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The mechanisms responsible for neuronal death causing cognitive loss in
Alzheimer’s disease (AD) and many other dementias are not known.
Serum amyloid P component (SAP) is a constitutive plasma protein,
which is cytotoxic for cerebral neurones and also promotes formation and
persistence of cerebral Aβ amyloid and neurofibrillary tangles. Circulating
SAP, which is produced exclusively by the liver, is normally almost comple-
tely excluded from the brain. Conditions increasing brain exposure to SAP
increase dementia risk, consistent with a causative role in neurodegenera-
tion. Furthermore, neocortex content of SAP is strongly and independently
associated with dementia at death. Here, seeking genomic evidence for a
causal link of SAP with neurodegeneration, we meta-analysed three
genome-wide association studies of 44 288 participants, then conducted
cis-Mendelian randomization assessment of associations with neuro-
degenerative diseases. Higher genetically instrumented plasma SAP
concentrations were associated with AD (odds ratio 1.07, 95% confidence
interval (CI) 1.02; 1.11, p = 1.8 × 10−3), Lewy body dementia (odds ratio
1.37, 95%CI 1.19; 1.59, p = 1.5 × 10−5) and plasma tau concentration (0.06
log2(ng l−1) 95%CI 0.03; 0.08, p = 4.55 × 10−6). These genetic findings are con-
sistent with neuropathogenicity of SAP. Depletion of SAP from the blood
and the brain, by the safe, well tolerated, experimental drug miridesap
may thus be neuroprotective.
1. Introduction
The direct causes and mechanisms of neuronal cell death responsible for the
cognitive loss in Alzheimer’s disease (AD) and many other dementias are not
known. Serum amyloid P component (SAP) is an almost invariant, constitutive,
normal plasma glycoprotein produced exclusively in the liver. It circulates at a
mean (SD) concentration of about 24 (8) mg l−1 in women and 32 (7) mg l−1 in
men [1] but it is normally rigorously excluded from the central nervous system.
Cerebrospinal fluid (CSF) concentrations of SAP are one thousand-fold lower
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than the plasma concentration [2,3], presumably reflecting relative impermeability of the blood–brain barrier (BBB). There is also
evidence for an active transport mechanism exporting SAP from the CSF back into the blood [4]. SAP is named for its universal
presence in all human amyloid deposits, which reflects the avid but reversible calcium-dependent binding of SAP to all types of
amyloid fibrils regardless of their protein composition [5,6]. Thus, although CSF and brain content of SAP are normally extremely
low, SAP is nonetheless always present in the intracerebral Aβ amyloid plaques, cerebrovascular Aβ amyloid deposits and the
majority of neurofibrillary tau tangles in AD. The binding of SAP stabilizes amyloid fibrils [7] and promotes their formation
[8,9], thereby contributing to amyloid deposition and persistence [10]. Furthermore, accumulation of SAP on intracerebral amyloid
plaques, cerebrovascular amyloid deposits and neurofibrillary tangles also increases exposure of cerebral neurones to SAP.

Cerebral Aβ amyloid is a defining feature of AD, is also often present in Lewy body dementia (LBD) and is present in chronic
traumatic encephalopathy. It is still not known how amyloid pathology contributes to neurodegeneration but recent reports of
cognitive benefit from antibody treatments that reduce the Aβ amyloid burden in AD are encouraging [11,12]. Typical AD neu-
ropathology is often seen in the brains of individuals who were cognitively normal at death, raising the possibility of other
pathogenetic factors in dementia. It is therefore interesting that, unrelated to its contribution both to Aβ amyloid formation and
persistence, human SAP is itself directly neurotoxic to cerebral neurones in vitro [13–16] and in animal models in vivo [17].
Furthermore, neocortical SAP content is significantly associated with dementia at death, independently of neuropathological
severity, consistent with a more direct, amyloid-independent, pathogenetic role of SAP in neurodegeneration [18]. Indeed,
many of the risk factors for dementia, including cerebral and cerebrovascular amyloid deposition, traumatic brain injury, cerebral
haemorrhage and even ‘normal’ ageing, with its associated impairment of the BBB [19], are characterized by increased exposure of
the brain to SAP.

