns, migration 
histories can be very different, hence incompatibilities 
tend to be much larger (Fig. 2-i) and to increase mono
tonically but weakly with migration rates.

In some scenarios, different measures of incompatibil
ities show strikingly different trends. This is due to the 
fact that they capture different components of the signal. 
As an example, widespread differences in recent geograph
ical history would give rise to a much stronger signal on 
MASPG than on MRCA incompatibilities.

Fig. 2. Upper panel: Effect of evolutionary parameters on phylogeographic incompatibilities, using 100 simulations at each calculated pair of 
parameter values. The plots show smoothed surfaces of each phylogeographic incompatibility measure, labeled with the corresponding network 
structure. Lower panel: Models of the network structures. The network structures are illustrated with locations in which the population can 
originate colored in yellow.
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Analysis of the Initial Spread of the O/ME-SA/ 
Ind-2001 FMDV Lineage Across the World
Foot-and-mouth disease is a viral disease affecting wild 
and domesticated cloven-hoofed animals (Alexandersen 
et al. 2003; Arzt et al. 2011a, 2011b) and it is one of the 
most economically relevant diseases of livestock world
wide (Knight-Jones and Rushton 2013). It is caused by 
the FMDV, a positive-sense single-stranded RNA virus be
longing to the family Picornaviridae. This Aphthovirus 
has a relatively short (of about 8.2 kb) but highly variable 
linear genome, comprising the 5′UTR (untranslated re
gion) followed by a single open reading frame (ORF) 
and the 3′UTR region. The ORF encodes for 12 proteins 
with different functions: the leader protease (Lpro), four 
capsid proteins (VP1, VP2, VP3, and VP4) and nonstruc
tural proteins (2A, 2B, 2C, 3A, 3B, 3C, and 3D) (Jackson 
et al. 2003). It provides an interesting case study for phy
logeographic incompatibilities, since it has a nontrivial 
geographic structure, being spread out across host popu
lations worldwide (Di Nardo et al. 2011; Brito et al. 2017), 
and a high recombination rate, especially between struc
tural and nonstructural proteins (Carrillo et al. 2005; 
Jackson et al. 2007).

Whole-genome sequences (WGSs) (n=74) of a globally 
circulating FMDV lineage, the O/ME-SA/Ind-2001, were 
provided by the World Reference Laboratory for FMD 
(WRLFMD) at the Pirbright Institute, UK (Bachanek- 
Bankowska et al. 2018). Discrete phylogeographic recon
struction was performed on most loci along the genome 
(10 proteins), as well as on the whole genome sequence 
(WGS) (supplementary Fig. 2, Supplementary Material
online). The phylogenetic and phylogeographic incom
patibilities are illustrated in Fig. 3.

The two measures of phylogeographic incompatibility 
are only partially related. However, this is true for usual 
phylogenetic incompatibilities as well, as can be seen com
paring the left and right panel of Fig. 3a.

Our results show that the portions of the genome cod
ing for the capsid structure (comprising the structural pro
teins from VP1 to VP4) have highly coupled histories, both 
phylogenetically and geographically. This fits with the well- 
known fact that this region exhibits a relatively low recom
bination rate (Carrillo et al. 2005; Jackson et al. 2007). The 
nonstructural genes at the 3′ end of the genome (i.e. 2C, 
3A, 3C, and 3D) also share similar phylogenetic and geo
graphic histories. The majority of incompatibilities are lo
cated along the tree trunk of the main sublineage, as 
illustrated in Fig. 3b: they are mostly related to differences 
in reconstructed virus movements within the Indian sub
continent, as well as variability in the timing of transmis
sion of different genomic regions to the Middle-East.

Some genomic regions share similar phylogenies, but 
clearly distinct phylogeographies. This is the case e.g. for 
the 5′ UTR versus 2B-3A and for 2B versus 2C-3A, accord
ing to the MRCA measures estimated. In fact, topological 
similarity might not always reflect compatible geographic
al histories, and this relation is not reflected in the 

phylogenetic distances: for example, the WGS reconstruc
tion is phylogenetically similar to the one from the 
L-protease (∼16% of the ORF), but the geographical histor
ies are quite different.

It is important to note that the phylogeography created 
using the WGS does not provide a good summary of the 
phylogeographies of the individual genomic regions, and 
in fact it only resembles the phylogeographies from the 
genome segments comprising the 2C and 3A proteins, 
which tend to be quite dissimilar to those of the rest of 
the sequences (supplementary Fig. 2, Supplementary 
Material online). This could be due to the effect produced 
on the WGS topology by recombinant viruses (i.e. the O/ 
BAR/15/2015 and O/BHU/3/2016) (Bachanek-Bankowska 
et al. 2018), which provide the strongest contribution to 
incompatibilities (as it is evident from their long branches 
in Fig. 3b).

It is therefore important in FMDV evolutionary stud
ies to take account of geographic as well as phylogenetic 
differences when comparing reconstructed evolution
ary histories of distinct genomic regions outside of the 
capsid.

Spatial Evolution of Genomic Segments of Influenza B
Influenza B virus is a segmented virus in the family 
Orthomyxoviridae. It is a major human pathogen, although 
it causes a lesser threat to public health than the related 
influenza A virus. Influenza B virus has a short positive- 
sense single-stranded RNA genome (of about 15 kb) orga
nized in eight linear segments (Bouvier and Palese 2008). 
Reassortment of these segments plays a major role in the 
evolution of the virus, hence influenza B represents an in
teresting case study for phylogeographic incompatibilities 
in reassorting pathogens. Two main lineages (denoted as 
Victoria and Yamagata) are recognized based on differ
ences in the hemagglutinin protein. It has been previously 
shown how these lineages evolved under different dynam
ics (Langat et al. 2017).

We analysed a set of 242 sequences (122 of the 
Victoria lineage, and 120 of the Yamagata) from a recent 
study of worldwide evolution of these Influenza lineages 
(Bedford et al. 2015). These sequences include five genes 
(HA, NA, PB1 and PB2, and NS1 protein) located on dif
ferent segments and therefore reassorting freely among 
them. Phylogenetic and phylogeographic incompatibil
ities among these segments are illustrated in Fig. 4 for 
both lineages. We also reconstructed and compared 
the phylogeographic history of the joint sequences of 
all these genes (∼ 8.6 kb) (supplementary Figs. 3 and 4, 
Supplementary Material online).

