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Abstract
Dual-energy CT stands out as a robust and innovative imaging modality, which has shown impressive advancements and 
increasing applications in musculoskeletal imaging. It allows to obtain detailed images with novel insights that were once the 
exclusive prerogative of magnetic resonance imaging. Attenuation data obtained by using different energy spectra enable to 
provide unique information about tissue characterization in addition to the well-established strengths of CT in the evaluation 
of bony structures. To understand clearly the potential of this imaging modality, radiologists must be aware of the technical 
complexity of this imaging tool, the different ways to acquire images and the several algorithms that can be applied in daily 
clinical practice and for research. Concerning musculoskeletal imaging, dual-energy CT has gained more and more space for 
evaluating crystal arthropathy, bone marrow edema, and soft tissue structures, including tendons and ligaments. This article 
aims to analyze and discuss the role of dual-energy CT in musculoskeletal imaging, exploring technical aspects, applications 
and clinical implications and possible perspectives of this technique.
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Introduction

The introduction of dual-energy CT (DECT) technology has 
started a new phase in CT imaging characterized by preci-
sion and versatility. The pioneers and theorists of DECT 
were initially Godfrey Hounsfield in 1973 and then Alvarez 

and Macovski in 1976, who described, respectively, how 
two different images could be acquired in the same slice at 
100 kV and 140 kV and how from the polychromatic X-ray 
spectrum it would be possible to obtain energy-dependent 
information by separating the measured attenuation coeffi-
cients [1–3]. This intuition then evolved into the elaboration 
and subsequent development of modern CT platforms with 
dual energy sources.

The focal and most innovative point of DECT is precisely 
the use of two energy spectra of X-rays whom elaboration 
allows obtaining essential clinical information in several set-
tings [4–6].

A relevant possible application of DECT is oncology, in 
which the advantages are represented by a better characteri-
zation of tumor tissues. This potential lies in the capabil-
ity of DECT to differentiate between healthy and diseased 
parenchyma [7]. Through the reconstruction of iodinated 
maps DECT permits to visualize the vascularization of the 
neoplasm in a more reliable approach and therefore allow-
ing a more adequate characterization of the lesions after 
chemotherapy or antiangiogenic therapy [8–12]. Similarly, 
in cardiovascular imaging, it has been demonstrated that 
DECT permits a reliable assessment of coronary pathology 
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through the detection of coronary plaques, myocardial perfu-
sion defects and myocardial scar tissue [13–16], all crucial 
elements in risk stratification and patient management.

DECT has spread like wildfire also due to the limits of its 
direct competitor, single-energy CT (SECT). Indeed, SECT 
is based exclusively on a single energy spectrum of X-rays. 
When tissues show overlapping attenuation values, SECT 
may struggle to provide the clear differentiation needed 
for a precise diagnosis [17]. This may lead to diagnostic 
challenges when attempting to characterize focal lesions, 
evaluate vascular conditions, or identify materials within the 
body. Additionally, SECT is more prone to artifacts, streak-
ing, and beam dispersion, which are common problems that 
can compromise image quality of SECT [18]. Over the last 
years, an increasing application of DECT is musculoskeletal 
imaging [19, 20]. This paper is aimed to analyze the current 
and major applications of DECT in musculoskeletal disor-
ders analyzing technical aspects and possible perspectives 
of this imaging modality.

Technical considerations

DECT involves the use of both low and high energy spec-
tra to decompose the material [21]. Usually, the two energy 
spectra are around 80–90 kV and 140–150 kV, respectively. 
The principles underlying DECT are mainly represented 
by the photoelectric effect, which is related to the X-ray 
beam energy and the atomic number of tissues, and Comp-
ton effects, which depends on tissue electronic density. The 
combined information from these two effects retrieved by 
applying low and high energy levels allows to improve the 
understanding of tissues properties.

