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Abstract

We have identified 200 congenital disorders of glycosylation (CDG) caused by 189 different
gene defects and have proposed a classification system for CDG based on the mode of

action. This classification includes 8 categories: 1. Disorders of monosaccharide synthesis and
interconversion, 2. Disorders of nucleotide sugar synthesis and transport, 3. Disorders of N-
linked protein glycosylation, 4. Disorders of O-linked protein glycosylation, 5. Disorders of
lipid glycosylation, 6. Disorders of vesicular trafficking, 7. Disorders of multiple glycosylation
pathways and 8. Disorders of glycoprotein/glycan degradation. Additionally, using information
from IEMbase, we have described the clinical involvement of 19 organs and systems, as well

as essential laboratory investigations for each type of CDG. Neurological, dysmorphic, skeletal,
and ocular manifestations were the most prevalent, occurring in 81%, 56%, 53%, and 46% of
CDG, respectively. This was followed by digestive, cardiovascular, dermatological, endocrine,
and hematological symptoms (17-34%). Immunological, genitourinary, respiratory, psychiatric,
and renal symptoms were less frequently reported (8—-12%), with hair and dental abnormalities
present in only 4-7% of CDG. The information provided in this study, including our proposed
classification system for CDG, may be beneficial for healthcare providers caring for individuals
with metabolic conditions associated with CDG.
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Introduction

Definitions

Due to the rapid advancement of modern genomic and metabolomic techniques, congenital
disorders of glycosylation (CDG) [1] have emerged as a rapidly expanding category of
inherited metabolic disorders (IMD), often characterized by multiorgan involvement, and
overlapping clinical symptoms [2]. Since the initial description of twins in 1980 by

Jaak Jaeken [3], the number of newly described CDG has increased exponentially, with
currently 189 genes associated with 200 disorder phenotypes (Figure 1). In 2009 Jaeken
and colleagues proposed a new nomenclature for CDG [4] using (only) the official gene
symbol followed by ‘-CDG’. This combination has stood the test of time, and we trust that
its use can be continued for the designation of novel types of CDG, since it is both clear and
sufficient for all stakeholders including practicing physicians, clinical and biomedical basic
researchers, patients, parents, and families. In this article we define glycosylation, CDG, and
the criteria for their inclusion in the growing list.

. Glycosylation is the cellular process of linking glycans (sugar chains) to other
molecules, primarily proteins and lipids. This includes the genesis, addition, and
modification of sugars prior to or after their addition to acceptors.

. CDG are human pathological conditions caused by genetic variants in any
pathway that alters normal glycosylation in human subjects or in accepted
cellular/animal models.

Inclusion Criteria

. Genes and pathological variants that demonstrate altered glycosylation in human
subjects.
. Comparable variants in genes that alter glycosylation in eukaryotic cellular or

multicellular model systems.

. Variants in proven glycosylation genes that are highly conserved throughout
evolution and for which no other human homolog exists.

. Inclusion does not imply that these same disorders are not also previously
classified into other groups, nor should families or support groups be confused
by being included in the CDG roster.

We decided to add descriptors to CDG-related genes leading to disorders with different
modes of inheritance, either autosomal recessive (ar) or autosomal dominant (ad). This

was done not only because of the different mode of inheritance, but also because in many
cases the phenotype of the disorders is markedly different. As an example, COG4-CDG(ar)
is characterized by intellectual disability, seizures and elevated liver transaminases [5],
while COG4-CDG(ad), also known as Saul-Wilson syndrome, is characterized by skeletal
dysplasia with profound short stature, cataracts, retinal degeneration, and characteristic
facial features [6]. Similarly, ALG8-CDG(ar) and ALG9-CDG(ar) lead to multisystemic
disorders, while ALG8-CDG9(ad) and ALG9-CDG(ad) lead to polycystic liver disease. Not
only the clinical manifestations but also the mechanism of disease can vary depending
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on the mode of inheritance; as an example, SLC37A4-CDG(ar) leads to deficiency of
glucose-6-phosphate transporter (and glycogen storage disease type 1b), while variants
leading to SLC37A4-CDG(ad) cause a loss of the ER retention signal and mislocalization of
the transporter (with liver disease and coagulopathy) [7].