Despite free reassortment between all segments, the 
structure of incompatibilities follows some clear patterns. 
Phylogeographic incompatibilities between segments are 
stronger for the Victoria strain, while for Yamagata these 
are comparable to the ones of a recombining virus such 
as FMDV (in Fig. 5b–d the Victoria strain can be seen to 
exceed Yamagata in most inter-segment distance 
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Fig. 3. Phylogenetic and phylogeographic incompatibilities estimated for the FMDV O/ME-SA/Ind-2001 epidemics. Panel a—Comparisons of 
various incompatibility measures between phylogeographies reconstructed from segments of the FMDV O/ME-SA/Ind-2001 genome. In the 
plot on the left, IMRCA (upper triangle) is compared to KC (lower triangle). In the plot on the right, IMASPG (upper triangle) is compared to 
IMAST (lower triangle). Panel b—Illustration of the incompatibilities along the maximum clade credibiltiy (MCC) tree. The line-width of each 
branch represents the total amount of phylogeographic MRCA incompatibilities between all trees built from individual genomic regions 
and the whole-genome tree. Pie charts represent the distribution of MRCA incompatibilities per genomic region (left) and per country (right) 
on the corresponding nodes. Branch colors on the right topology represent the phylogeography reconstructed from the WGS alignment.
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measures). This is partly a result of the large impact of re
assortment on the phylogenetic trees of the Victoria 
lineage.

There is a strong mismatch between the evolutionary 
histories of the two proteins that are the most important 
in the immune response against the virus (i.e. of HA and 
NA). The phylogenetic histories of HA and NA are highly 
divergent in the Victoria lineage, but the difference be
tween their geographical histories is less extreme. On the 
other hand, the geographical spread of HA and NA in 
the Yamagata lineage followed very different routes, des
pite intermediate levels of reassortment. The geographical 
history of NA in this lineage is, in fact, markedly different 
from all other genes.

Clear patterns of incompatibility differ between the 
two lineages, as shown also in Fig. 6. PB1 and PB2 phylo
geographies are closely related for Yamagata but very dif
ferent for Victoria. HA and NA phylogeographies are 
related to NS1 for Victoria, but the three genes present 
very different phylogeographies for Yamagata. Hence, 
the Victoria and Yamagata lineages differ not only in 

the tree topology, but also in the way different genes 
are spread geographically.

For the Victoria lineage, different geographical histories 
in the basal lineages of the tree correspond to different 
movements among East Asian and Australasian regions, 
whilst in more recent years viruses are reconstructed to 
spread in different ways between Asia and Europe, with 
the trunk more concentrated in Asia for NA and HA and 
in Europe for the other segments. For the Yamagata lin
eage, whilst the clade 2 (i.e. B/Massachusetts/02/2012 
clade) shows little evidence of incompatibility between 
geographical histories, the spatial evolution of different 
genomic segments along the trunk of clade 3 (i.e. B/ 
Wisconsin/1/2010 clade) clearly follows different routes 
of epidemics across Europe, America, and East Asia/ 
Australia.

In addition, for the Influenza B case, the phylogeo
graphic reconstruction from all genes together is not a 
reliable description of the evolutionary histories of indi
vidual genes. For both lineages, the overall phylogeny 
and phylogeography resembles mostly the one of PB2 

Fig. 4. Comparisons of various incompatibility measures between phylogeographies reconstructed from segments of the influenza B genome for 
both the Victoria and Yamagata lineages. On the left, IMRCA (upper triangle) is compared to KC (lower triangle) for the Victoria (upper plot) and 
Yamagata (lower plot) strains. On the right, IMASPG (upper triangle) is compared to IMAST (lower triangle) for the Victoria (upper plot) and 
Yamagata (lower plot) strains.
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and it is strongly incompatible with the geographic his
tory of the NS1, hemagglutinin (in the Victoria lineage) 
and of the neuraminidase (in the Yamagata one) 
(supplementary Figs. 3 and 4, Supplementary Material
online).

Genetic Variation and Spatial Movement of 
Uralic-speaking Populations
We demonstrate the applicability of our incompatibil
ity measures to eukaryotic organisms and to linguistic 
data, using genetic and lexical data from a study of 
Uralic languages and the ethnic groups who speak 
them (Tambets et al. 2018). Uralic is a language family 
containing languages spoken in parts of northern 
Eurasia, including Hungarian, Finnish, and Estonian 
among others.

There are two ways to incorporate linguistic data into a 
phylogenetic analysis: either by adding linguistic characters 
to the trees (analogously to geographic characters), or 
using linguistic data to define sequences on which a tree 
can be inferred, thereby creating an ersatz phylogeny. 
We demonstrate the use of our incompatibility measures 
using both approaches in Fig. 7. In the top row, the 
phylogeographic tree inferred on lexical data is included 
among trees inferred on the genetic data from the 
Y-chromosome, mitochondrial, and autosomal DNA. We 
use only data from males, so all trees have comparable 
leaves. We display the phylogenetic and phylogeographic 
incompatibilities for these trees. In the bottom row, we re
place the geographic space with a two-dimensional projec
tion of lexical characters in the tree inference process, 
using Multi-Dimensional Scaling (MDS). Then we apply 
our incompatibility measures treating the lexical space 
as if it would be a geographic one, using a lexical distance 
measure on the MDS projection instead of the geo
graphic distance. This yields a measure of phylolinguistic 
incompatibility.

For the phylogeographic incompatibilities, we find 
that the pattern in the values of IMRCA diverges from 
that of the KC distance more than IMASPG differs from 
IMAST . In all cases, we see that the lexical tree is closer 
to the Y-chromosome tree than the mitochondrial one. 
This suggests that Uralic languages follow patterns of 
transmission that are more patrilinear than matrilinear 
in the Uralic-speaking populations (Gomes et al. 2017; 
Lansing et al. 2017). For the phylolinguistic incompatibil
ities, we again find that the pattern in the values of IMRCA 
diverges from that of the KC distance more than IMASPG 
differs from IMAST . Further, in this case there is no rela
tionship that can be found in all four measures, suggest
ing that these measures are highly divergent in the 
phylolinguistic case. This could be due to sensitivity to 
different parts of the tree—in fact we find that the trees 
differ at the root, so sensitivity to the root will have large 
effects on incompatibility measures (see supplementary 
Fig. 5, Supplementary Material online).