In order to rigorously explore the potential causative role of human SAP in human neurodegenerative diseases, and thus vali-
date novel therapeutic avenues, we have now sought genetic epidemiological evidence. SAP is encoded by the gene APCS
(ENSG00000132703) located on chromosome 1, in close proximity to CRP (ENSG00000132693) which encodes C-reactive protein
(CRP). These two proteins comprise the pentraxin family, sharing 54% strict residue for residue amino acid sequence homology,
even higher genetic sequence homology and having the same secondary, tertiary and quaternary structural organization. Despite
notable phylogenetic conservation of gene and protein sequence and structure among pentraxins, there are marked biological
differences between these proteins both within and between species [20]. Thus, human CRP is the classical acute phase protein
that is among the most commonly used routine clinical chemistry analytes, while human SAP is a constitutive plasma protein,
the assay of which has hitherto had no practical clinical significance. Human SAP is not an acute phase reactant although in
chronic inflammatory conditions, in which there is sustained increased production of CRP, SAP values tend to be slightly
higher, albeit within the reference range [21]. A few small studies in the elderly and subjects with impaired cognition have reported
plasma and CSF SAP concentrations above the reference range of the healthy middle-aged population [2,22–24]. Children under
10 years have circulating SAP concentrations below the adult range but reduced adult SAP values are seen only with severe hepa-
tocellular impairment [21]. Unsurprisingly therefore, in contrast to CRP concentration, there have only been limited genome-wide
association studies (GWAS) of plasma SAP concentration [24–26]. Recently, however, the SomaLogic aptamer-based proteomic
platform has enabled large-scale measurement of circulating SAP abundance, allowing for a growing number of GWAS identifying
potential genetic instruments for plasma SAP concentration.

Cis-Mendelian randomization (MR) leverages genetic instruments associated with protein concentration to demonstrate the
possible causal effects of a potential drug target and thus to anticipate safety and efficacy outcomes of specific therapeutic
interventions. The random allocation of genes during gametogenesis crucially protects genetic associations against bias due to con-
founding and reverse causality [27,28]. Furthermore, through a two-sample design, MR can source aggregated data, that is, point
estimates and standard errors, from large-scale studies, each designed to maximize the available sample size. This extensively vali-
dated MR approach can provide a precise and powerful overview of the likely causal consequences of target perturbation covering
a large number of clinically relevant diseases and traits [29–32].

We confirmed that the SomaLogic SAP values reliably reflect the actual plasma concentration of the protein measured by rig-
orously calibrated SAP immunoassay. We then conducted a meta-analysis of three GWAS of circulating SAP values, combining
information from 44 288 participants, followed by a drug target MR using APCS cis-variants that were strongly associated with
plasma SAP values. We primarily focused on the possible causal effect of SAP in AD and LBD. Given the close proximity of
APCS to CRP, and the major involvement of CRP responses with almost all inflammatory, infective, traumatic and other tissue
damaging processes [33], we additionally used MR to rule out possible effects of plasma CRP concentration acting on the SAP
signal through linkage disequilibrium (LD) between variants in APCS and variants in CRP.
2. Material and methods
2.1. Validation of SomaLogic SAP assay
The read out from the SomaLogic aptamer-based mass spectrometric method is relative reagent intensity, a proxy for SAP concen-
tration rather than actual mass per volume. We therefore used the robust electroimmunoassay method, rigorously standardized
with isolated, pure human SAP [1], to measure the actual concentration of SAP in 100 human plasma samples from a random
sub-cohort of the EPIC-Norfolk study (https://www.epic-norfolk.org.uk/) in which SAP had been quantified by the SomaLogic
method. The electroimmunoassay confirmed that the SomaLogic results accurately reflected plasma SAP concentrations: for the
two sets of results, the Pearson correlation coefficient was 0.86 (p < 0.001) and Spearman correlation was 0.84 (p < 0.001) (electronic
supplementary material, figure S1).