We should note the remarkable growth of CDG numbers in recent years. A recent review
submitted in 2021 [8] mentioned over 160 CDG, while our current count of 200 represents
a 25% increase in the span of just 3 years. There are several reasons for this discrepancy.
First, there were 16 novel CDG reported since 2021, as can be seen in figure 1. Second,

we split some CDG caused by variants in the same gene into different entries due to
discrepant clinical manifestations, mode of inheritance, or disease mechanism, as explained
above, leading to 13 additional entries. Third, we included disorders that, although described
in some cases decades ago, have not been routinely considered CDG. Examples include
galactosemia (4 entries), hereditary fructose intolerance (1 entry), and mucolipidosis (two
entries). We feel justified in this approach, as these disorders fulfill our inclusion criteria.
Galactosemia leads to defective glycosylation of serum transferrin [9], IgG [10], and whole
serum glycans; hereditary fructose intolerance leads to hypoglycosylation of transferrin
[11], while mucolipidosis is caused by a deficiency of the machinery necessary to tag
enzymes with a mannose-6-phosphate glycan for transport to the lysosome. Thus, all

these entities fulfill our criteria of genes associated with disorders leading to demonstrable
altered glycosylation in human subjects. Fourth, our understanding of pathomechanisms
continues to increase over time; thus, we now know that disruption of the GARP complex
needed for vesicular trafficking leads to N- and O-glycosylation abnormalities in cells

[12], and a patient with a deficiency of VPS51, a subunit of the GARP complex,

showed hypoglycosylation on serum transferrin isoelectric focusing, abnormal N-glycan
and O-glycan profiles [13]. VPS51 deficiency thus fulfilled our criteria of demonstrable
glycosylation abnormalities, while a deficiency of VPS53, another GARP subunit, fulfilled
our criteria of comparable deficiency in genes that alter glycosylation in eukaryotic cellular
models, in this case in human cell lines [12]. We expect that this trend of growth in the
number of known CDG will continue as our understanding of disease mechanisms expands.

Due to the variety of glycosylation pathways and targeted proteins, congenital disorders of
glycosylation exhibit a wide range of phenotypic presentations.

Materials and Methods

The information was sourced from IEMbase, a knowledgebase of inherited metabolic
disorders (IMDs) available at http://www.iembase.org [14]. As of January 2024, IEMbase
contains data on 1,907 IMDs and 4,342 corresponding clinical and biochemical signs and
symptoms, which have been categorized into 22 organ systems and conditions (Autonomic
system, Cardiovascular, Dental, Dermatological, Digestive, Dysmorphic, Ear, Endocrine,
Eye, Genitourinary, Hair, Hematological, Immunological, Metabolic, Muscular, Neurologic,
Psychiatric, Kidney, Respiratory, Skeletal, Tumoral and Other). The classification of IMDs
[15] has been updated according to the International Classification of Inherited Metabolic
Disorders (ICIMD) [16].
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Table 1 summarizes the proposed nosology of CDG, clinical involvement of 19 organs and
systems, as well as essential laboratory investigations for each CDG.

A total of 200 CDG, resulting from 189 distinct gene defects, were organized into 8
categories: 1. Disorders of monosaccharide synthesis and interconversion, 2. Disorders of
nucleotide sugar synthesis and transport, 3. Disorders of N-linked protein glycosylation,
4. Disorders of O-linked protein glycosylation, 5. Disorders of lipid glycosylation,

6. Disorders of vesicular trafficking, 7. Disorders of multiple glycosylation pathways

and 8. Disorders of glycoprotein/glycan degradation. Disorders of O-linked protein
glycosylation were further broken down into: Disorders of O-mannosylation, Disorders of
O-GalNAcylation, Disorders of O-GIcNAcylation, Disorders of O-glucosylation, Disorders
of O-galactosylation, Disorders of O-fucosylation and Disorders of glycosaminoglycan
synthesis and O-xylosylation, while Disorders of lipid glycosylation were further

divided into: Disorders of glycosylphosphatidylinositol biosynthesis and Disorders of
glycosphingolipid synthesis.

