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Abstract

Adopting a computational approach for the assessment of urine cytology specimens has the 

potential to improve the efficiency, accuracy and reliability of bladder cancer screening, which has 

heretofore relied on semi-subjective manual assessment methods. As rigorous, quantitative criteria 

and guidelines have been introduced for improving screening practices, e.g., The Paris System for 

Reporting Urinary Cytology (TPS), algorithms to emulate semi-autonomous diagnostic decision-

making have lagged behind, in part due to the complex and nuanced nature of urine cytology 

reporting. In this study, we report on a deep learning tool, AutoParis-X, which can facilitate rapid 
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semi-autonomous examination of urine cytology specimens. Through a large-scale retrospective 

validation study, results indicate that AutoParis-X can accurately determine urothelial cell atypia 

and aggregate a wide-variety of cell and cluster-related information across a slide to yield an 

Atypia Burden Score (ABS) that correlates closely with overall specimen atypia, predictive of 

TPS diagnostic categories. Importantly, this approach accounts for challenges associated with 

assessment of overlapping cell cluster borders, which improved the ability to predict specimen 

atypia and accurately estimate the nuclear-to-cytoplasm (NC) ratio for cells in these clusters. 

We developed an interactive web application that is publicly available and open-source, which 

features a simple, easy-to-use display for examining urine cytology whole-slide images (WSI) and 

determining the atypia level of specific cells, flagging the most abnormal cells for pathologist 

review. The accuracy of AutoParis-X (and other semi-automated digital pathology systems) 

indicates that these technologies are approaching clinical readiness and necessitates full evaluation 

of these algorithms via head-to-head clinical trials.

Introduction

Urothelial carcinoma is highly prevalent (9th most common worldwide) and has the highest 

recurrence rate among all forms of cancer (74%) 1,2. The treatment and management 

of urothelial carcinoma requires follow-up urine cytology (UC), expensive, painful 

chemotherapy, and/or invasive cystoscopy procedures for long periods of time (typically 

the remainder of the patient’s life), necessitating the development and implementation of 

less invasive screening and follow up measures 3.

The detection and screening for bladder cancer has greatly improved since the earliest 

recorded evaluation of hematuria was recorded in the papyrus of Kahun, circa 1900 B.C.. 

In 1550 B.C., it was suggested that hematuria originated from “worms in the belly” 4. 

A causative agent, S. haematobium, was identified in 1854 by Theodor Bilharz 5,6. In 

1947, Dr. George Papanicolaou, widely considered the father of modern cytopathology, 

proposed a formal system for evaluation of malignant cells exfoliated from the bladder’s 

epithelium, which has largely remained intact 7,8. Over the past half-century, efforts to 

rigorously define quantitative assessment criteria (e.g., nuclear-to-cytoplasm (NC) ratio, 

chromatin structure, etc.) and improve specimen preparation methods have sought to resolve 

remaining ambiguity. Yet, traditional cytological approaches are still hampered by inter-rater 

variability, specimen quality issues, and the tendency towards ‘hedging’ to the atypical 

category 9-12.

In recent years, The Paris System for Reporting Urinary Cytology (TPS), formulated in 

2013, published in 2016, and updated in 2022, has emerged as a more quantitative and 

reproducible reporting system bladder cancer 13-17. TPS criteria are applied to assign one of 

four main ordered categories (negative, atypical urothelial cells, suspicious for high-grade 

urothelial carcinoma, positive for high-grade urothelial carcinoma) based on the following 

criteria for a positive diagnosis: (1) at least five malignant urothelial cells (updated to 

ten in 2022), (2) an NC ratio at or above 0.7, (3) nuclear hyperchromasia, (4) markedly 

irregular nuclear membrane, and (5) coarse/clumped chromatin 2. It is often easier to 

evaluate specimens that have clear-cut diagnoses, either negative or positive, than those 
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that are atypical or suspicious. Atypical specimens are those that are hedged against a 

negative diagnosis, while suspicious specimens are those that are hedged against a positive 

diagnosis, but allow fewer than five malignant cells to be detected. Unsurprisingly, the two 

indeterminate designations suffer from poor inter-rater variability 12,17.

There are a number of drawbacks to cytological assessments, despite improvements in 

screening criteria: cytology slides are far less structured than traditional histological 

specimens (as they are a random dispersion of cells); there is high inter-rater variability; 

and the workload involved often leads to cytologist exhaustion– all of these factors increase 

the likelihood of misclassification. Furthermore, TPS does not introduce rigorous screening 

criteria for urothelial cell clusters, instead mainly relying on aggregates of individual cellular 

estimates. Systems to automate the assessment of cytology specimens can provide more 

quantitative assessments of atypia, while improving reliability and reproducibility.

Advances in cytopathology vis-à-vis increased automation can bring several benefits to all 

stakeholders in the healthcare space 18-22. The adoption of computer assisted Papanicolaou 

(‘Pap’) test screening helped laboratories address overwhelming numbers of tests that 

formerly required manual screening, leading to inevitable workflow backlogs and diagnostic 

errors resulting from overwork. The end result of this practice was the drafting of the 

CLIA-88 regulations concerning cytotechnologist workload limits and the development 

of semi-automated Pap screening devices such as the FocalPoint™ GS and the ThinPrep 
® Imaging System (TIS) 23,24. The commercial success of these automated systems 

in the gynecologic cytology market provides a window into the possibilities of future 

computational applications in urine cytology 25-33. The factors which drove the creation of 

automated gynecologic cytology systems are similarly present in urine cytology: to improve 

clinical outcomes and integrate smoothly within the daily workflows of cytopathology 

laboratories. Outside of gynecologic cytology, several computational methods have been 

developed for cytological applications in screening cancers of varying types of specimens 
18,34-36. For instance, efforts have been made to screen potential malignancies in thyroid 

fine-needle aspirations (FNA), liquid-based lung cancer specimens, pancreaticobiliary FNA, 

breast lesions, and urine specimens 37-42.

Systems to automate cytology screening can provide more quantitative assessments of 

atypia while improving reliability, precision and reproducibility of findings. State-of-the-art 

approaches leverage deep learning, which relies on the use of artificial neural networks 

(ANN– inspired by the central nervous system), to construct indicators of atypia that can be 

formulated into diagnostic tests. For instance, Sanghvi et al. developed a semi-autonomous 

diagnostic decision aid for bladder cancer using a deep learning algorithm to quantify 

abnormal cytomorphological features 43. The algorithm detected urothelial cells using 

QuPath, urothelial clusters using density-based clustering and used convolutional neural 

networks for scoring cells for atypia (e.g., NC ratio, hyperchromasia, etc.). Although 

the effectiveness of QuPath, the scoring algorithms, and density-based clustering was not 

fully discussed, the study showed promising results in estimating overall atypia and could 

potentially improve bladder cancer screening. However, it should be noted that other studies 

have highlighted the limitations of QuPath in disaggregation of cells within clusters in favor 
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of detection-based approaches, indicating a need for further refinement of the algorithm 
44-47.