Discussion
We have here presented two measures of phylogeographic 
concordance or incompatibility, IMRCA and IMASPG. The first 
is derived from comparison of the geographical status of all 
the MRCAs of pairs of leaves. The second is derived from 
maximum agreement sub-phylogeographies. Both of these 

Fig. 5. Illustrations of the correlations between the measures inves
tigated by this study. a) Correlations between incompatibility mea
sures. The upper triangle shows the Pearson correlation, and the 
lower triangle shows the Spearman correlation. b, c, d) Scatter plots 
illustrating the correlations between incompatibility measures for 
the three viruses whose phylogeographies were investigated in this 
paper.
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Fig. 6. Illustration of the incompatibilities along the MCC tree for the Influenza B Victoria and Yamagata lineages epidemics. The line-width of 
each branch represents the total amount of phylogeographic MRCA incompatibilities between all trees built from individual genomic regions 
and the whole-genome tree. Pie charts represent the distribution of MRCA incompatibilities per genomic region (left) and per UN geographic 
region (right) on the corresponding nodes. Branch colors on the right topology represent the phylogeography reconstructed from the joint 
sequences alignment of all the genes investigated (∼ 8.6 kb).
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measures can be used to define metrics on the space of 
phylogeographies.

These incompatibility measures can be applied to any 
phylogeography, and more generally to any phylogeny 
where each tip has been assigned a geographical discrete 
location or any other continuous or discrete trait that is 
independent of the sequence. Such traits could include 
the host species for pathogens, environmental variables 
for species living in a varied range of environments or, as 
demonstrated, linguistic features of human populations. 
The natural assignment method is parsimony as pioneered 
by Maddison (1991, 1995), or Bayesian approaches (Lemey 
et al. 2009, 2014) such as those implemented in BEAST 
(Suchard et al. 2018), but our measures are independent 
of the reconstruction method used and on the specific 
trait. Our approach can also compare multiple trees in
ferred from different origins, e.g. phylogenetic vs linguistic 
trees, provided that the tips have the same geographical 
labels (representing e.g. different populations).

Phylogenetic congruence does not imply absence of 
recombination. In fact, there are many recombination 

events that do not change the tree or its topology 
(Ferretti et al. 2013). For similar reasons, phylogeographic 
incompatibilities cannot always be detected if only 
ancestral node states are known or reconstructed, since 
they ignore back-and-forth migration within a specific 
branch.

The two measures we define in this study are corre
lated but by no means identical. In fact, they are sensitive 
to different aspects of phylogeographic incompatibilities. 
We present these two particular measures in detail due 
to their naturalness and ease of computational imple
mentation. There are however alternative possibilities, in
cluding extensions of tree distances other than the KC 
and MAST distances. One interesting generalization 
would be to include geographical information in SPR dis
tances (Allen and Steel 2001; De Oliveira Martins et al. 
2014). However, such a generalization requires many arbi
trary decisions in how internal node states are treated, 
and its values are challenging to compute. In practice, 
IMRCA is simple but effective and could be the primary 
choice for phylogeographic incompatibilities.

Fig. 7. Top row: phylogenetic and phylogeographic incompatibilities between autosomal, Y-chromosome, mitochondrial, and lexical phyloge
nies. The trait that varies continuously along the phylogeny is the geographic location of the corresponding populations in Northern Eurasia. 
Bottom row: phylogenetic and phylolinguistic incompatibilties between autosomal, Y-chromosome, and mitochondrial phylogenies. The trait 
that varies continuously along the phylogeny is the location in two-dimensional projection of the lexical space of Uralic languages.
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The computational time for both these incompatibility 
measures scales quadratically with the number of leaves, 
hence they can be applied to large phylogeographies but 
at a computational cost. A simplified approach is to esti
mate the IMRCA incompatibility on a random subset of pairs 
of leaves. This simplified measure is unbiased compared to 
the true IMRCA; this approach could even provide a measure 
of uncertainty via bootstrap. On the other hand, it is not 
valid to estimate the IMASPG incompatibility on a random 
subphylogeography since this approach is downward 
biased, similarly to what happens for the MAST of random 
subtrees.

Further work could explore extensions to these meth
ods such as allowing incomplete geographical metadata 
for the samples, constraints on the geographical assign
ments of internal nodes, or weighting geographical in
compatibilities by their location on the phylogeny. We 
limited our simulations to neutral variation between 
pairs of loci; further computational work could explore 
the possibility of detecting local adaptation on specific 
genomic regions through the genome-wide pattern of 
phylogeographic incompatibilities, since adaptation cre
ates an association between localities and alleles, and it 
is likely to distort the geographical pattern around the se
lected loci.

One important limitation of our approach is that we 
consider distinct phylogeographies, instead of a phylogeo
graphic network or a geographically labeled Ancestral 
Recombination Graph (ARG). This simplification is rooted 
in current approaches to phylogeographic inference. In 
fact, both phylogenetic trees and phylogeographies are 
usually inferred from sequence data and geographical 
metadata; most often, inference is performed separately 
for each locus, resulting in posterior distributions with 
unknown correlations between loci. To account for un
certainties in the inference, we defined a measure of 
incompatibility over both posterior distributions of phy
logeographies which is conservative with respect to 
potential correlations.

Eventually, a full stochastic model of sequence 
evolution, birth–death, transmission, recombination, and 
geography should be developed for joint inference at mul
tiple loci, following some recent developments (Guo et al. 
2022; Stolz et al. 2022). This conceptual and computational 
challenge would allow full analysis of divergent geograph
ical histories in genomes. The model of Dialdestoro et al. 
(2016) has the above components except transmission 
and geography. Incorporating transmission and geography 
is a technical challenge, with scaling to large data sets being 
a particularly difficult hurdle. Recent developments enable 
the inference of ARGs as collection of related trees for large 
genomes and large numbers of sequences (Kelleher et al. 
2019), but it is unclear how the model can be extended 
to accommodate uncertainties and trait reconstruction. 
However, even a complete statistical model will not 
make the present work redundant, in the same way that 
phylogenetic incompatibilities are still useful even when 
it is possible to infer ARGs. In fact, any approach to 

statistical phylogeography is faced with the need to define 
some kind of incompatibility between phylogeographies. 
In its simplicity, the approach outlined here is to our 
knowledge the first method for systematic comparison 
that provides definition of distance between recon
structed phylogeographic histories.

Materials and Methods
Coalescent Simulations
To investigate the dependence of IMRCA on evolutionary 
parameters, we implemented a simulator of genealogies 
with migration and recombination. This simulator gener
ates ARGs based on structured coalescent simulations in 
MASTER 6.1.1 (Vaughan and Drummond 2013), imple
mented in BEAST2 2.6.1 (Bouckaert et al. 2019). The simu
lation uses an island model of population structure with 
three populations of 20 individuals each and different pat
terns of migration between all populations (as illustrated 
in Fig. 2). In practice, the structured coalescent model is 
implemented backward in time as a combination of co
alescence events (two lineages within the same island 
that coalesce into one) with rate 1, migration events 
(a lineage that changes island according to the reverse of 
an arrow in Fig. 2) with rate μ for each arrow, and recom
bination events (a lineage that splits into two lineages 
within the same island) with rate ρ. The simulations out
put geographically labeled ARGs for pairs of loci. We con
verted the ARGs into pairs of phylogeographies, one for 
each locus, and calculated their pairwise IMRCA for each 
set of parameters. The mean IMRCA for each parameter 
combination is shown in Fig. 2.