https://www.epic-norfolk.org.uk/
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2.2. Genome-wide association studies of SAP plasma values
Three independent studies with plasma SAP values determined by the SomaLogic method: Interval (n: 3301) [24], AGES (n: 5368)
[26] and DECODE (n: 35 559) [25], were used to provide aggregate genetic data. To account for potential heterogeneity in gen-
etic associations, due to difference in participants and/or environment, we performed a DerSimonian–Laird random effects
meta-analysis using METAL [34].

Independent lead genetic variants were identified by filtering associations on a genome-wide significant p-value of 5.8 × 10−8

and clumping to an R2 of 0.01 based on LD reference data from a random 5000 participant subset of the UK Biobank (UKB). The
nearest protein-coding genes were identified by querying the GRCh37 assembly via Ensembl REST API [35]. Lead variants within
2 megabase pairs (MB) of APCS, the gene encoding SAP, were assigned to this gene; trans-variants (outside ±2 MB of APCS) were
mapped to putative causal genes using the V2G algorithm offered by Open Targets [36]. The V2G algorithm ranks putative causal
genes based on integrated information on molecular traits, such as information on splice-sites, mRNA expression, chromatin inter-
action, functional predictions, and distance from the canonical transcription start site. Potential pleiotropic associations of these
putative causal genes were explored by querying the author-assigned gene in GWAS Catalog, which comprises the largest
source of gene to phenotype information [37].

2.3. Drug target Mendelian randomization
Drug target MR was employed to ascertain the possible causal effects that a unit increase in standard deviation (SD) of plasma
SAP concentration had on clinically relevant traits, with a primary focus on AD [38] and LBD [39].

To limit the potential for bias due to pre-translational horizontal pleiotropy, variants were extracted from within and around
APCS, applying a ±1 MB pairs flank [40]. Variants were filtered to a minor allele frequency of 0.01 or larger, and clumped to an R2

of 0.40. Residual LD was modelled using generalized least square (GLS) solutions [41] and a 5000 random sample of UKB partici-
pants. To reduce the risk of weak-instrument bias [42], we selected genetic variants with an F-statistic of 15 or higher. Furthermore,
due to the absence of sample overlap between the SAP GWAS dataset and the GWAS used for many of the outcome traits, any
potential weak-instrument bias would act towards a null effect, reducing power rather than increasing type 1 errors [42,43].

Estimates of the potential causal effect of higher plasma SAP value were obtained using the GLS implementation of the inverse-
variance weighted (IVW) estimator and the MR-Egger estimator, the latter being unbiased in the presence of horizontal pleiotropy
at the cost of lower precision [44]. To minimize the potential influence of horizontal pleiotropy, variants beyond three times the
mean leverage or an outlier χ2 statistic larger than 10.83 were pruned [45]. Finally, a model selection framework was applied to
select the most appropriate estimator, IVW or MR-Egger [45,46]. This model selection framework [47] uses the difference in
heterogeneity between the IVW Q-statistic and the Egger Q-statistic to decide which method provides the best model to describe
the available data and hence optimizes the bias–variance trade-off.

Given the close proximity of CRP to APCS, we additionally conducted an MR analysis of CRP concentration, taking advantage
of availability of the largest CRP GWAS conducted to date [48]. The MR effect estimates of SAP and CRP were compared to ident-
ify outcomes which seemingly were affected by both proteins using a p-value of 0.05. For the subset of outcomes which seemed to
be affected by both SAP and CRP, we additionally conducted MVMR to analytically control any influence of CRP on the SAP
signal and vice versa. MVMR is similar to standard multiple regression, where multiple variables, in our case two, are included
in the same model, resulting in estimates that are mutually independent of one another [49]. Importantly, MVMR allowed us to
account for any horizontal pleiotropy that might act through CRP concentration [49]. In addition, to correct for any potential
remaining horizontal pleiotropy acting through non-CRP pathways, we applied the same model selection framework to decide
between MVMR with and without Egger correction. Where relevant, we differentiate between MVMR and regular MR results
by referring to the latter as univariable MR.