We previously developed the AutoParis system to automatically report the presence of 

malignant cells across cytology specimens through cross-tabulation of the degree of atypia 

and NC ratio for all urothelial cells in the preparation 48. Cross-tabulation is used to 

generate an Atypia Burden Score (ABS) to directly classify the specimen. The current 

AutoParis system operates by: 1) using connected component analysis (morphometry) 

and watershedding to separate individual cells from cell clusters within the specimen; 2) 

estimating the NC ratio of the cell using a segmentation neural network to separate the 

nucleus and cytoplasmic components on a pixel-by-pixel basis; 3) simultaneously assigning 

the cell as urothelial and recording whether the cell is atypical (atypia score) from a 

classifier which separates negative urothelial cells, positive urothelial cells, leukocytes, red 

blood cells (RBCs), debris, squamous, and crystals; and 4) generating digital images in 

which the cells are arranged in order of atypia, which could be helpful to pathologists. 

Limitations in current classification systems for urine cytology include 20: 1) confounding 

by the presence of blood, high cellularity, neobladders (abundant degenerated enterocytes) 

and scanning artifacts. Other previously unaccounted for cell types may also confound 

classifiers (e.g., polyomavirus encrusted cells conflated with positive urothelial cells, 

leukocytes vs. clusters of leukocytes, urothelial cells with no nucleus present, renal tubule 

cells) 49; 2) morphometry algorithms may not scale to hundreds of thousands of cells 

at maximal resolution; 3) density-based clustering / watershedding is likely insufficient to 

separate overlapping cells; 4) using a single classifier does not adequately separate the tasks 

of determining whether a cell is both urothelial and atypical; 6) orientation and size of 

cell could confound the classifier; and 7) existing graphical displays for communicating the 

burden of atypia are static rather than dynamic.

We set out to improve on the AutoParis classification tool by addressing the above 

limitations and additionally trained the models using a more expansive dataset– we dub 

the new tool AutoParis-X (AP-X). In AutoParis-X, we addressed challenges associated 

with cell cluster assessment by developing an artificial intelligence tool that uses detection 

models to localize urothelial cells, overlapping cell boundaries, dense regions of significant 

overlap, and identify visual markers of urothelial atypia. By breaking clusters into 

their constituent architectural components, this preprocessing tool facilitates downstream 

association studies and predictive algorithms that incorporate quantitative cluster-level 

features. The cell border identification tool helped develop a more comprehensive 

understanding of urothelial cell cluster atypia as it pertains to bladder cancer screening. 

In comparison to the previous AutoParis study, which was validated on a small well-curated 

test set, we performed a large-scale retrospective validation of AutoParis-X on nearly 1,300 

real-world specimens from internal cohorts. In this manuscript, we discuss improvements 

to the previous approach and its potential for real-time assessment as a mature diagnostic 

decision aid.

Levy et al. Page 4

Cancer Cytopathol. Author manuscript; available in PMC 2024 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods

Specimen Collection and Slide Processing

A total of 1,303 urine specimens were collected across 140 bladder cancer patients (median 

of 8 specimens per patient; IQR: [8-13]) from 2008 to 2019 at Dartmouth-Hitchcock 

Medical Center. Forty-seven of these specimens were used to curate data for training the cell 

and cluster-level machine learning models (cell and cluster-level training and validation 
cohort). Four specimens were removed due to equivocal findings and/or excessive confluent 

cellularity. AutoParis-X was further trained and validated on 1,252 specimens after 

curating slide-level cell/cluster predictors (slide-level training and validation cohorts; see 

Calculation of Cell and Cluster Slide-Level Scores). The specimens were prepared using 

ThinPrep® and Papanicolaou staining before being examined microscopically 24. The urine 

slides were scanned using a Leica Aperio-AT2 scanner at 40× resolution and were stored as 

70% quality SVS files representing whole slide images. The slides were manually focused 

(by a trained technician) on a single plane during scanning, and z-stacking was not used. 

Patient and slide-level characteristics from the slide-level training and validation cohorts 
can be found in Table 1. All slides were assessed by a group of five cytopathologists 

using TPS criteria (negative for high grade urothelial carcinoma, atypical urothelial cells, 

suspicious for high grade urothelial carcinoma, positive for high grade urothelial carcinoma) 
12.

Methods Overview

In this section, we summarize improvements introduced in AutoParis-X, which will 

be elaborated on in following sections. AutoParis-X was written using the Python 

programming language and neural networks were implemented using the PyTorch and 

Detectron2 frameworks 50,51. Statistical and machine learning models were implemented in 

Python and R 52-54. A graphical overview is provided in Figure 1:

1. Slide processing– Connected components analysis to isolate individual cells and 

cell clusters, sped up through parallel processing 55.

2. Cell border detection (BorderDet)– Isolates cells within urothelial clusters 

with overlapping cytoplasmic borders through neural network detection model 
44.

3. Cell-Level Measures:

a. Morphometric measures– Additional morphological features to 

improve cell-type classification and atypia estimation (e.g., size / area).

b. Urothelial Classifier (UroNet)– Used to filter urothelial cells from 

potentially conflated cell types through a convolutional neural network, 

which operates on images of cells and their morphometric measures 56– 

trained on an expanded dataset with more cell classes.

c. NC ratio estimation (UroSeg)– Estimates the NC ratio by neural 

network pixelwise segmentation of background, nucleus and cytoplasm. 

Used as objective marker of atypia.
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d. Atypia score (AtyNet)– For predicted urothelial cells at a particular 

cutoff threshold, a subjective score which incorporates multiple 

screening criteria (e.g., hyperchromasia, etc.) is determined using 

another convolutional neural network which operates on images of cells 

and their morphometric measures and outputs an atypia score 48.

4. Cell- and Cluster- Slide-level scores– Established through a combination of the 

above scoring methods, counting the number of cells/clusters in the slide with 

atypical morphology / cluster architecture as defined by previous works 43,48. 

Optimal decision cutoffs for determining cellular/cluster atypia were decided 

using Bayesian Optimization techniques 57.

5. Classifier development– Machine learning classifier which integrates cell and 

cluster level scores and other demographic/specimen characteristics into an 

Atypia Burden Score (ABS), accounting for repeat measures by patient 58-64.

6. Model interpretation– A hierarchical logistic regression model was constructed 

from the machine learning model to identify important indicators of atypia, 

in addition to analogous univariable models. Helpful graphical displays were 

generated through an interactive web application 65.

7. Demo– A demo was deployed to an Amazon Web Services (AWS) server and 

software released through GitHub and PyPI.