Phylogeographic Reconstruction
Spatial Migration of Influenza B Victoria and Yamagata 
Lineages and FMDV
In order to test our method to real evolutionary scenarios 
of pathogens, we compiled two different data sets of 
genome sequences from influenza B and FMD viral infec
tions, which affect either human or livestock species. 
Reassortment events and recombination patterns have 
been described for both the viral infections along with 
their dynamics of geographical transitions (Carrillo et al. 
2005; Jackson et al. 2007; Dudas et al. 2014; Bedford et al. 
2015). For influenza B virus, we selected 122 and 120 un
ique genome sequences of, respectively, the Victoria 
(Vic) and Yamagata (Yam) lineages (Bedford et al. 2015; 
Langat et al. 2017), characterizing five out of the eight 
gene segments and encoding: the polymerase basic subu
nits 1 and 2 (PB1 and PB2), the hemagglutinin (HA) and 
neuraminidase (NA) glycoproteins, and the nonstructural 
protein 1 (NS1) (Bouvier and Palese 2008). For FMD we 
selected 74 WGSs characterizing the O/ME-SA/Ind-2001 
lineage (Bachanek-Bankowska et al. 2018), extracting sep
arate alignments for each of the four structural (VP1 to 
VP4) and six nonstructural (2A to 2C, and 3A to 3D) pro
teins, along with the leader polypeptide (Lpro) and both 
the 3′ and 5′ UTR alignments (Jackson et al. 2003).
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Distinct time-resolved phylogeographic trees were in
ferred for each of the influenza B genes and FMDV proteins 
using BEAST 1.10.4 (Suchard et al. 2018). Virus evolution 
was modeled by defining: the substitution process by 
the HKY (Hasegawa et al. 1985) and GTR+Γ4 (Tavaré 
1986) models for influenza B and FMDV, respectively; a 
log-normal relaxed molecular clock across branches 
(Drummond et al. 2006); a flexible Bayesian Skyride coales
cent prior on trees (Minin et al. 2008). Phylogeographic 
patterns of lineage movement across geographic locations 
were reconstructed using a discrete-state continuous-time 
Markov chain (CTMC) process, and assuming a nonrever
sible transition model with a Bayesian stochastic search 
variable selection (BSSVS) procedure (Lemey et al. 2009). 
We define discrete traits as countries for FMDV and 
as geographic regions for influenza B, following the 
United Nations M49 Standard (https://unstats.un.org/ 
unsd/methodology/m49/). The prior for the molecular 
clock rate was defined by a noninformative CTMC condi
tional reference prior (Ferreira and Suchard 2008) and a 
truncated Poisson prior was set for the number of nonzero 
rates, with all the remaining priors left at their default va
lues. Markov chain Monte Carlo (MCMC) chains were run 
for 200 million iterations, sampling trees every 20,000 
states. Mixing and convergence of the MCMC chain was 
assessed using Tracer 1.7.3 (Rambaut et al. 2018), ensuring 
sufficient sampling was achieved, where the Effective 
Sample Size (ESS) was at least 200 and not lower than 
500 for each of the posterior parameters. Inference were 
based on the resulting 9,000 trees obtained after discarding 
the initial 10% of the chain as burn-in. Phylogeographic 
incompatibilities were assessed in the phylogeographic 
space of a subset of 100 trees uniformly sampled from 
the posterior set of reconstructed phylogenies, using an 
approximation of the Wasserstein metric as described 
above. The MCC summary trees were obtained with 
TreeAnnotator (distributed with BEAST 1.10.4).

Uralic Linguistic Ancestry
We retrieved previously published genotype data of auto
somal chromosomes, mtDNAs and chrY of Uralic-speaking 
individuals (Tambets et al. 2018). Conventional FST dis
tance matrices derived for each genotype data along 
with linguistic (lexical) data were used to infer distinct 
phylogenies in FastME 2.1.6.1 (Lefort et al. 2015), which 
were subsequently re-projected in time using the chronos 
function implemented in the R package ape (Paradis and 
Schliep 2018). The linguistic data we used is composed 
of a set of 226 words translated into each language. 
Differences between languages are quantified depending 
on how many of these words are cognate (i.e. share a com
mon origin) (Tambets et al. 2018). The linguistic space was 
build using the default MDS projection routines in R based 
on lexical distances. Continuous phylogeographies were 
reconstructed in BEAST 1.10.4 using the 2-dimensional lex
ical or geographic spaces as continuous traits, by fixing the 
previously reconstructed topologies and inferring spatial 
movement of traits only by using the relaxed random 

walk model that employs a Cauchy distribution to define 
branch-specific variation in dispersal rates (Lemey et al. 
2010). All priors were left at their default values. MCMC 
chains were run for 200 million iterations, sampling trees 
every 20,000 states. Inference were based on the resulting 
9,000 trees obtained after discarding the initial 10% of the 
chain as burn-in.

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.

Acknowledgment
We thank Michelle Kendall for her constructive com
ments and revision. A.D.N. acknowledges support from 
the Department for Environment, Food and Rural 
Affairs (Defra), United Kingdom, through funding from 
the SE2945 research grant.

Funding
This work was supported by funding from the 
Biotechnology and Biological Sciences Research Council 
(BBSRC), grant number BB/M011224/1.

Data Availability
The IMRCA and IMASPG functions for estimating differences 
between phylogeographies have been implemented in 
the geotreespace R package, which can be installed from 
its github repository (https://github.com/BenSinger01/ 
geotreespace). All .xml files generated using BEAST and 
used for analysis have been deposited to Dryad and avail
able from the following link https://doi.org/10.5061/dryad. 
15dv41p4s.

References
Alexandersen S, Zhang Z, Donaldson A, Garland A. The pathogenesis 

and diagnosis of foot-and-mouth disease. J Comp Pathol. 
2003:129(1):1–36. https://doi.org/10.1016/s0021-99750300041-0.

Allen BL, Steel M. Subtree transfer operations and their induced me
trics on evolutionary trees. Ann Comb. 2001:5(1):1–15. https:// 
doi.org/10.1007/s00026-001-8006-8.