2.4. Effect estimates and multiple testing
Unless otherwise specified, all point estimates, that is, odds ratios (OR) or mean differences, refer to a unit change of the indepen-
dent variable, typically one SD in plasma protein value for MR results or an increase in number of risk alleles for GWAS
results, respectively. Results are provided with 95% confidence intervals (CI) and p-values. Significance in the GWAS analysis
was evaluated using the standard multiplicity corrected alpha, that is, the false positive rate, of 5.8 × 10−8, accounting for the esti-
mated number of independent genetic variants in the genome [50]. The MR results were tested against a Bonferroni corrected
alpha of 2.78 × 10−3, accounting for the 18 evaluated traits (Data availability section).
3. Results
3.1. Genome-wide meta-analysis of plasma SAP values
Genetic variant-specific estimates of the association with SAP values, measured by SomaLogic SomaScan assay version 4.1, were
available from three independent studies: Interval, comprising 3301 participants [24]; AGES, with 5368 [26]; and DECODE, with
35 559 [25]. The combined data identified 10 independent lead variants associating with SAP, including four cis-variants near
APCS (rs140308485, rs13374652, rs1341664 and rs78228389), as well as trans-variants on chromosomes 1, 2, 8 and 13 (figures 1 and
2; electronic supplementary material, table S1). Comparison of the genetic associations with plasma SAP and CRP values in the
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region around rs1341664, the APCS cis-variant with the strongest SAP association, indicated that these closely adjacent signals were
independent (figure 2); the Pearson correlation coefficient comparing the −log10( p-value) for each trait was −0.06, p-value < 0.001.
This was further confirmed by noting that the CRP association of the four SAP cis-variants did not reach genome-wide significance
(electronic supplementary material, table S2), with the −log10( p-value) for CRP ranging between 0.04 and 6.26. Instead, the CRP
signals were concordant with the SAP trans signals (electronic supplementary material, figure S2 and table S2).