Disorders of other glycosylation pathways were further categorized as: Disorders of dolichol
metabolism and Disorders of Golgi homeostasis. Four disorders (MAN2B2-CDG, MPI-
CDG, PMM2-CDG and SLC37A4-CDG(ad)) were listed in more than one category. This
classification system delineates the various CDG based on their genetic origins and specific
pathways involved and includes genes affecting glycosylation substrates (sugars) shortage.

The overall clinical profile can vary widely depending on the specific CDG, but some
features include neurological involvement (developmental/intellectual disability, epilepsy,
hypotonia, ataxia), failure to thrive, poor growth, facial dysmorphism, liver, cardiac,
gastrointestinal and endocrine involvement, and coagulation abnormalities.

We utilized data from IEMbase to compile clinical symptoms for the 200 CDG listed

in Table 1. The most prevalent symptoms were neurological (80.5%), followed by
dysmorphisms (55.6%), skeletal abnormalities (52.7%), ocular problems (46.3%), digestive
issues (34.1%), cardiovascular abnormalities (22.0%), muscular problems (20.0%), short
stature (18.5%), dermatological issues (17.6%), hematological abnormalities (16.6%),
endocrine issues (16.1%), immunological problems (11.7%), ear-related symptoms (11.2%),
respiratory issues (10.2%), genitourinary problems (9.8%), psychiatric symptoms (9.8%),
renal complications (8.3%), hair-related issues (6.8%) and dental problems (4.4%) as shown
in Tablel and Figure 2.

Among the neurological symptoms, hypotonia, developmental/intellectual disability were
the most common, with rates of 50.5%, 42.0%, and 35.5%, respectively. The most
frequently reported dysmorphisms included facial dysmorphism, such as widely spaced
eyes, and micrognathia at rates of 21.5%, 11.0%, and 8.5%, respectively. Common skeletal
abnormalities included kyphoscoliosis at a rate of 20.0% and joint laxity and retrognathia
each at 6.0%.
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In the ocular group, prevalent abnormalities were strabismus at a rate of 15.0%, cataract

at a rate of 10.5%, and nystagmus at a rate of 6.0%. Within the gastrointestinal group,
feeding difficulties were reported at a rate of 12.0%, hepatomegaly at a rate of 9.5%, and
hepatopathy at a rate of 4.5%. In the cardiovascular group, common symptoms included
cardiomyopathy at a rate of 5.5% and congenital heart defects at a rate, including ventricular
septal defect, at a rate of 4.5%.

The ten most common symptoms reported in the aforementioned groups are summarized in
Table 2 for easy reference.

Discussion

Glycosylation is an ancient process; it occurs in all organisms [17]. An estimated 2%

of the expressed genome encodes proteins that produce, regulate, or bind to glycans. It

is not surprising that pathological genetic variants in these genes would disrupt normal
development or physiology. Each cell uses exogenous, endogenous, and salvaged building
materials (sugars and modifiers) and its variable set of transferases, multiprotein complexes,
and glycosidases to construct and modify thousands of glycans spanning at least 10 separate
pathways. Unlike nucleic acid and protein synthesis, glycosylation is not template-driven.
With few exceptions [18], there is no universal glycan code for physiological functions.
Many environmental factors interact with the glycosylation machinery to assemble and
present these variably-sized, flexible molecules. Unlike the robust technologies available
for analysis of other macromolecules, analysis of glycans (glycomics) and the range/types
of glycans present at an individual position (glycoproteomics) is lagging but improving
[19]. A recent discussion of CDG inclusion criteria was more conservative than those
presented here, generating a “grey zone” for interpretation and debate [8]. The definition of
glycosylation and CDG as presented here casts a wide net for human disorders that disrupt
one or more of these pathways as demonstrated in one or more molecules. Since we don’t
know every glycan in every cell, our current analysis covers a narrow band of biomarkers
and physiologically important molecules. This visible glyco-spectrum is hardly complete.
Witness the very recent and surprising discovery of glycosylated t-RNA molecules [20, 21]
at the cell surface which have now been shown to control neutrophil recruitment [22] other
functions will certainly emerge for this novel class of molecules.