Slide Preprocessing

As detailed in a previous work, individual objects in the image were identified through 

a connected component analysis 48. In brief, WSI were converted into grey scale images 

using opencv2 in Python (version 3.8) 66. The background of WSIs were converted to white 

through intensity thresholding of the grey scale image to form an object mask. Small objects, 

defined as a pixelwise area of 50 or below, were filtered using the remove_small_objects 
(scipy, Python v3.8) morphological operation 67. Large objects (e.g., ink markings) were 

similarly filtered as defined by a minimal area of 500,000 pixels. After small and large 

object removal, holes within the object mask were filled through the fill_voids function 

(which is faster than offerings from the scipy package) 68. We leveraged the cupy package 

(Python v3.8) to reduce compute time through usage of Graphics Processing Units (GPU) 

where appropriate after extensive timing tests 69.

Subimages of slide objects (e.g., candidate urothelial cells and clusters) were returned using 

the scipy regionprops function, which also returned various other morphometric measures 

and bounding boxes. Inference time and memory usage for the connected component 

analysis for object identification was reduced through distributed computing procedures 

(e.g., Dask), which use optimized parallelization to operate on larger-than-memory arrays. 

Using multiprocessing through dask, operations were also parallelized across subregions 

within the slide 55.

Levy et al. Page 6

Cancer Cytopathol. Author manuscript; available in PMC 2024 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cell Border Identification for Cell Cluster Analysis

To improve detection of individual cells within clusters, we previously developed a cell 

detection neural network, BorderDet, (using the state-of-the-art Detectron2 framework) to 

identify: 1) location of cells through estimation of bounding boxes (one box per cell) 

and 2) identify cell boundaries by separating overlapping cytoplasm from adjacent cells . 

BorderDet was developed using cell clusters identified from the cluster-level training 
cohort. In brief, two cytopathologists (LJV and XL) annotated 800 cell cytoplasmic 

boundaries for squamous cells, inflammatory cells, negative/atypical urothelial cells, and 

dense regions of overlapping/indistinguishable cell borders (dense region). BorderDet is an 

object detection neural network that can detect multiple objects/instances (i.e., cells) in a 

cell cluster image 44. It looks for areas in the image that may contain an object and then 

assigns a score that indicates how likely it is that the region contains an object. The program 

labels identified objects with the appropriate label (e.g., squamous cell, dense region) and 

draws a line around the edges of the object (i.e., segmentation mask) to portray the exact 

boundary, which can overlap with adjacent cells. This allows the program to accurately 

identify and locate multiple objects in a single cluster. Objects were then filtered using 

non-max suppression, a technique which ranks overlapping objects, as defined through their 

intersection over union (IoU), based on their “objectness” score and removes objects with a 

lower score 70.

To reduce the number of objects assessed using BorderDet, a size filter was enforced, 

assessing candidate cell clusters with a pixelwise area of at least 1800 pixels, 

determined through a sensitivity analysis and visual inspection. Parallel processing through 

multithreading and multiprocessing was integrated using dask for rapid evaluation 55. 

Individual cells extracted through the connected component analysis (area between 256 

and 1800 pixels) and objects extracted from clusters using their instance segmentation masks 

were further assessed using single-cell algorithms which report quantitative metrics of atypia 

(cell-level measures).

In comparison to the density-based clustering approach that validated urothelial clusters 

using a CNN (Sanghvi et al.), which could lead to many false negative findings (i.e., 

approach only “screens out” candidate cell clusters), urothelial cell clusters were identified 

by BorderDet if they contained urothelial cells 43. This approach improves on watershedding 

(AutoParis v1) and density-clustering (Sanghvi et al.) techniques as these two methods 

do not precisely identify cells within larger candidate clusters 20,43,44,48. BorderDet also 

improves upon previous methods by locating dense urothelial cell architectures with 

overlapping indistinguishable cytoplasmic borders which are challenging to assess for 

individual cells. Furthermore, while presence of a dense architectural region in a cluster 

as defined by an area cutoff was used as an atypia predictor, dense architectures themselves 

were further subclassified as atypical if surrounding urothelial cells were labeled as atypical 

(as defined by morphology).

Cellular Morphometric Measures

Various morphometric features were estimated from individual candidate cells, including: 

1) area; 2) convex area; 3) eccentricity; 4) equivalent diameter; 5) extent; 6) Feret’s 
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diameter; 7) maximum diameter; 8) filled area; 9) major axis length; 10) minor axis 

length; 11) perimeter; and 12) solidity, extracted using scikit-image (Python v3.8) 56,71. 

These morphometric features were primarily used to help demarcate urothelial cells. As an 

example, urothelial cells are significantly larger than leukocytes, so cell area is an important 

criterion for separating the two cell types. Morphometric features were standardized using 

quantile transformation (implemented in scikit-learn, Python v3.8) within the training set 

to reduce the influence of any given cell on specifically which morphometric features were 

important for the assessment 72. This places greater emphasis on the imaging findings as 

means to delineate between different cell types.

Urothelial Cell Classification

Urothelial cell classification was accomplished using UroNet, which was modified 

significantly from its original incarnation. While AutoParis estimated both the presence and 

atypia of the urothelial cell simultaneously 48, as differentiated from several other specimen 

constituents, AutoParis-X is chiefly focused on delineating urothelial cells from potentially 

conflated cell types and slide objects prior to estimating atypia. When aiming to validate 

the AutoParis algorithm, we noticed that a nontrivial number of urothelial cells lacked a 

nucleus, potentially related to being out of focus (no Z-stacking) 73, but were not included 

in our original training set and thus were often confused with other cell types with a smaller 

nuclear area (e.g., squamous cells). We also identified rare urothelial cells with changes 

consistent with a Polyomavirus cytopathic effect 49,74. These cells are benign but assessment 

can often mimic HGUC and would certainly mislead any attempt to accurately predict the 

NC ratio and are thus removed by UroNet.

A total of 108,388 and 27,097 cells were manually labeled by two cytopathologists (LJV 

and XL) and used to train and validate the cell level model respectively from the cell-level 
training and validation cohort. A breakdown of cell types present in this training and 

validation cohort is listed in Table 2. These cell images were combined into the following 

classes: 1) urothelial cells (benign/atypical), 2) urothelial cells with polyomavirus cytopathic 

effect, 3) debris, crystals and red blood cells (RBC), 4) leukocytes, 5) clusters of leukocytes, 

and 6) squamous cells. UroNet was developed using a residual neural network (ResNet18), 

augmented with an auxiliary layer which combines the morphometric information (e.g., 

area/size, eccentricity, etc.) with features extracted from ResNet18 by fusing the penultimate 

layer of the network with this information. The auxiliary neural network first maps the 

number of morphometric features, xM, to the number of ResNet18 features using a multi-

layer perceptron, fϕ. Then the morphometric information (same dimensionality as the 

ResNet features) is fused with the deep learning features using a gated attention operation, 

which decides dynamically on a cell-by-cell basis which set of features (deep learning, 

zDL, vs morphometric, zM) to weight more. The weight is dynamically determined using the 

gating neural network, fθ 75.
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z′ = αDLzDL + αMzM

αDL = exp (aDL)
exp(aDL) + exp (aM) ; αM = exp (aM)

exp(aDL) + exp (aM)
aDL = fθ(zDL); aM = fθ(zM)

zM = fϕ(xM)

This operation permits UroNet to filter out cells with significant size differences (e.g., 

leukocytes are much smaller than urothelial cells). After model training using the 

PathflowAI package 76, the performance of UroNet was assessed using the cell-level 
validation set through the area under the receiver operating characteristic curve (AUC), 

reported for each class. To assess how much weight was placed on the morphometric 

features for prediction, we investigated the attention weights, α, across the validation set. 