GWAS Catalog look-ups for the effects of genetic variants in APCS identified a previously reported association with white-
matter microstructure [51] (electronic supplementary material, figure S3 and table S9). Using Open Target’s V2G algorithm the
six SAP trans-variants were mapped to the putative causal genes: C4BPB, ZNF644, IL1RN, KRTCAP3, TRIB1 and RNASEH2B
(figures 1 and 3; electronic supplementary material, tables S3–S8). Look-ups for the variants within and around the putative
trans-genes for SAP provided links with a diverse range of pathophysiology without known connections to SAP biology
(electronic supplementary material, figure S3 and table S9).
3.2. Cis-Mendelian randomization results for plasma SAP values and dementia outcomes
Cis-MR analysis detected significant associations of higher plasma SAP values with increased risk of dementia outcomes: AD (35
274 cases, odds ratio (OR) 1.07, 95%CI 1.02; 1.11, p = 1.8 × 10−3), and LBD (2981 cases, OR 1.37, 95%CI 1.19; 1.59, p = 1.5 × 10−5)
(figure 4; electronic supplementary material, table S10). A similar analysis for plasma CRP values did not identify links with
these outcomes (electronic supplementary material, table S10).
3.3. Cis-Mendelian randomization results for plasma SAP values and other outcomes
Cis-MR analysis suggested that higher plasma SAP value was associated with increased coronary heart disease risk (OR 1.03, 95%-
CI 1.01; 1.05), greater total brain volume (0.06 SD, 95%CI 0.02; 0.10), lower systolic blood pressure (SBP) (−0.16 mm Hg, 95%CI −
0.26; −0.07) and lower diastolic blood pressure (DBP) (figure 5; electronic supplementary material, table S11). By contrast, the MR
analysis of plasma CRP values showed a distinct effects profile in which higher CRP concentrations were associated with
serum concentrations of hepatocellular enzymes, with osteoarthritis and with total plasma tau concentration (figure 5; electronic
supplementary material, table S12).
3.4. Multivariable Mendelian randomization results for outcomes linked to both SAP and CRP
APCS and CRP are closely co-located on chromosome 1, potentially challenging the recognition of, and discrimination between,
more subtle apparent independent effects. We therefore identified outcomes significant at the more liberal value of p < 0.05 for both
plasma SAP and CRP values, specifically, total brain volume, plasma total tau concentration and osteoarthritis. Application of
multivariable MR (MVMR) to identify the mutually independent effects of both proteins, and accounting for potential influence
of LD, then showed that higher values of each increased circulating total tau concentration: (0.06 log2(ng l−1), 95%CI 0.03; 0.08) for
higher plasma SAP value, and (0.20 log2(ng l−1), 95%CI 0.14; 0.25) for higher plasma concentration of CRP. The MVMR analysis
did not confirm significant associations for osteoarthritis, and total brain volume (electronic supplementary material, table S13).
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4. Discussion
We report here a large-scale meta-analysis of GWAS of SomaLogic values for plasma SAP comprising 44 288 participants. We con-
firmed that the SomaLogic intensity scores for plasma SAP agree with immunoassay of actual SAP concentrations. The GWAS
results then enabled MR analysis sourcing cis-acting variants within and around APCS, the gene encoding SAP, to explore poten-
tial involvement of SAP in pathogenesis of dementia. We found that higher plasma SAP values increased the risk of AD (OR 1.07,
95%CI 1.02; 1.11, p = 1.8 × 10−3) and LBD (OR 1.37, 95%CI 1.19; 1.59, p = 1.5 × 10−5), implying that pharmaceutical depletion of SAP
might reduce the risk of both diseases. Furthermore, using MVMR to account for possible horizontal pleiotropy by plasma CRP
concentration, we also detected a significant association of higher plasma SAP values with higher total plasma tau concentration
(0.06 log2(ng l−1), 95%CI 0.03; 0.08), which is itself also associated with AD dementia [54].

The presence of SAP in all cerebral Aβ plaques and on most neurofibrillary tangles in AD, long known from immunohisto-
chemical studies, has recently been shown to strongly discriminate between AD brains and cognitively normal brains [55].
However, the present finding of significant associations between genetically determined higher plasma SAP values and increased
risk of AD and LBD is more specifically consistent with the association between neocortex SAP content and cognitive status at
death that was recently observed in the Cognitive Function and Ageing Study [18]. In this unselected, population-representative,
elderly brain donor population, the OR for dementia at death, between the top tertile and the lowest tertile of neocortical SAP
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content, was 5.24 (95%CI 1.79; 15.29). Furthermore, the association of dementia with SAP content was independent of Braak stage,
Thal phase and all other classical neuropathological hallmarks of dementia [18]. It was thus specific for abundance of SAP itself in
the neocortex rather than SAP content just being a surrogate for the Aβ amyloid and neurofibrillary tau tangle pathology which is
always present in AD and also frequently found in LBD. This SAP–dementia association, which is consistent with a possible patho-
genetic role of SAP in neurodegeneration, is now directly supported by the present MR results.