Arzt J, Baxt B, Grubman MJ, Jackson T, Juleff N, Rhyan J, Rieder E, 
Waters R, Rodriguez LL. The pathogenesis of foot-and-mouth 
disease ii: viral pathways in swine, small ruminants, and wildlife; 
myotropism, chronic syndromes, and molecular virus-host inter
actions. Transbound Emerg Dis. 2011a:58(4):305–326. https://doi. 
org/10.1111/j.1865-1682.2011.01236.x.

Arzt J, Juleff N, Zhang Z, Rodriguez LL. The pathogenesis of 
foot-and-mouth disease i: viral pathways in cattle. Transbound 
Emerg Dis. 2011b:58(4):291–304. https://doi.org/10.1111/jva. 
2011.58.issue-4.

Bachanek-Bankowska K, Di Nardo A, Wadsworth J, Mioulet V, 
Pezzoni G, Grazioli S, Brocchi E, Kafle SC, Hettiarachchi R, 
Kumarawadu PL, et al. Reconstructing the evolutionary history 
of pandemic foot-and-mouth disease viruses: the impact of re
combination within the emerging o/me-sa/ind-2001 lineage. Sci 
Rep. 2018:8(1):14693. https://doi.org/10.1038/s41598-018-32693-8.

Singer et al. · https://doi.org/10.1093/molbev/msae126 MBE

14

https://unstats.un.org/unsd/methodology/m49/
https://unstats.un.org/unsd/methodology/m49/
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae126#supplementary-data
https://github.com/BenSinger01/geotreespace
https://github.com/BenSinger01/geotreespace
https://doi.org/10.5061/dryad.15dv41p4s
https://doi.org/10.5061/dryad.15dv41p4s
https://doi.org/10.1016/s0021-99750300041-0
https://doi.org/10.1007/s00026-001-8006-8
https://doi.org/10.1007/s00026-001-8006-8
https://doi.org/10.1111/j.1865-1682.2011.01236.x
https://doi.org/10.1111/j.1865-1682.2011.01236.x
https://doi.org/10.1111/jva.2011.58.issue-4
https://doi.org/10.1111/jva.2011.58.issue-4
https://doi.org/10.1038/s41598-018-32693-8


Baele G, Dellicour S, Suchard M, Lemey P, Vrancken B. Recent ad
vances in computational phylodynamics. Curr Opin Virol. 
2018:31:24–32. https://doi.org/10.1016/j.coviro.2018.08.009.

Bedford T, Riley S, Barr IG, Broor S, Chadha M, Cox NJ, Daniels RS, 
Gunasekaran CP, Hurt AC, Kelso A, et al. Global circulation pat
terns of seasonal influenza viruses vary with antigenic drift. 
Nature. 2015:523(7559):217–220. https://doi.org/10.1038/nature 
14460.

Bouckaert R. Phylogeography by diffusion on a sphere: whole world 
phylogeography. PeerJ. 2016:4:e2406. https://doi.org/10.7717/ 
peerj.2406.

Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, 
Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, et al. 
Beast 2.5: an advanced software platform for Bayesian evolution
ary analysis. PLOS Comput Biol. 2019:15(4):1–28. https://doi.org/ 
10.1371/journal.pcbi.1006650.

Bouvier NM, Palese P. The biology of influenza viruses. Vaccine. 
2008:26(Suppl 4):D49–D53. https://doi.org/10.1016/j.vaccine. 
2008.07.039.

Brito BP, Rodriguez LL, Hammond JM, Pinto J, Perez AM. Review of 
the global distribution of foot-and-mouth disease virus from 
2007 to 2014. Transbound Emerg Dis. 2017:64(2):316–332. 
https://doi.org/10.1111/tbed.2017.64.issue-2.

Carlson CJ, Albery GF, Merow C, Trisos CH, Zipfel CM, Eskew EA, 
Olival KJ, Ross N, Bansal S. Climate change increases cross-species 
viral transmission risk. Nature. 2022:607(7919):555–562. https:// 
doi.org/10.1038/s41586-022-04788-w.

Carrillo C, Tulman ER, Delhon G, Lu Z, Carreno A, Vagnozzi A, Kutish 
GF, Rock DL. Comparative genomics of foot-and-mouth disease 
virus. J Virol. 2005:79(10):6487–6504. https://doi.org/10.1128/JVI. 
79.10.6487-6504.2005.

Chung Y, Perna NT, Ane C. Computing the joint distribution of tree 
shape and tree distance for gene tree inference and recombin
ation detection. IEEE/ACM Trans Comput Biol Bioinform. 
2013:10(5):1263–1274. https://doi.org/10.1109/TCBB.2013.109.

Day WH. Properties of Levenshtein metrics on sequences. Bull Math 
Biol. 1984:46(2):327–332. https://doi.org/10.1016/S0092-8240(84) 
80027-0.

Dellicour S, Rose R, Faria NR, Lemey P, Pybus OG. SERAPHIM: study
ing environmental rasters and phylogenetically informed move
ments. Bioinformatics. 2016:32(20):3204–3206. https://doi.org/ 
10.1093/bioinformatics/btw384.

De Maio N, Wu CH, O’Reilly KM, Wilson D. New routes to phylogeogra
phy: a Bayesian structured coalescent approximation. PLOS Genet. 
2015:11(8):1–22. https://doi.org/10.1371/journal.pgen.1005421.

De Oliveira Martins L, Mallo D, Posada D. A Bayesian supertree mod
el for genome-wide species tree reconstruction. Syst Biol. 
2014:65(3):397–416. https://doi.org/10.1093/sysbio/syu082.

Dialdestoro K, Sibbesen JA, Maretty L, Raghwani J, Gall A, Kellam P, 
Pybus OG, Hein J, Jenkins PA. Coalescent inference using serially 
sampled, high-throughput sequencing data from intrahost HIV 
infection. Genetics. 2016:202(4):1449–72. https://doi.org/10. 
1534/genetics.115.177931.

Di Nardo A, Knowles NJ, Paton DP. Combining livestock trade pat
terns with phylogenetics to help understand the spread of foot 
and mouth disease in sub-Saharan Africa, the Middle East and 
Southeast Asia. Sci Tech Rev. 2011:30(1):63–85. https://doi.org/ 
10.20506/rst.issue.30.1.46.

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phyloge
netics and dating with confidence. PLOS Biology. 2006:4(5):e88. 
https://doi.org/10.1371/journal.pbio.0040088.

Dudas G, Bedford T, Lycett S, Rambaut A. Reassortment between in
fluenza B lineages and the emergence of a coadapted PB1–PB2– 
HA gene complex. Mol Biol Evol. 2014:32(1):162–172. https://doi. 
org/10.1093/molbev/msu287.