The acquisition of DECT images has been performed in 
various ways and is classically divided as source- or detec-
tor-based. The former can be distinguished in dual-source 
DECT, fast kilovolt switching, and sequential acquisition. 
Dual source DECT involves the use of two tubes and related 
detectors set at different kV (typically 80 and 140) with the 
concurrent activation of both tubes [22]. The fast kilovolt 
switching approach consists of just one rotation of the tube 
that rapidly changes voltage in a very short time (< 0.2 ms), 
switching from low to high kVp values [22, 23]. The sequen-
tial acquisition approach is among the first methods intro-
duced in DECT technology, which consists in the acquisition 
of data at low-kVp and a subsequent acquisition at high-kVp 
values [24]. So different methods of images acquisition can 
be based on DECT source. For what concerns detector-
based acquisition we find dual-layer detector (DLCT) and 
photon-counting detectors (PCCD). DLCT is designed as 
a conventional single energy source (tube voltage ranging 
from 100 to 140 kVp) and a layered detector. The inner and 
outer layers consist of zinc selenide or cesium iodide crystals 

and gadolinium oxysulfide, respectively, absorbing low-
energy and high-energy photons [25]. PCCD are the latest 
advancement of currently available CT technology and may 
represent the new frontier for CT imaging, being capable 
of assessing more than two different energy levels. These 
detectors made by semiconductors materials allow convert-
ing the radiation energy into electrical signal, resulting in a 
significant reduction of electronic noise and the possibility 
to better discriminate different energies by application of 
specific thresholds [26]. PCCD may allow to overcome some 
limitations of standard CT like by removing electronic noise, 
increasing spatial resolution, small low-contrast structures 
detection and image quality in contrast-enhanced examina-
tions, also providing useful spectral information. Among the 
potential challenges of PCCD the cost is certainly non-neg-
ligible as well as the urge of highly performing algorithms 
and software that will be able to process the huge amount of 
data provided by this imaging modality.

DECT algorithms

A panel of images is produced from the different energy 
sources. Higher soft tissue contrast is provided by the low 
energy set with lower noise using the high energy set. In 
DECT, dual-energy data acquisition is just the starting point 
of the imaging process, followed by post-processing data 
to extract valuable information and to improve diagnostic 
capabilities. A series of DECT algorithms can be applied 
and might be helpful for musculoskeletal imaging. Nota-
bly, virtual non-contrast (VNC) imaging is a post-process-
ing method utilized to create "unenhanced" images from 
through the subtraction of iodine. Indeed, the iodinated 
contrast can be removed, making the acquisition of a basal 
phase unnecessary, thus reducing radiation exposure [27]. 
Iodine quantification is another specific application enabled 
by post-processing. DECT may enable to quantify the con-
centration of iodine in tissues, offering information on blood 
perfusion and identifying areas of increased iodine absorp-
tion, as observed in tumors [28]. Color-coded Virtual Non-
calcium (VNCa) images have proven to be reliable for the 
visualization of bone marrow edema (BME) and soft tissue 
structures (Fig. 1). These reconstructions have also enhanced 
the identification of bone marrow infiltration by tumors. A 
further feature of DECT in post-processing is the creation 
of virtual monoenergetic images (VMI) at several energy 
levels. The VMI concept relies on the variation of materials 
attenuation with X-ray energy. By combining information 
from both energy levels, VMI can be generated at a specific 
virtual energy level [29]. Last, DECT images quality is fur-
ther enhanced in post-processing phase reducing artifacts 
and ensuring that the final images are of the highest diagnos-
tic quality, for instance, decreasing metal-related artifacts, 
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image registration to reduce motion artifacts, filters for noise 
reduction [30].

Musculoskeletal applications

In musculoskeletal imaging, DECT may have a pivotal role 
in different clinical scenarios. Some of them are already con-
solidated applications of this imaging modality.

Metal artifact reduction technique

Metal artifact reduction is a crucial point for musculoskel-
etal radiologists who routinely deal with patients presenting 
metal implants [31]. In this setting, metal-related artifacts 
can make challenging detection and evaluation of peripros-
thetic fractures, infection, pseudotumor, implant failure, dis-
location, and rupture [32]. Traditionally, CT images expe-
rience quality deterioration because of heightened beam 
attenuation from metal implants. Currently, metal artifact 
reduction (MAR) techniques have been applied, for instance, 
iterative reconstruction (IR) algorithms. MAR algorithms 
select the corrupted data due to metal element, consequently 
replacing these data with interpolated data of neighboring 
detectors [33]. MAR approach is highly effective when huge 
dealing with huge amount of metal, but secondary artifacts 
may be generated. DECT offers new possibilities by using 
two different energy levels to reduce image degradation. 