In contrast to a previously reported MR study, which did not detect an association between SAP values and AD [56], our analy-
sis was improved in multiple ways. First and foremost, instead of simply taking a single SAP GWAS, we meta-analysed combined
data from three independent studies to produce the largest GWAS of SAP values to date. This resulted in an ADMR analysis using
53 SAP variants instead of the 14 used by Yueng et al. [56]. The larger number of variants allowed us to consider outlier and lever-
age statistics, identifying and removing variants with possible horizontal pleiotropic effects, further ensuring the robustness of the
present findings. Furthermore, we performed confirmatory analyses to refute possible bias due to the location of the CRP gene
closely adjacent to APCS, and we found no meaningful overlap between the effect profiles of plasma SAP and CRP values. Similar
to the analysis by Yueng et al. [56], we conducted a two-sample MR analysis, where the exposure GWAS did not, or only partially,
overlap with the outcome GWAS. Any potential weak instrument bias will thus, on average, act towards a null effect, hence our
results are conservative. This, however, also implies that non-significant findings should not be over-interpreted as providing proof
of absence [57]. Compared to the Yueng et al. [56] analysis, we have expanded our analysis to show an association between SAP
value and LBD. Uniquely, the LBD cases were autopsy confirmed [39] and hence this MR result represents a biologically homo-
geneous disease signal. We wish to emphasize the conducted MR analyses leverage instruments within and around the SAP
encoding gene, APCS, limiting the potential for horizontal pleiotropy. This was further addressed through removal of potential
outlier variants which may reflect horizontal pleiotropy pathways, and additionally we applied statistical methods robust against
potential remaining pleiotropic variants. These methods are able to account for between-variant correlation [41], preventing erro-
neously small p-values—similar to the results one obtains using methods such as COJO [58]. Finally, we note that, under the null
hypothesis and accounting for the number of evaluated outcomes, the probability of finding an effect of plasma SAP value on AD
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in electronic supplementary material, tables S11–S12.
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as well as on LBD is equal to the square of the alpha: (2.78 × 10−3)2 = 7.73 × 10−6. The concordant findings thus strongly imply that
SAP contributes to pathogenesis of dementia.

Increased duration and/or intensity of brain exposure to SAP may be pathogenic through its direct cytotoxicity for some cer-
ebral neurones, as has been demonstrated experimentally in vitro and in vivo [13–16], and potentially also by promoting
the formation and the persistence of Aβ amyloid fibrils and neurofibrillary tau tangles. However, SAP is produced only by the
liver; it is not in the brain transcriptome [59]. Normally, the brain is strongly protected against exposure to SAP by the BBB
and by active transport back to the plasma of any SAP that leaks through [4], so that the CSF SAP concentration is about one thou-
sandth of that in the plasma [2,3]. It is therefore striking that even modestly higher plasma SAP concentrations are associated with
dementia risk. There have been very few studies of SAP concentration in paired samples of plasma or serum and CSF but in
addition to the circulating SAP concentration, BBB integrity and the efficiency of the SAP active export mechanism must affect
brain exposure to SAP. Nevertheless, across the large populations studied here, there was a significant effect of higher plasma
SAP concentration on clinical dementia outcomes.

In addition to the four cis-loci, our GWAS results identified variants mapping to genes outside APCS, including C4BPB,
ZNF644, IL1RN, KRTCAP3, TRIB1 and RNASEH2B. SAP binds specifically to C4-binding protein, encoded by C4BPB, under
particular experimental conditions in vitro [60], though no functional effect of the interaction has been reported. IL1RN, which
encodes the IL-1 receptor antagonist (IL-1RA) might have a functional effect on SAP via the acute phase response, which is
mediated by IL-1 both directly and via other pro-inflammatory cytokines. Even though human SAP is not an acute phase reactant,
its concentration does tend to rise modestly within the reference range in chronic inflammatory diseases with a sustained acute
phase response [21]. TRIB1 has diverse, wide ranging effects across many different physiological systems.