We used Integrated Gradients 77,78, a deep learning interpretation method, to assess which 

specific image/deep learning and morphometric features were important for each cell type.

NC Ratio Estimation

For cells classified as urothelial, the NC ratio was calculated for both isolated and cluster 
cells using a segmentation neural network, UroSeg, which employed a U-Net architecture to 

assign on a pixelwise basis the presence of nucleus, cytoplasm, or background 48,79,80. These 

areas were annotated/outlined by cytopathologists and UroSeg was trained and validated 

on 3,690 and 1,231 urothelial cells respectively. Performance was reported using the area 

under the receiver operating characteristic curve (AUC), reported on a pixelwise basis. For 

select cell clusters, we compared the impact of running BorderDet, followed by UroNet and 

UroSeg to calculate the NC ratio as compared to running UroSeg then watershedding, as was 

originally done by the previous AutoParis algorithm.

Atypia Score

Several cytopathologists determined whether every urothelial cell extracted from the cell-
level training and validation cohort (Table 2) was benign or atypical, based on existing 

markers of atypia (e.g., presence of nuclear membrane irregularity, abnormal chromatin, 

hyperchromasia, etc.). From this information, AtyNet, a CNN based on ResNet18 with a 

similar architecture as UroNet, was trained to recapitulate these subjective findings 81. For 

every urothelial cell, AtyNet calculates a subjective marker of atypia– the atypia score– 

which is a value from 0-1 that reflects the probability that a cell is atypical. We used 

IntegratedGradients, a deep learning interpretation method, to assess which specific image/

deep learning and morphometric features were important for atypia assignment.

Calculation of Cell and Cluster Slide-Level Scores

All extracted individual cell and cluster level statistics are placed into Rich Information 

Frames (RIF), which are data frame/tabular data structures 48. For any given WSI, there are 

three RIFs (see Table 3 for description of features):
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1. Isolated-Cell-RIF: Stores morphometric measures; bounding box locations 

within specimens, cell type assignment probabilities; NC ratios; and atypia 

scores for each cell not associated with clusters (isolated urothelial cells).

2. Cluster-Cell-RIF: Stores morphometric measures; bounding box locations within 

specimens; cell type assignment probabilities; NC ratios; and atypia scores for 

each cell associated with clusters, in addition to their cluster assignment label 

(cluster urothelial cells).

3. Cluster-RIF: Stores bounding box locations within WSI; cluster size; 

cytoplasmic borders; area of dense regions in cluster; and associated cluster 

label/identifier. Information on cellular atypia (e.g., number of atypical cells), 

number of urothelial cells, amongst other cluster-level measures, were added to 

this RIF from the Cluster-Cell-RIFs.

All RIFs are cross-tabulated to form a Slide Inference Frame (SIF), which represents slide-

level statistics, aggregated across all urothelial cells and urothelial cell clusters. This is 

accomplished by thresholding the cutoff probabilities for the cell and cluster-level scores and 

counting the number of cells and clusters which meet these criteria. For instance, given an 

atypia score cutoff of 0.7 (i.e., cell is atypical if AtyNet assigns a 70% probability), a cluster 

is deemed to exhibit cellular atypia if, for instance, more than 20% of the cells within the 

cluster are atypical under this definition. Based on the definition of a urothelial cluster (e.g., 

number of urothelial cells), the number of atypical clusters within the WSI can be estimated. 

All urothelial cells with an NC ratio of 0 were removed prior to calculating these scores. SIF 
contains the following statistics:

1. Isolated cell subscores: Derived from Isolated-Cell-RIF, for cells which were 

not associated with clusters, including the following statistics: 1) number of 

urothelial cells; 2) number of atypical urothelial cells as determined using the 

atypia score; 3) number of atypical urothelial cells as determined using the 

NC ratio; 4) number of urothelial cells; and 5) center and spread of various 

morphometric measures.

2. Cluster cell subscores: Derived from Cluster-Cell-RIF. Similar to isolated cell 

subscores, only considering cells which were associated with / identified within 
clusters.

3. All cell subscores: Combines isolated and cluster cell subscores, considering all 

cells, irrespective of whether there was a cluster assignment.

4. Cluster subscores, representing aggregate Cluster-RIF statistics, including: 1) 

number of urothelial clusters (defined by a minimum threshold of urothelial 

cells); 2) number of atypical urothelial clusters (defined by either NC ratio or 

atypia score); 3) number of dense clusters; and 4) number urothelial clusters 

that are both atypical and dense. Unlike the previous three scores which focus 

on individual urothelial cells, identified urothelial cell clusters represent the 

principal unit of analysis.
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Using AutoParis-X, RIF-SIF scores were calculated across the slide-level training and 
validation cohorts. We added the following patient-level characteristics to the RIF-SIF 
scores: 1) age; 2) sex; 3) history of hematuria; and 4) specimen source 82,83. We also noted 

where slides contained significant blood, high cellularity, acellularity, neobladders (abundant 

degenerated enterocytes) and scanning artifacts.

Estimating Specimen Atypia with Machine Learning

Specimen atypia was reported through dichotomization of TPS categories into the following 

classes: 1) negative, atypical and 2) suspicious, positive. The Atypia Burden Score (ABS) 

reflects the predicted probability of a specimen being atypical as assessed by AutoParis-X. 

We implemented several machine learning and statistical modeling approaches to predict 

specimen atypia, including: 1) generalized linear mixed effects modeling (hierarchical 

logistic regression; GLMM; brms package, R v4.1), accounting for patient- and pathologist-

level random intercepts,

2) Random Forest, which does not account for clustering by patient, 3) Gaussian Process 

Tree Boosting (GPBoost), and 4) Bayesian Additive Regression Trees (BART) 58-61,64. 