Dudas G, Carvalho LM, Bedford T, Tatem AJ, Baele G, Faria NR, ParkDJ, 
Ladner JT, Arias A, Asogun D, et al. Virus genomes reveal factors 
that spread and sustained the Ebola epidemic. Nature. 
2017:544(7650):309–315. https://doi.org/10.1038/nature22040.

Edwards SV, Potter S, Schmitt CJ, Bragg JG, Moritz C. Reticulation, 
divergence, and the phylogeography-phylogenetics continuum. 
Proc Natl Acad Sci USA. 2016:113(29):8025–8032. https://doi. 
org/10.1073/pnas.1601066113.

Faria NR, Suchard MA, Rambaut A, Lemey P. Toward a quantitative 
understanding of viral phylogeography. Curr Opin Virol. 
2011:1(5):423–429. https://doi.org/10.1016/j.coviro.2011.10.003.

Ferreira MAR, Suchard MA. Bayesian analysis of elapsed times in 
continuous-time Markov chains. Can J Stat. 2008:36(3): 
355–368. https://doi.org/10.1002/cjs.v36:3.

Ferretti L, Disanto F, Wiehe T. The effect of single recombination 
events on coalescent tree height and shape. PLoS One. 
2013:8(4):1–15. https://doi.org/10.1371/journal.pone.0060123.

Gill MS, Tung Ho LS, Baele G, Lemey P, Suchard MA. A relaxed direc
tional random walk model for phylogenetic trait evolution. Syst 
Biol. 2017:66(3):299–319. https://doi.org/10.1093/sysbio/syw093.

Goddard W, Kubicka E, Kubicki G, McMorris F. The agreement met
ric for labeled binary trees. Math Biosci. 1994:123(2):215–226. 
https://doi.org/10.1016/0025-5564(94)90012-4.

Gomes SM, van Oven M, Souto L, Morreira H, Brauer S, Bodner M, 
Zimmermann B, Huber G, Strobl C, Röck AW. Lack of gene–lan
guage correlation due to reciprocal female but directional male 
admixture in Austronesians and non-Austronesians of East 
Timor. Eur J Hum Genet. 2017:25(2):246–252. https://doi.org/ 
10.1038/ejhg.2016.101.

Grubaugh N, Ladner J, Lemey P, Pybus O, Rambaut A, Holmes EC, 
Andersen KG. Tracking virus outbreaks in the twenty-first cen
tury. Nat Microbiol. 2019:4(1):10–19. https://doi.org/10.1038/ 
s41564-018-0296-2.

Guo F, Carbone I, Rasmussen DA. Recombination-aware phylogeo
graphic inference using the structured coalescent with ancestral 
recombination. PLOS Comput Biol. 2022:18(8):1–27. https://doi. 
org/10.1371/journal.pcbi.1010422.

Gushulak BD, MacPherson DW. Population mobility and infectious 
diseases: the diminishing impact of classical infectious diseases 
and new approaches for the 21st century. Clin Infect Dis. 
2000:31(3):776–780. https://doi.org/10.1086/313998.

Hare MP. Prospects for nuclear gene phylogeography. Trends Ecol 
Evol. 2001:16(12):700–706. https://doi.org/10.1016/S0169- 
5347(01)02326-6.

Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting 
by a molecular clock of mitochondrial dna. J Mol Evol. 1985:22(2): 
160–174. https://doi.org/10.1007/BF02101694.

Hein J, Jiang T, Wang L, Zhang K. On the complexity of comparing 
evolutionary trees. Discrete Appl Math. 1996:71(1-3):153–169. 
https://doi.org/10.1016/S0166-218X(96)00062-5.

Jackson AL, O’Neill H, Maree F, Blignaut B, Carrillo C, Rodriguez L, 
Haydon DT. Mosaic structure of foot-and-mouth disease virus 
genomes. J Gen Virol. 2007:88(2):487–492. https://doi.org/10. 
1099/vir.0.82555-0.

Jackson T, King AM, Stuart DI, Fry E. Structure and receptor binding. 
Virus Res. 2003:91(1):33–46. https://doi.org/10.1016/S0168- 
1702(02)00258-7.

Jombart T, Kendall M, Almagro-Garcia J, Colijn C. TREESPACE: Statistical ex
ploration of landscapes of phylogenetic trees. Mol Ecol Resour. 
2017:17(6):1385–1392. https://doi.org/10.1111/men.2017.17.issue-6.

Kelleher J, Wong Y, Wohns AW, Fadil C, Albers PK, McVean G. 
Inferring whole-genome histories in large population datasets. 
Nat Genet. 2019:51(9):1330–1338. https://doi.org/10.1038/ 
s41588-019-0483-y.

Kendall M, Colijn C. Mapping phylogenetic trees to reveal distinct 
patterns of evolution. Mol Biol Evol. 2016:33(10):2735–2743. 
https://doi.org/10.1093/molbev/msw124.

Knight-Jones TJD, Rushton J. The economic impacts of foot and 
mouth disease–what are they, how big are they and where do 
they occur? Prev Vet Med. 2013:112(3-4):161–73. https://doi. 
org/10.1016/j.prevetmed.2013.07.013.

Kraemer MUG, Yang CH, Gutierrez B, Wu CH, Klein B, Pigott DM, du 
Plessis L, Faria NR, Li R, Hanage WP, et al. The effect of human 

Comparing Phylogeographies within Genomes · https://doi.org/10.1093/molbev/msae126 MBE