We expect that others may have reservations about including some of these disorders as
CDG, especially when we cannot show that impaired glycosylation is the basis of an
individual’s pathology. In that case, we have provided glycosylation biomarkers that may be
useful for natural history or therapy studies.

Few studies show that salvaged monosaccharides are reused for glycan synthesis [23].
Although the extent is unknown, it is conceivable that failure to recycle some sugars
would compromise glycosylation. In fact, recent studies show that glycogen-derived
monosaccharides contribute to N-glycan synthesis [24, 25]. Such discoveries may blur the
bright line between disorders of glycan synthesis and glycan degradation. The IEMbase
offers detailed information on all CDG and the currently proposed nosology will be
regularly curated and updated in the GAMUTS section (http://www.iembase.org/gamuts/).
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Figure 1.
Identification of CDG genes. The cumulative growth of disorders that affect glycosylation of

multiple pathways is shown based on the year of their discovery. In many early cases, strong
biochemical evidence preceded identification of the human gene.
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Disorders of monosaccharide synthesis and interconversion (n=18)
Disorders ofnucleotide sugar synthesis and transport (n=14)
Disorders of N-linked protein glycosylation (n=42)

Disorders of O-linked protein glycosylation (n=27)

Disorders of glycosaminoglycan synthesis and O-xylosylation (n=27)
Disorders of lipid glycosylation (n=29)

Disorders of vesicular trafficking (n=23)

Disorders of multiple glycosylation pathways (n=22)

Disorders of Glycoprotein/ Glycan Degradation (n=2)

2 $33£3
T
1 1j1°)

Figure 2.
The frequency (%) of 19 organ/systems involvements reported in 9 categories of

congenital disorders of glycosylation (CDG) is presented. The percentages of organ/system
involvement were calculated using the total number of CDG in each category with any
organ/system involvement as the denominator. The heat scale ranges from red (0%) for
disorders with no specific reported symptoms to violet (100%) for disorders with particular
symptoms occurring more frequently within the disorders group. For details see the Table 1.
For an explanation of the color references in this figure legend, readers are directed to the
web version of this article.
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Table 2.
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Clinical manifestations and symptoms observed in CDGs, based on the six most frequently affected systems.

Neurological % Dysmorphisms % Skeletal %

Hypotonia 50.5 | Facial dysmorphism 21.5 | Kyphoscoliosis 20.0
Developmental delay 42.0 | Widely spaced eyes 11.0 | Joint laxity 6.0
Intellectual disability 35.5 | Micrognathia 8.5 | Retrognathia 6.0
Microcephaly 22.5 | Cleft palate 6.5 | Brachydactyly 5.0
Epilepsy 21.0 | Inverted nipples 6.0 | Clubfoot 5.0
Seizures 16.0 | Low-set ears 6.0 | Brachycephaly 35
Cerebellar atrophy 12.0 | Long philtrum 5.0 | Shortneck 35
Cerebral atrophy 11.0 | Coarse face 4.0 | Skeletal dysplasia 35
Ataxia 10.0 | Microphthalmia 4.0 | Clinodactyly 35
Cobblestone lissencephaly | 5.5 | Prominent forehead 4.0 | Osteopenia 3.0
Ocular % Digestive % Cardiovascular %

Strabismus 15.0 | Feeding difficulties 12.0 | Cardiomyopathy 75
Cataract 10.5 | Hepatomegaly 9.5 | Congenital heart defects 55
Nystagmus 6.0 | Hepatopathy 4.5 | Ventricular septal defect 4.5
Glaucoma 4.5 | Hepatosplenomegaly 3.0 | Cardiovascular abnormality 2.0
Myopia 4.5 | Diarrhea 3.0 | Atrial septal defect 15
Optic atrophy 45 | Gastrointestinal dysmotility | 2.5 | Cardiac anomalies, malformations | 1.5
Coloboma 3.0 | Liver failure 2.5 | Aortic insufficiency 1.0
Corneal clouding 3.0 | Gastroesophageal reflux 2.0 | Cardiac failure 1.0
Optic nerve hypoplasia 2.0 | Liver cirrhosis 2.0 | Digital necrosis (distal phalanges) 0.5
Pigmentary retinopathy 2.0 | Vomiting 2.0 | Heart valve dysplasia 0.5
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