GPBoost and BART account for clustering by patient by fitting patient- and pathologist-

level random intercepts while capturing interactions and nonlinear associations between SIF 
predictors using ensemble tree models, fθ(x ):

yi ∼ Binomial(1, pi)
logit(pi) = β0 + fθ(x ) + β1agei + β2sexi + β3ℎematuriai + bpatient[i] + bpatℎologist[i]

bpatient[i] ∼ N(0, τ1
2)

bpatℎologist[i] ∼ N(0, τ2
2)

β ∼ N(0, ν2)

Overall model performance was communicated using fivefold cross-validation, which 

randomly partitions the data into a training and validation set and reports the overall 

performance (using the AUC) over the validation folds. Specimens belonging to the same 

patient were partitioned into the same training/validation fold for each cross-validation 

split to avoid potential inflation of test statistics. Confidence intervals (CI) were reported 

using 1000-sample nonparametric bootstrapping of each fold to yield 1000 samples of cross-

validation statistics. Cell and cluster-level thresholds (e.g., atypical cell if NC>0.7; atypical 

cluster if at least 3 urothelial cells are atypical), which are used to generate RIF-SIF scores, 

were optimally aligned with specimen atypia through a Bayesian Optimization routine 57.

Interpretation

We identified significant ABS predictors by extracting salient interactions from the tree 

ensemble models and reporting odds ratios (OR) from univariable and multivariable 

Bayesian GLMM models: logit(pi) = β ⋅ x + bpatient[i] + bpatℎologist[i]. As many of the ABS 

predictors were highly multicollinear, variance inflation factors and horseshoe lasso priors 

were used to select predictors 84,85. Univariable associations adjusting for age, sex and 

hematuria were reported to give credence to omitted collinear predictors in the multivariable 

statistical modeling. Hierarchical Bayesian cumulative link models (i.e., ordinal regression) 
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in a similar specification were also used to report associations between the predictors 

and specimen atypia, treating the urine cytology assignment as an ordinal variable 86,87. 

Statistical significance was reported using the p-value, as derived from the probability of 

direction (pd): p ≈ 2 * (1 − pd). A p-value less than 0.05 indicates a significant atypia 

predictor. Credible intervals, similar to confidence intervals, communicated uncertainty in 

the effect estimates.

Web Application and Software Availability

We also developed an interactive web application which allows for rapid assessment of 

cytology slides. In brief, users first select a slide to examine. An ABS score is returned 

for the specimen as assessed using AutoParis-X. The Cell-RIF is converted into a 2D 

scatter plot of the NC ratio and atypia score– each point represents a cell. Using a “lasso 

tool”, users select cells within this scatterplot. The urothelial cells are highlighted on a 

zoomable WSI viewer (openseadragon) and additionally made available through an image 

gallery for additional examination (Figure 2) 88. The WSI viewer will highlight cells based 

on their relative degree of atypia as assessed algorithmically, focusing the end-user on a 

small subset of potentially malignant cells. A demo of this interactive web application 

can be found at the following URL: http://edit.autoparis.demo.levylab.host.dartmouth.edu/ 

(user: edit_user, password: qdp_2022; full-screen display is encouraged for optimal 

viewing experience). The web application also features a tutorial video for operating the 

application. The AutoParis-X software is also open-source, available to download on GitHub 

(https://github.com/jlevy44/AutoParisX) and installable using the following PyPI package: 

autoparis. Users aiming to run AutoParis-X will need to train compatible neural networks 

as neural networks were only trained on data from a single institution and would need 

additional finetuning to generalize.

Results

Performance of UroNet

UroNet demonstrated remarkable performance in the task of delineating among 6 different 

classes of cell types / objects to determine which cells are urothelial (Figure 2; Table 

4). Figure 3A demonstrates a nearly perfect ROC curve (AUC=0.997 macro-averaged) 

for all 6 cell types across the validation set, indicating high classification accuracy. In 

addition, raw imaging features interpreted using IntegratedGradients corroborated with 

known histomorphology for specific cell types (e.g., highlighting dense chromatin to 

depict urothelial cells, surrounding membrane for squamous cells, etc.; Figure 3B). Many 

morphometric features were found to be important– for instance: 1) eccentricity as a 

defining feature of urothelial cells versus other cell types, 2) solidity for RBCs, 3) convex 

area as an important predictor for leukocyte clusters which have highly irregular formations, 

and 4) both convex area and solidity for squamous cells, which are larger than the other cell 

types and typically solid shapes without any notable deformations (Supplementary Figure 

1). These findings suggest that UroNet can accurately identifying urothelial cells, important 

for establishing assessment of urothelial cells as the basis for AutoParis-X’s automated 

assessment.
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Performance of UroSeg

UroSeg, a neural network segmentation tool, demonstrated excellent performance on our 

internal validation set in predicting the pixelwise presence of the nucleus and cytoplasm 

(AUC=0.971 macro-averaged) in order to calculate nuclear to cytoplasm (NC) ratio 

(Figures 2-3; Table 4). Figure 3F also shows nearly perfect receiver operating characteristic 

curves for both the nucleus and cytoplasm, indicating the high accuracy of UroSeg in 

predicting these structures. Additionally, we found that the NC ratios calculated from the 

segmentation masks produced by UroSeg correlated nearly perfectly with the ground truth 

NC ratios (r=0.965; MAE=0.015) annotated by the cytopathologists (Figure 3G). Figure 3E 

demonstrates the alignment of the true and predicted nuclear and cytoplasmic segmentation 

masks, further highlighting the accuracy of UroSeg.

UroSeg was similarly effective when used in conjunction with BorderDet, our previously 

established urothelial cluster border separation tool. Cells extracted from urothelial clusters 

using BorderDet and confirmed to be urothelial via UroNet were assessed using UroSeg. We 

compared the NC ratios, averaged across each urothelial cluster, in our internal validation 

set with what was accomplished using watershedding techniques (which divided the clusters 

after seeding the watershed based on the location of the nuclei). Watershedding was not 

sensitive to the cell type as it did not leverage BorderDet and UroNet. In addition, for 

clusters containing urothelial cells and background debris or other confounding cell types, 

watershed heavily underestimated the NC ratio (Figure 4). This was universal across all 

of the urothelial clusters in the internal validation set. Through visual examination, it is 

clear that by precisely demarcating cytoplasmic borders between immediately adjacent 

and overlapping cells, BorderDet and UroNet allow for precise estimation of the NC 

ratio. Opting for alternative assessment approaches (e.g., watershedding) could reduce the 

predictive capacity of slides containing abundance of urothelial cell clusters by removing or 

unnecessarily skewing the reported statistics for these cells as compared to isolated cells.

Performance of AtyNet

Performance for AtyNet, the neural network which provides an atypia score estimate for 

each urothelial cell, was equally promising (Figure 2; Table 4). The algorithm achieved an 

area under the receiver operating characteristic curve of 0.917 on the internal validation 

set, indicating a strong ability to distinguish between atypical and normal cells. Model 

interpretation using integrated gradients revealed that the algorithm placed a high emphasis 

on irregularities in the nuclear membrane as a key feature in determining cytological atypia 

(Figure 2B) 56.