The putatively mapped SAP trans-genes have previously been variously linked to a broad range of different metabolic, cardiac
and haematological traits and to increased plasma concentrations of liver enzymes. Inclusion of these traits in our cis-MR analysis
identified an association of higher SAP values with increased coronary heart disease risk and decreased SBP and DBP, but, since
there is no known functional connection between these cardiovascular features and SAP, the protein itself is unlikely to be directly
involved. Potential pathogenetic connections have been suggested between SAP and two different, unrelated diseases, osteoar-
thritis [61] and systemic lupus erythematosus [62]. Plasma SAP concentrations were not strongly associated with lupus but
there were apparent associations between increased SAP values and some osteoarthritis outcomes (figure 5), perhaps reflecting
our conservative analyses. We also found a significant positive association between SAP and idiopathic pulmonary fibrosis,
suggesting that SAP may also have a pathogenetic role in this condition (figure 5). By contrast, osteoarthritis [63] and lupus
[64], respectively, have well-established positive and negative clinical links with CRP, and, interestingly, both were associated
with circulating CRP concentrations in the corresponding directions in the current analysis (figure 5).

Potential limitations to our study comprise, firstly, our use of SomaLogic values for plasma SAP, which are only relative inten-
sities not actual SAP concentrations. SomaLogic assays alone therefore cannot enable precise determination of the effect magnitude
relevant for potential pharmaceutical intervention, even though we rigorously demonstrated that the SomaLogic values are in
acceptably close agreement with the actual SAP concentrations measured by precise, rigorously standardized electroimmunoassay.

Secondly, previous GWAS of AD and other types of dementia have not reported APCS as a potential gene for disease onset.
However, GWAS is deliberately designed to limit detection of false positive results and may accordingly leave additional signals
undiscovered [27]. It is therefore important to emphasize that drug target MR does not require the GWAS data used for the out-
come trait to reach GWAS significance [28].

Thirdly, to prevent potential bias due to population stratification (i.e. where spurious genetic associations are detected due to
inclusion of subpopulations with distinct allele frequencies and outcome frequencies) our analysis exclusively used data from
people of European ancestries. While this partially mitigates the potential for population stratification, people of European descent
of course do not represent a homogeneous genetic population. Hence, to further address this, the SAP GWAS meta-analysis was
conducted using an additive random effects method which accounts for heterogeneous effects potentially reflecting differences in
underlying biology.

Furthermore, to identify results which may be affected by residual population stratification effects, we conducted study specific
MR analyses (leveraging genetic instruments for each individual SAP GWAS), as well as using the meta-analysed SAP GWAS.
Focusing specifically on potential difference between the two Icelandic studies (DECODE and AGES) and the British Interval
study, we did not observe results which were driven by a single population (see figures 4 and 5). Similarly, we note that the
SAP meta-analysis GWAS showed a clear cis signal for APCS, the gene encoding SAP protein, and limited trans signals. We
additionally were able to map these trans signals to genes with a plausible association with SAP values, providing further empiri-
cal support for the limited influence of potential residual population stratification.

Finally, while the present results imply that SAP depletion might reduce dementia risk, they do not indicate optimal timing for
the intervention. Neuropathological changes are well known to long precede clinically detectable cognitive loss in AD and other
dementias, so SAP depletion might be most effectively introduced prophylactically. Nevertheless, in view of the present evidence
for a causal relationship between increased circulating SAP and risk of dementia, prompt SAP depletion may protect residual
cognition at any stage.