VMIs are acquired through two different energy levels using 
DECT. The beam with higher energy undergoes reduced 
attenuation and consequently less beam hardening, whereas 
the lower energy beam delivers superior contrast for soft 
tissues, with an optimal balance between 105 and 130 kV 
[34, 35]. Lee et al. investigated the capability of decreas-
ing artifacts of DECT by studying 40 subjects with metal-
lic implants using post-processing with monoenergetic data 
obtained at 70 keV and 150 keV; images were compared to 
conventional CT performed on 40 controls matched [36]. 
Conventional CT presented much lower (p < 0.001) values 
within the fat (− 301 HU vs. − 115 HU) and muscles (− 405 
HU vs. − 96 HU) covering the metal, substantial lower sig-
nal-to-noise ratio and quality of images compared to High-
kV DECT reconstruction, even with slightly higher radiation 
dose (about 14 mGy and 19 mGy, respectively, p = 0.08) [36, 
37]. Donders investigated 41 subjects with suspected non-
union surgically treated with internal fixation through posi-
tioning of metallic implants [38]. Low-kV DECT showed 
significant (p < 0.001) lower images quality and confidence 
of the readers than high-kV DECT, also with higher rate of 
false-negatives (p = 0.283). Barreto et al. performed a com-
parison of image quality of six cadavers with bony metallic 
implants examined through MAR algorithm, conventional 
CT, and DECT [39]. In all scans, MAR was favored over 
traditional CT, whereas traditional CT was favored over 
DECT. Due to the diminished soft tissue contrast and per-
sistent artifacts with DECT, assessing surrounding structures 

Fig. 1  Lumbar spine images of a 58-year-old man with low back 
pain. Standard sagittal unenhanced CT a show L4/L5 degenerative 
spondylolisthesis, with L3/L4 and L4/L5 lumbar disk protrusions 

and L5/S1 disk herniation (arrows). Disk protrusions and herniation 
are better depicted on sagittal VNCa DECT image (b) and sagittal 
T2-weighted MRI image (c)
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posed challenges. In the case of the cervical spine, DECT 
was the only scenario where it lessened the intensity of metal 
artifacts and enhanced the clarity of all structures. Accord-
ing to their conclusions, MAR proved to be more efficient 
in minimizing metal artifacts compared to DECT. Neverthe-
less, it was noted that different artifacts with slight streaking 
appeared on MAR images. In cases where the implant is 
relatively compact, DECT might outperform MAR without 
introducing different artifacts [39]. Also, it seems that the 
amalgamation of VMI and MAR yielded the most significant 
artifacts [37]. Indeed, VMI is particularly useful for evaluat-
ing the metal–bone interface and for reducing hyperdense 
artifacts, with the iterative MAR approach being able to 
improve the assessment of soft tissues reducing hypodense 
artifacts. Of note, there is no standardized optimal VMI 
energy level to decrease metal-related artifacts, given that 
it depends on the metal alloy, shape and geometry of the 
metal components.

Gout imaging—urate detection

DECT has been documented to exhibit higher sensitivity 
(up to 89%) and specificity (up to 100%) to reach the diag-
nosis of gout when compared with other imaging modali-
ties [40–43]. The use of DECT is opening the possibilities 
of new diagnostic scenarios by identifying, mapping, and 
monitoring crystal deposits [43]. DECT takes advantage 
of the different Dual energy index (DEI) of calcium and 
urate. Once these materials have been differentiated, each 
can be uniquely color-coded (Fig. 2). As a matter of fact, 
the technological advancements of DECT and validation of 
dedicated gout-tools resulted in a robust imaging modal-
ity that has been included in the 2015 Gout classification 
criteria [44]. Furthermore, the accuracy of DECT for gout 
diagnosis can be substantially different in different phases 
of the disease. In fact, while it reaches accuracy of 100% 
in active phase of chronic gout with arthritis and tophus, it 

results positive in 36–80% of patients with acute sympto-
matic gout flare (< 6 weeks) and in 62–100% of symptomatic 
patients with intercritical gout (less than 3 years) [45]. Of 
note, radiologists must be aware of possible artifacts when 
utilizing DECT gout protocols. One of the main studies on 
artifacts related to the study of gout in DECT was conducted 
by Mallinson et al. who analyzed DECT of 50 subjects with 
presumed gout in order to stratify the most frequent types 
of artifacts evaluating multiple joints [46]. Artifacts were 
observed in 90% of scans including:

Nail bed artifacts these artifacts can be observed in 
the nails of the feet (88% of subjects) with less fre-
quency in the hands (4 % of subjects). The most plau-
sible explanation was the similarity of DEI values of 
keratin and monosodium urate.
Skin artifacts these artifacts, again, were common 
in the feet (about 40% of cases) but less in the hands 
(about 4% of cases). No skin artifacts were found on 
the knees or elbows. One reason may be the greater 
amount of calloused skin in the foot. However, these 
artifacts were observed old scanners images, hav-
ing become negligible over time in the most recent 
machines.
Submillimeter artifacts believed to be a form of noise. 
However, it is necessary to be aware of their verac-
ity and to consider them as gouty deposits if they are 
found in an anatomical structure such as in tendons. 
Again, this issue has been overcome in the most recent 
scanners.