ABS Classifier Performance

Individual cell and cluster level features were cross tabulated across the slide and assessed 

using multiple statistical and machine learning algorithms. Many cellular and cluster level 

features correlated closely with specimen atypia (Supplementary Figures 2-4). Atypical 

urothelial cells as defined by both the NC ratio and atypia score, which were contained 

within clusters were, in some cases, more predictive of specimen atypia than assessment 

of isolated cells alone (e.g., cells with high NC ratio in clusters were more predictive 

than isolated cells with high NC ratio), further suggesting the importance of employing 
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BorderDet for separating cells. The number of urothelial cells and cell clusters correlated 

directly with potential for malignancy. Urothelial cell clusters which were both atypical 

and contained dense regions were the third most predictive variable when assessed using 

univariable regression.

As part of the AutoParis-X framework, each machine learning model outputs the Atypia 

Burden Score (ABS)– the probability of assigning suspicious or positive UC exam as 

judged using AutoParis-X. Across all algorithms, ABS correlated closely with specimen 

atypia. The machine learning models which accounted for patient and pathologist-level 

variation, GPBoost and BART, outperformed all other approaches with AUCs of 0.89 and 

0.88 respectively (Figure 5A; Table 5). The generalized linear mixed effects models also 

performed well. Across all models, ABS scores preserved the ordering of the UC categories 

(Negative<Atypical<Suspicious<Positive; Figure 5B). We fit an ordinal regression model 

to this data, which demonstrated a strong positive association with atypia (UC categories; 

β = 3.61; 95%CI: [3.12 – 4.11]; p < 0.0001). This information is corroborated by density 

heatmaps depicting the NC Ratio and Atypia score for individual urothelial cells across 

the entire cohort, after being filtered using UroNet. This yielded more than 6 million cells, 

which were separated based on their UC class. Figure 5D demonstrates the progression in 

cellular atypia across the categories– negative cases typically do not contain cells that have 

both high NC ratio and atypia, while these cells can be increasingly found at higher UC 

categories. Positive cases contain many cells that are both highly atypical with high NC 

ratio.

Univariable and Multivariable associations with Specimen Atypia

Table 6 demonstrates the importance of the individual slide level predictors through both 

univariable and multivariable regression modeling. A few predictors remained in the 

unpenalized statistical model after applying the horseshoe lasso (Figure 5C). This included 

positive associations with number of clusters, number of both atypical and dense clusters, 

number of isolated atypical cells and an interaction between age and atypia. The interaction 

demonstrates that overall specimen atypia younger individuals more greatly impacted by 

number of atypical urothelial cells as compared to older individuals.

Web Application Example

As a demonstration of Autoparis-X’s ability to facilitate rapid examination of UC 

specimens, we examined four specimens with the web application (see Supplementary 

Figures 5-7 for screenshots). Among thousands of specimens examined using this web tool, 

select cases (negative, atypical, suspicious, positive) can be further inspected using the demo 

application (see Web Application and Software Availability). The first case (Supplementary 

Figure 5) yielded an Atypia Burden Score of 0.14. Urothelial cells were selected with high 

atypia and were plotted on the WSI, revealing their locations. Zooming in on the WSI 

confirmed the reported cell-level statistics. We also used the table as means to rapidly 

examine all atypical cells in order of decreasing atypia as a faster method to examine cells 

versus zooming in using the web application. These examinations confirmed that this was 

in fact an atypical specimen. The second case produced an atypia burden score of 0.6– a 

similar examination revealed specimen atypia on par with that of a suspicious assignment. 
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The final case was a positive patient with an atypia burden score of 0.76. We focused on 

only a few cells which demonstrated the highest potential for malignancy in order to focus 

our examination given the high cellularity of the specimen. Many of these cells were nested 

in urothelial cell clusters. This search identified cells which were indeed highly malignant 

morphologically, allowing for rapid assignment of a positive finding. In Supplementary 

Figure 8, we used the WSI viewer to zoom in on a few malignant cells identified using the 

AutoParis-X web application.

Discussion

Advances in urine examination from ancient times to the information age have been 

accompanied by improvements in both specimen preparation and rigorous quantitative 

bladder cancer screening criteria 4. Urine cytology (UC) examination for specimen atypia 

has emerged as the staple of modern-day bladder cancer screening and is often accompanied 

by more invasive methods for cases demonstrating suspicious or positive classifications. 

For example, TPS is a widely used grading system in urine cytology screening for 

bladder cancer, which assigns four main categories based on the presence of high-grade 

urothelial carcinoma cells and specific cellular features. Yet, despite advances in manual 

examination methods, there is often poor inter-rater variability in the interpretation of 

atypical or suspicious specimens, and TPS does not include rigorous criteria for evaluating 

urothelial cell clusters 11,17,89-94. Automation in cytopathology can improve the reliability 

of cytological assessments and help clinicians address growing numbers of tests and avoid 

diagnostic errors, as has been demonstrated in the gynecologic cytology market with the 

adoption of systems such as ThinPrep® Imaging System and FocalPoint™ GS Imaging 

system 24. Existing systems for semi-autonomous UC examination have addressed many 

existing challenges, though have yet to adequately account for many additional complexities 

which can confound assessment (e.g., clusters, polyomavirus, etc.) 20,21. In this study, we 

detailed the development of an artificial intelligence tool, AutoParis-X, which improves 

upon its previous incarnation, to allow for the rapid and nuanced examination of UC 

specimens; validation on a large-scale retrospective cohort illustrated the maturity and 

technical sophistication of this tool. For instance, challenges associated with calculation 

of NC ratios and overall cellular atypia within dense, overlapping urothelial cell clusters 

were addressed with remarkably good performance 44. The importance of many previously 

understudied predictors were evaluated (e.g., number of atypical and dense urothelial 

clusters). Finally, the featured interactive web application was designed for ease-of-use for 

semi-autonomous diagnostic decision making.

All of these innovations suggest AutoParis-X’s potential to greatly facilitate the process 

of bladder cancer screening, potentially resulting in a significant increase in diagnostic 

accuracy and a subsequent decrease in potential avenues for error (similar to what 

occurred with wide adoption of FocalPoint for Pap tests) 31,95. For instance, results 

suggest that UroSeg can be used to accurately calculate NC ratios in a high-throughput 

manner. AutoParis-X can be used to examine hundreds to thousands of cytology specimens 

overnight, permitting semi-autonomous evaluation from the cytopathologist via the web 

application the following day (or in real time as results are generated). This is expected to 

increase the number and throughput of cytology exams that can be performed by any given 
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institution while accounting for the necessary safeguards (i.e., secondary manual review of 

random cohort of cases as is now done with Pap tests). Cases unable to be assessed using 

this web-based platform could be shunted to the classical manual interpretation pathway. 