15

https://doi.org/10.1016/j.coviro.2018.08.009
https://doi.org/10.1038/nature14460
https://doi.org/10.1038/nature14460
https://doi.org/10.7717/peerj.2406
https://doi.org/10.7717/peerj.2406
https://doi.org/10.1371/journal.pcbi.1006650
https://doi.org/10.1371/journal.pcbi.1006650
https://doi.org/10.1016/j.vaccine.2008.07.039
https://doi.org/10.1016/j.vaccine.2008.07.039
https://doi.org/10.1111/tbed.2017.64.issue-2
https://doi.org/10.1038/s41586-022-04788-w
https://doi.org/10.1038/s41586-022-04788-w
https://doi.org/10.1128/JVI.79.10.6487-6504.2005
https://doi.org/10.1128/JVI.79.10.6487-6504.2005
https://doi.org/10.1109/TCBB.2013.109
https://doi.org/10.1016/S0092-8240(84)80027-0
https://doi.org/10.1016/S0092-8240(84)80027-0
https://doi.org/10.1093/bioinformatics/btw384
https://doi.org/10.1093/bioinformatics/btw384
https://doi.org/10.1371/journal.pgen.1005421
https://doi.org/10.1093/sysbio/syu082
https://doi.org/10.1534/genetics.115.177931
https://doi.org/10.1534/genetics.115.177931
https://doi.org/10.20506/rst.issue.30.1.46
https://doi.org/10.20506/rst.issue.30.1.46
https://doi.org/10.1371/journal.pbio.0040088
https://doi.org/10.1093/molbev/msu287
https://doi.org/10.1093/molbev/msu287
https://doi.org/10.1038/nature22040
https://doi.org/10.1073/pnas.1601066113
https://doi.org/10.1073/pnas.1601066113
https://doi.org/10.1016/j.coviro.2011.10.003
https://doi.org/10.1002/cjs.v36:3
https://doi.org/10.1371/journal.pone.0060123
https://doi.org/10.1093/sysbio/syw093
https://doi.org/10.1016/0025-5564(94)90012-4
https://doi.org/10.1038/ejhg.2016.101
https://doi.org/10.1038/ejhg.2016.101
https://doi.org/10.1038/s41564-018-0296-2
https://doi.org/10.1038/s41564-018-0296-2
https://doi.org/10.1371/journal.pcbi.1010422
https://doi.org/10.1371/journal.pcbi.1010422
https://doi.org/10.1086/313998
https://doi.org/10.1016/S0169-5347(01)02326-6
https://doi.org/10.1016/S0169-5347(01)02326-6
https://doi.org/10.1007/BF02101694
https://doi.org/10.1016/S0166-218X(96)00062-5
https://doi.org/10.1099/vir.0.82555-0
https://doi.org/10.1099/vir.0.82555-0
https://doi.org/10.1016/S0168-1702(02)00258-7
https://doi.org/10.1016/S0168-1702(02)00258-7
https://doi.org/10.1111/men.2017.17.issue-6
https://doi.org/10.1038/s41588-019-0483-y
https://doi.org/10.1038/s41588-019-0483-y
https://doi.org/10.1093/molbev/msw124
https://doi.org/10.1016/j.prevetmed.2013.07.013
https://doi.org/10.1016/j.prevetmed.2013.07.013


mobility and control measures on the COVID-19 epidemic in 
China. Science. 2020:368(6490):493–497. https://doi.org/10. 
1126/science.abb4218.

Kuhner MK, Felsenstein J. A simulation comparison of phylogeny al
gorithms under equal and unequal evolutionary rates. Mol Biol 
Evol. 1994:11(3):459–468. https://doi.org/10.1093/oxfordjourn 
als.molbev.a040126.

Kühnert D, Stadler T, Vaughan TG, Drummond AJ. Phylodynamics 
with migration: a computational framework to quantify popula
tion structure from genomic data. Mol Biol Evol. 2016:33(8): 
2102–2116. https://doi.org/10.1093/molbev/msw064.

Langat P, Raghwani J, Dudas G, Bowden TA, Edwards S, Gall A, 
Bedford T, Rambaut A, Daniels RS, Russell CA, et al. 
Genome-wide evolutionary dynamics of influenza B viruses on 
a global scale. PLOS Pathog. 2017:13(12):1–26. https://doi.org/ 
10.1371/journal.ppat.1006749.

Lansing JS, Abundo C, Jacobs GS, Guillot EG, Thurner S, Downey SS, 
Chew LY, Bhattacharya T, Chung NN, Sudoyo H, et al. Kinship 
structures create persistent channels for language transmission. 
Proc Natl Acad Sci USA. 2017:114(49):12910–12915. https://doi. 
org/10.1073/pnas.1706416114.

Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accur
ate, and fast distance-based phylogeny inference program. Mol 
Biol Evol. 2015:32(10):2798–2800. https://doi.org/10.1093/ 
molbev/msv150.

Lemey P, Rambaut A, Bedford T, Faria N, Bielejec F, Baele G, Russell 
CA, Smith DJ, Pybus OG, Brockmann D, et al. Unifying viral gen
etics and human transportation data to predict the global trans
mission dynamics of human influenza H3N2. PLOS Pathog. 
2014:10(2):1–10. https://doi.org/10.1371/journal.ppat.1003932.

Lemey P, Rambaut A, Drummond AJ, Suchard MA. Bayesian phylo
geography finds its roots. PLOS Comput Biol. 2009:5(9):1–16. 
https://doi.org/10.1371/journal.pcbi.1000520.

Lemey P, Rambaut A, Welch JJ, Suchard MA. Phylogeography takes 
a relaxed random walk in continuous space and time. Mol Biol 
Evol. 2010:27(8):1877–1885. https://doi.org/10.1093/molbev/ 
msq067.

Maddison WP. Squared-change parsimony reconstructions of ances
tral states for continuous-valued characters on a phylogenetic 
tree. Syst Biol. 1991:40(3):304–314. https://doi.org/10.1093/ 
sysbio/40.3.304.

Maddison WP. Calculating the probability distributions of ancestral 
states reconstructed by parsimony on phylogenetic trees. Syst 
Biol. 1995:44(4):474–481. https://doi.org/10.2307/2413655.

Markov PV, Ghafari M, Beer M, Lythgoe K, Simmonds P, Stilianakis 
NI, Katzourakis A. The evolution of SARS-CoV-2. Nat Rev 
Microbiol. 2023:21(6):361–379. https://doi.org/10.1038/s41579- 
023-00878-2.

McCrone JT, Hill V, Bajaj S, Pena RE, Lambert BC, Inward R, Bhatt S, Volz 
E, Ruis C, Dellicour S, et al. Context-specific emergence and growth 
of the SARS-CoV-2 Delta variant. Nature. 2022:610(7930):154–160. 
https://doi.org/10.1038/s41586-022-05200-3.

Minin VN, Bloomquist EW, Suchard MA. Smooth skyride through a 
rough skyline: Bayesian coalescent-based inference of population 
dynamics. Mol Biol Evol. 2008:25(7):1459–1471. https://doi.org/ 
10.1093/molbev/msn090.

Müller NF, Rasmussen D, Stadler T. MASCOT: parameter and state in
ference under the marginal structured coalescent approximation. 
Bioinformatics. 2018:34(22):3843–3848. https://doi.org/10.1093/ 
bioinformatics/bty406.

Müller NF, Rasmussen DA, Stadler T. The structured coalescent and 
its approximations. Mol Biol Evol. 2017:34(11):2970–2981. 
https://doi.org/10.1093/molbev/msx186.

Paradis E, Schliep K. ape 5.0: an environment for modern phyloge
netics and evolutionary analyses in R. Bioinformatics. 2018:35(3): 
526–528. https://doi.org/10.1093/bioinformatics/bty633.

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior 
summarization in Bayesian phylogenetics using tracer 1.7. Syst 
Biol. 2018:67(5):901–904. https://doi.org/10.1093/sysbio/syy032.