Fortunately, the experimental drug miridesap (CPHPC; hexanoyl bis-D-proline; (R)-1-[6-[(R)-2-carboxypyrrolidin-1-yl]-6-oxo-
hexanoyl]pyrrolidine-2-carboxylic acid) [65] safely provides extremely effective SAP depletion. It reduces plasma SAP
concentration by more than 95% for as long as the drug is administered [66] and thereby removes all detectable SAP from the
CSF in patients with AD [3] and from the brain in human SAP transgenic AD model mice [67]. DESPIAD, a small, academic,
phase 2b clinical trial of SAP depletion by miridesap in established AD, is now in progress (EudraCT number 2016-003284-19)
and will report in 2025. Meanwhile, our present genetic analysis indicates that depletion of plasma SAP is expected to decrease
the risk of AD and LBD.
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4.1. Opening up
Without comprehensive elucidation of the mechanisms directly responsible for the neurodegeneration underlying most common
forms of dementia, devising and developing new disease modifying therapeutics have had little success. Our present MR study is
the genetic counterpart of a large-scale, placebo controlled, double blind, therapeutic drug trial. It has provided two clear new
messages. Firstly, there is strong, independent, genetic evidence that SAP plays a causal role in pathogenesis of AD and LBD,
thereby validating previous substantial observational studies consistent with such a role of SAP. Secondly, our unique genetic
result validates and encourages therapeutic testing of SAP depletion in these dementias and in conditions predisposing to
them. Very importantly, therapeutic SAP depletion is already available. The experimental small molecule drug miridesap very
effectively, potently and safely, depletes SAP from the blood and thereby removes all SAP from the CSF in AD patients and
from its binding to cerebral deposits of human Aβ amyloid in transgenic AD model mice. The demographic explosion of dementia
in ageing populations worldwide urgently demands optimized clinical trials of SAP depletion. Despite being notoriously slow and
expensive, clinical trials in AD will be essential and on a much larger scale than the DESPIAD exploratory trial that will report in
2025. Meanwhile, traumatic brain injury, which strongly predisposes to early onset dementia, is an attractive, potentially earlier
outcome, trial target. We have lately confirmed that there is abnormal, excess, entry and persistence of SAP, specifically localized
in/on some neurones and their processes, in contused brain after such injury [68]. In contrast to the decades of pre-clinical, pro-
dromal, neuropathology in AD and LBD, the timing of traumatic brain injury is usually precisely known and swift medical
intervention will enable immediate SAP depletion. Whether this is clinically neuroprotective will be of considerable interest.

Ethics. This work did not require ethical approval from a human subject or animal welfare committee.

Data accessibility. The SAP GWAS meta-analysis results have been deposited on figshare (rs.figshare.com). The same figshare repository also contains
the data used in the Mendelian randomization analysis, including genetic associations with the 17 clinical traits. Specifically, we leveraged data on
SAP plasma value from DECODE (https://download.decode.is/form/folder/proteomics), AGES (https://doi.org/10.5281/zenodo.5711426) [69]
and Interval (https://www.ebi.ac.uk/gwas/studies/GCST90242796). Data on CRP concentration were obtained from: https://www.ebi.ac.uk/
gwas/studies/GCST90029070. GWAS data were accessed for the following traits: Alzheimer’s disease (https://www.niagads.org/, from
Kunkle et al.), Lewy body dementia (https://www.ebi.ac.uk/gwas/publications/33589841), osteoarthritis (https://www.ebi.ac.uk/gwas/publi-
cations/30664745), systemic lupus erythematosus (https://www.ebi.ac.uk/gwas/publications/26502338), idiopathic pulmonary fibrosis
(https://pubmed.ncbi.nlm.nih.gov/33197388/), systolic/diastolic blood pressure (https://www.ebi.ac.uk/gwas/publications/30224653), coron-
ary heart disease (https://www.ebi.ac.uk/gwas/publications/36474045), type 2 diabetes (http://diagram-consortium.org/downloads.html,
from Mahajan et al.), liver enzymes (https://www.ebi.ac.uk/gwas/publications/33972514 and https://www.ebi.ac.uk/gwas/publications/
33547301), brain volume (https://ctg.cncr.nl/software/summary_statistics, from Jansen et al.), cerebral white matter hyperintensities (https://
www.ebi.ac.uk/gwas/publications/26674333), circulating total tau values (https://www.ebi.ac.uk/gwas/publications/35396452). All data
needed to evaluate the conclusions in the paper are present in the paper and the electronic supplementary material [70].
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