With any newly introduced technology, rigorous real-world clinical trials will be required to 

evaluate the potential impact of adopting this system. As there are only limited applications 

of AI technologies in digital pathology that have been approved by the FDA for clinical 

usage, several existing practicalities are worth addressing before AutoParis-X can be safely 

employed in the clinic. Social barriers for adoption can be identified through surveys on 

attitudes and beliefs about the tool, which will allow for iterative refinement of the output 

display and additional algorithmic finetuning. AutoParis-X will also need to demonstrate 

non-inferiority in a clinical trial (i.e., random assignment of individuals to assessment via 

manual and semi-autonomous examination). As non-inferiority is evaluated with respect 

to a ground-truth measurement, it will be difficult to prove the utility of AutoParis-X 

to assign specimen atypia based on alignment to cytopathologist ratings alone given the 

high inter-observer variation (e.g. there is no universal, quantitative ground truth in urine 

cytology) 12,17,93. Additional validation will likely require assessment of its capacity to 

predict more objective outcomes, such as disease recurrence or death 96-99. Additionally, 

its cost-effectiveness over traditional methods will also need to be proven (e.g., CPT codes, 

RVUs, number of specimens per day, technologist and pathologist time spent), which will 

communicate revenue to be expected / workforce needed when operating the device 100-103. 

A clearer understanding of how these tools can impact clinical decision making is needed 

before implementation (e.g., what conditions/thresholds are necessary to flag the case for 

manual review under a microscope) 104.

There are several limitations worth noting that will require future improvements 

and developments. We observed potential scanning artifacts (e.g., pixelation of cells), 

deficiencies in specimen preparation, high cellular density, and blood in the samples, 

which complicate the assessment. However, we have not yet developed methods to 

address these challenges. In addition to surveying attitudes, beliefs and adoption barriers, 

cytopathologists unfamiliar with digital technologies may favor assessment through analog 

means (e.g., microscope)– this will either require additional training and education on how 

to operate these nascent technologies or may require further subspecialization / training of 

cytopathologists to perform a digital assessment 105-109. AutoParis-X does not account for 

Z-stacking of cytology slides which can be accounted for in future iterations to model cells 

in 3D 73,110. Annotation of individual cells and clusters were performed by a small group 

of cytopathologists. Some of these annotations (e.g., nucleus, delineation of cytoplasmic 

borders in clusters, cell type) may differ between cytopathologists. In addition, data was 

only collected and validated at a single institution which may limit generalization of these 

approaches as other institutions may have heterogenous patient characteristics/demographics 

and different specimen preparation methods 111. Additional data collection from multiple 

institutions can ameliorate these potential challenges by improving the diversity of the 

dataset, allowing additional flexibility. There is also room for improvement for deriving slide 

level features. While we utilized Bayesian Optimization to decide which cells/clusters were 

atypical, dense, clusters, etc., consideration of additional thresholds or forms to summarize 

this information could improve the model accuracy. There exists a plethora of modeling 
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approaches which can be utilized to predict specimen atypia. For instance, attention and 

graph-based neural network architectures can take as input the entire WSI broken into 

constituent cells, each of which has stored attribute/morphological information. and perform 

what amounts to a weighted average across the cells to derive a final summary statistic 
112,113. The ordinal nature of UC class assignment was not explicitly taken into account 

for most of the results in this study and can be incorporated into these machine learning 

models using the appropriate model likelihoods 114. Institutions aiming to adopt these 

digital technologies will also require significant computing infrastructure. This requires the 

purchase and utilization of GPU enabled compute nodes (cloud computing services such 

as AWS and Google Cloud present viable alternatives to in-house purchases), adoption of 

containerized workflows, which standardize and scale analyses, and hosting of front-facing 

applications with appropriate databasing, security and credentialling.

Conclusion

Bladder cancer screening through urine cytology exams is a tedious and fatigable process 

as cytopathologists assess tens to hundreds of thousands of cells per specimen. Algorithmic 

techniques to emulate these assessments are beginning to address the incredibly nuanced 

nature of these assessments. This study featured the design and large-scale validation of a 

digital diagnostic decision aid, AutoParis-X, which iterates on previous incarnations of urine 

cytology assessment algorithms to address many remaining complexities associated with 

challenging examination; further, it features a web application that allows for accurate and 

rapid examination of specimens. We encourage interested parties to utilize the AutoParis-X 

workflow and consider validating and finetuning the algorithm for other practice settings to 

enhance its wider generalizability. The current study demonstrated that quantitative digital 

urine cytology assessment methods have come of age and are prepared for further rigorous 

prospective evaluation to investigate its future role in augmenting clinical diagnostic 

decision making.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: AutoParis-X specimen processing workflow:
A) Connected component analysis isolates candidate cells and cell clusters; B) Individual 

cells and cytoplasmic borders isolated from cell clusters using BorderDet; C) UroNet 

isolates specific cell types across slide, in order: i) urothelial cells, ii) polyomavirus infected 

cells, iii) crystals, debris, RBCs, iv) leukocytes, v) leukocyte clusters, vi) squamous cells; 

D) AtyNet estimates atypia score for each urothelial cell; E) UroSeg calculates the NC 

ratio for each urothelial cell after being isolated using the connected component analysis 

or BorderDet; F) example rich information frame cell and cluster level scores, which cross 

tabulate statistics across the slide; G) mixed effects machine learning method predicts 

atypical burden score which correlates with the reported diagnosis; H) cytopathologists can 

rapidly assess the specimen using the AutoParis-X web application
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Figure 2: AutoParis-X Web Application:
A) Cytopathologist selects patient/specimen scanned and processed the previous day, which 

outputs Atypia Burden Score; B) Urothelial cells are identified based on a cutoff probability 

selected by the user; C) Individual cells are plotted using scatter plot, which depicts each 

cell’s NC ratio and atypia score; user selects most atypical cells for viewing via the WSI 

viewer and gallery using the “Lasso” tool; D) WSI viewer– red points are sized by degree 

of atypia and identify important urothelial cells to assess/zoom in; E) gallery view enables 

rapid examination of individual cells, sorting them by their degree of atypia
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Figure 3: Performance of UroNet/UroSeg/AtyNet:
A) Receiver operating characteristic curves for each cell type from the internal validation set 

(UroNet) and for delineating atypical versus benign urothelial cells (AtyNet); B) Integrated 

Gradients heatmap localizing important features identified using UroNet for urothelial cells, 

squamous cells and leukocyte clusters; C) Integrated Gradients heatmap localizing important 

features identified using AtyNet for one benign urothelial cell / cell cluster, followed by two 

atypical cell images; D) Example ground truth segmentation masks (left; background- black, 

cytoplasm- red, nucleus- yellow), original images (center) and segmentation masks predicted 

using UroSeg (right); E) Receiver operating characteristic curves for background, cytoplasm 

and nucleus (pixelwise assessments) from the internal validation set (UroSeg); F) Ground 

truth versus UroSeg predicted NC ratios, derived from the segmentation results
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Figure 4: Performance of BorderDet and UroSeg on estimating NC ratios for cells in clusters:
A) Estimates derived using watershedding underestimate the NC ratio, whereas detecting 

the urothelial cytoplasmic borders then using UroSeg (segmentation masks plotted over 

detected urothelial cells) to estimate the NC ratio leads to a higher and more accurate NC 

ratio; final cluster contains dense region of significantly overlapping and indistinguishable 

cytoplasmic borders, dense area used as a predictor for AutoParis-X; B) Scatterplot 

comparing watershed-derived and BorderDet derived NC ratios; C) Shift plot indicating 