Robinson DF, Foulds LR. Comparison of weighted labelled trees. Lect 
Notes in Math. 1979:748:119–126. https://doi.org/10.1007/ 
BFb0102690.

Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math 
Biosci. 1981:53(1-2):131–147. https://doi.org/10.1016/0025- 
5564(81)90043-2.

Saker L, Lee K, Cannito B, Gilmore A, Campbell-Lendrum DH. 
Globalization and infectious diseases: a review of the linkages. 
Technical Report TDR/STR/SEB/ST/04.2 World Health 
Organization; 2004.

Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 
2010:27(4):592–593. https://doi.org/10.1093/bioinformatics/ 
btq706.

Scire J, Barido-Sottani J, Kühnert D, Vaughan TG, Stadler T. Robust 
phylodynamic analysis of genetic sequencing data from struc
tured populations. Viruses. 2022:14(8):1648. https://doi.org/10. 
3390/v14081648.

Semple C, Steel MA. Phylogenetics. Oxford: Oxford University Press; 
2003.

Smith MR. Robust analysis of phylogenetic tree space. Syst Biol. 
2022:71(5):1255–1270. https://doi.org/10.1093/sysbio/syab100.

Steel M. Pulling trees apart and putting trees together. In: Phylogeny: 
discrete and random processes in evolution ch. 4. Philadelphia 
(PA): Society for Industrial and Applied Mathematics; 2016. 
p. 63–86.

Steel M, Warnow T. Kaikoura tree theorems: computing the max
imum agreement subtree. Inf Process Lett. 1993:48(2):77–82. 
https://doi.org/10.1016/0020-0190(93)90181-8.

Stolz U, Stadler T, Müller NF, Vaughan TG. Joint inference of migra
tion and reassortment patterns for viruses with segmented gen
omes. Mol Biol Evol. 2022:39(1):msab342. https://doi.org/10. 
1093/molbev/msab342.

Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. 
Bayesian phylogenetic and phylodynamic data integration using 
BEAST 1.10. Virus Evol. 2018:4(1):vey016. https://doi.org/10.1093/ 
ve/vey016.

Tambets K, Yunusbayev B, Hudjashov G, Ilumäe AM, Rootsi S, 
Honkola T, Vesakoski O, Atkinson Q, Skoglund P, 
Kushniarevich A, et al. Genes reveal traces of common recent 
demographic history for most of the Uralic-speaking popula
tions. Genome Biol. 2018:19(1):139. https://doi.org/10.1186/ 
s13059-018-1522-1.

Tavaré S. Some probabilistic and statistical problems on the analysis 
of DNA sequences. Lectures Math Life Sci. 1986:17:57–86.

Vaughan TG, Drummond AJ. A stochastic simulator of birth-death master 
equations with application to phylodynamics. Mol Biol Evol. 
2013:30(6):1480–1493. https://doi.org/10.1093/molbev/mst057.

Vaughan TG, Kühnert D, Popinga A, Welch D, Drummond AJ. 
Efficient Bayesian inference under the structured coalescent. 
Bioinformatics. 2014:30(16):2272–2279. https://doi.org/10.1093/ 
bioinformatics/btu201.

Singer et al. · https://doi.org/10.1093/molbev/msae126 MBE

16

https://doi.org/10.1126/science.abb4218
https://doi.org/10.1126/science.abb4218
https://doi.org/10.1093/oxfordjournals.molbev.a040126
https://doi.org/10.1093/oxfordjournals.molbev.a040126
https://doi.org/10.1093/molbev/msw064
https://doi.org/10.1371/journal.ppat.1006749
https://doi.org/10.1371/journal.ppat.1006749
https://doi.org/10.1073/pnas.1706416114
https://doi.org/10.1073/pnas.1706416114
https://doi.org/10.1093/molbev/msv150
https://doi.org/10.1093/molbev/msv150
https://doi.org/10.1371/journal.ppat.1003932
https://doi.org/10.1371/journal.pcbi.1000520
https://doi.org/10.1093/molbev/msq067
https://doi.org/10.1093/molbev/msq067
https://doi.org/10.1093/sysbio/40.3.304
https://doi.org/10.1093/sysbio/40.3.304
https://doi.org/10.2307/2413655
https://doi.org/10.1038/s41579-023-00878-2
https://doi.org/10.1038/s41579-023-00878-2
https://doi.org/10.1038/s41586-022-05200-3
https://doi.org/10.1093/molbev/msn090
https://doi.org/10.1093/molbev/msn090
https://doi.org/10.1093/bioinformatics/bty406
https://doi.org/10.1093/bioinformatics/bty406
https://doi.org/10.1093/molbev/msx186
https://doi.org/10.1093/bioinformatics/bty633
https://doi.org/10.1093/sysbio/syy032
https://doi.org/10.1007/BFb0102690
https://doi.org/10.1007/BFb0102690
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1093/bioinformatics/btq706
https://doi.org/10.1093/bioinformatics/btq706
https://doi.org/10.3390/v14081648
https://doi.org/10.3390/v14081648
https://doi.org/10.1093/sysbio/syab100
https://doi.org/10.1016/0020-0190(93)90181-8
https://doi.org/10.1093/molbev/msab342
https://doi.org/10.1093/molbev/msab342
https://doi.org/10.1093/ve/vey016
https://doi.org/10.1093/ve/vey016
https://doi.org/10.1186/s13059-018-1522-1
https://doi.org/10.1186/s13059-018-1522-1
https://doi.org/10.1093/molbev/mst057
https://doi.org/10.1093/bioinformatics/btu201
https://doi.org/10.1093/bioinformatics/btu201

	Comparing Phylogeographies to Reveal Incompatible Geographical Histories within Genomes
	Introduction
	New Approaches
	Phylogenetic Incompatibilities
	Phylogeographic Space
	Pairwise MRCA Incompatibilities
	Maximum Agreement Sub-Phylogeography
	Incompatibility Between Distributions of Phylogeographies

	Results
	Effect of Evolutionary Parameters on Phylogeographic Incompatibilities
	Analysis of the Initial Spread of the O/ME-SA/Ind-2001 FMDV Lineage Across the World
	Spatial Evolution of Genomic Segments of Influenza B
	Genetic Variation and Spatial Movement of Uralic-speaking Populations

	Discussion
	Materials and Methods
	Coalescent Simulations
	Phylogeographic Reconstruction
	Spatial Migration of Influenza B Victoria and Yamagata Lineages and FMDV
	Uralic Linguistic Ancestry


	Supplementary Material
	Acknowledgment
	Funding
	Data Availability
	References