BorderDet NC ratios are higher than that achieved using watershedding
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Figure 5: ABS Classifier Performance:
A) Receiver operating characteristic curves illustrating performance of ABS classifiers; B) 
Boxplot of raw ABS scores predicted by GPBoost and Random Forest by UC class; C) 
Point estimates and 95% credible intervals for predictors uncovered from final multivariable 

Bayesian hierarchical model; D) Density plot of NC Ratios and Atypia scores cross 

tabulated across over 6 million cells from the retrospective cohort, divided by UC classes, 

demonstrating progression of cells to take on higher NC ratios and Atypia scores at higher 

UC classes
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Table 1:

Patient and Specimen Cohort Characteristics

Overall

Number Specimens 1252

Voided (%) 1103 (88.1)

Prior History Hematuria (%) 171 (13.7)

Diagnosis (%)

 Negative for High Grade Urothelial Carcinoma 810 (64.7)

 Atypical Urothelial Cells 296 (23.6)

 Suspicious for High Grade Urothelial Carcinoma 98 (7.8)

 Positive for High Grade Urothelial Carcinoma 48 (3.8)

Contains Artifact (%) 265 (21.2)

Number Patients 140

Age (mean (SD)) 71.19 (12.37)

Sex = M (%) 106 (75.7)

Cancer Cytopathol. Author manuscript; available in PMC 2024 July 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Levy et al. Page 29

Table 2:

Number of cell types used to train/validate UroNet and AtyNet

Benign
Urothelial

Cells

Atypical
Urothelial

Cells

Polyomavirus
Infected Cells

RBC Crystals Debris Leukocyte Leukocyte
Cluster

Squamous
Cells

Training 3522 3795 3606 11199 220 63317 8037 3425 11267

Validation 880 949 901 2800 55 15830 2009 856 2817
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Table 3:

Cell/Cluster/Slide-Level Features and their descriptions

Level Predictor Algorithm Description

Cell Urothelial cell score UroNet Predicted probability of urothelial cell from convolutional neural network, used to 
dynamically isolate urothelial cells in specimen

Atypia score AtyNet Predicted probability of presence of atypical features in urothelial cell 
(e.g., hyperchromasia, irregular nuclear membrane, etc.), determined using 
convolutional neural network

NC Ratio UroSeg Nuclear to cytoplasm area ratio derived from pixelwise segmentation of nucleus 
and cytoplasm using segmentatio neural network

Morphometric measures Custom Complements binning of urothelial cells and assignment of atypia score, features: 
1) area; 2) convex area; 3) eccentricity; 4) equivalent diameter; 5) extent; 6) 
Feret’s diameter; 7) maximum diameter; 8) filled area; 9) major axis length; 10) 
minor axis length; 11) perimeter; and 12) solidity

Cluster Dense Area BorderDet Whether cluster contains dense architecture of overlapping and indistinguishable 
cytoplasmic borders

Number urothelial cells BorderDet/UroNet Whether cluster contained urothelial cells, determined by counting cells with high 
urothelial cell score

Number atypical 
urothelial cells (atypia 
score)

BorderDet/UroNet/
AtyNet

Whether cluster contained abnormal urothelial cells, determined by counting cells 
with high atypia score

Number atypical 
urothelial cells (NC 
ratio)

BorderDet/UroNet/
UroSeg

Whether cluster contained abnormal urothelial cells, determined by counting cells 
with high NC ratio

Dense & Atypical BorderDet/UroNet/
AtyNet/UroSeg

Whether cluster contained both dense architecture and atypical cellular features

Slide Patient characteristics Supplied Includes age, sex, history of hematuria, specimen source (e.g., voided), presence 
of specimen artifact

Isolated Cell-SIF Scores Bayesian 
Optimization

Counting the number of cells with the following features from cells not 
associated with clusters: 1) cellularity (urothelial score), 2) atypia (atypia score), 
3) atypia (NC ratio), 4) other morphometric measures

Cluster Cell-SIF Scores Bayesian 
Optimization

Counting the number of cells with the following features from cells associated 
with clusters: 1) cellularity (urothelial score), 2) atypia (atypia score), 3) atypia 
(NC ratio), 4) other morphometric measures

All Cell-SIF Scores Bayesian 
Optimization

Combines Isolated Cell-SIF Scores and Cluster Cell-SIF Scores

Cluster-SIF Bayesian 
Optimization

Counting the number of clusters with the following features: 1) number of 
urothelial clusters, 2) atypical urothelial clusters (atypia score), 3) atypical 
clusters (NC ratio), 4) dense clusters, 5) dense and atypical clusters

Atypia Burden Score Mixed effects 
machine learning

Integrates all slide-level predictors using machine learning model to calculate 
a score between 0-1 reflecting overall specimen atypia, correlated with UC 
diagnostic category
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Table 4:
Performance Statistics for UroNet, UroSeg, and AtyNet;

95% confidence intervals estimated using 1000-sample non-parametric bootstrapping

Algorithm Quantity Measure Estimate 2.5% CI 97.5% CI

UroNet Urothelial AUC 0.994 0.993 0.995

Polyomavirus AUC 0.996 0.995 0.996

Debris, Crystals, RBCs AUC 0.998 0.998 0.998

Leukocytes AUC 0.997 0.996 0.998

Leukocyte Clusters AUC 0.997 0.996 0.997

Squamous Cells AUC 0.998 0.998 0.999

AtyNet Atypia Score AUC 0.917 0.905 0.929

UroSeg Background AUC 0.993 0.993 0.993

Cytoplasm AUC 0.977 0.977 0.977

Nucleus AUC 0.944 0.944 0.944

NC Ratio Spearman 0.965 0.954 0.973

Mean Absolute Error 0.015 0.014 0.017
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Table 5:
Performance statistics for ABS Classifiers;

95% confidence intervals estimated using 1000-sample non-parametric bootstrapping

AUC 2.5% CI 97.5% CI

RF 0.873 0.846 0.897

GPBoost 0.889 0.866 0.913

BART 0.876 0.847 0.901

BGLMM 0.833 0.788 0.873

BGLMM-Int 0.843 0.808 0.874
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Table 6:
Effect estimates, 95% credible intervals and p-values for multivariable regression model

Parameter OR 2.5% CI 97.5% CI p-value

Number of Clusters 1.31 1.06 1.68 0.016

Age 1.57 1.07 2.39 0.029

History of Hematuria 1.40 1.17 1.69 0.003

Dense/Atypical Clusters 1.84 1.41 2.39 <0.001

Number Isolated Atypical Cells 1.81 1.32 2.44 <0.001

Age:Number Isolated Atypical Cells 0.80 0.65 0.99 0.050
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