Anyway, despite these artifacts can be encountered in 
DECT gout protocols, they are readily recognized, so false-
positive findings quite rare. A further artifact was found in 
the study corresponding to the calcific vessels. Three out of 
four patients with this type of artifact showed further similar 
artifacts at the level of the arteries of the lower limbs, sug-
gesting a possible meaning of gouty deposit, the statistical 

Fig. 2  Acute ankle pain in 72-year-old male patient with gout. Lateral 
X-ray view a shows osteoarthritis of the tibio-talar and first metatar-
sophalangeal joints. Post‐processed sagittal average intensity projec-

tion (b) and volume-rendered (c)  color-coded DECT images show 
urate deposits colored in purple
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significance of which, however, could not be demonstrated 
due to the small sample. Indeed, it has been postulated 
that urate might contribute to the dysfunction of vascular 
endothelium [47].

Some limitations of DECT in gout imaging must be 
pointed out. In addition to the abovementioned artifacts, 
time-consuming post-processing, and non-negligible radia-
tion exposure, DECT is not able to detect crystal deposits 
smaller than 2 mm located over the cartilage or within the 
effusion [48]. Then, it is less sensitive than MRI and ultra-
sound in detecting synovitis, tenosynovitis, and BME [49, 
50]. Last, its accuracy decreases in deeper joints (i.e., spine 
or hip) due to the poor penetration of low voltage beam.

Calcium pyrophosphate dehydrate disease (CPPD)

Pseudogout is an arthropathy presenting with the deposi-
tion of calcium pyrophosphate dehydrate (CPPD) crystals in 
joints and neighboring tissues. This condition, also named 
pseudogout, may be suspected when chondrocalcinosis is 
identified on X-ray images, and arthrocentesis may aid in 
confirming the diagnosis. The diagnosis of pseudogout can 
be reached when joint and neighbor soft tissues mineral 
deposits without MSU are detected by DECT. This imaging 
modality proved to be valuable in pseudogout given that 
it is able to depict and quantify CPPD crystals. DECT has 
shown 78% sensitivity in detecting CPPD deposits, surpass-
ing that of X-ray (44%) [51]. Although DECT may not be 
the optimal choice for early identification of CPPD deposits, 
it is believed to offer higher diagnostic performance than 
conventional CT [52].

Bone marrow edema detection

Conventional CT remains inadequate to identify BME, 
which has always been exclusive prerogative of MRI 
[53–58]. VNCa DECT algorithm allows to eliminate the 
contribution of calcium to attenuation values of the bone 
[59, 60]. Notably, VNCa imaging may have some struggles 
in detecting subcortical changes making challenging the 
identification of subchondral edema due to osteochondral 
lesions [61]. Cavallaro et al. in a study on the column of 
88 patients have highlighted the advantages of DECT over 
MRI in the context of post-traumatic BME. DECT has been 
shown to have the ability to identify BME that is compa-
rable to MRI with the advantage of being able to make the 
fracture line more visible (Fig. 3). DECT has been shown to 
be highly accurate for depicting BME presence and amount, 
with about 85–90% sensitivity and 98% specificity, also with 
significantly higher diagnostic confidence when compared 
with MRI (p < 0.001). Furthermore, a threshold of -0.43 
Hounsfield yielded a 89% sensitivity and 90% specificity of 
90% in identifying BME, resulting in an overall 0.96 area 
under the receiver operating characteristic curve [62].

DECT has widely been used to diagnose BME mostly 
in traumatic settings, but some studies have also proven 
the applicability of DECT on the depiction of BME in 
non-traumatic subjects. Chen et al. recently published a 
meta-analysis and review including ten papers including 
a total of 2463 anatomic regions in non-traumatic patients, 
yielding overall 88.4% sensitivity, 96.1% specificity, and 
0.98 area under the receiver operating characteristic curve 
for the detection of BME [63]. In a study conducted on 

Fig. 3  Traumatic tibial fracture in a 32-year-old woman.  Coro-
nal (a) and axial (b) fat-suppressed proton density weighted images 
show diffuse bone edema of lateral tibial plateau (arrows). Coronal 
reformat (c) and axial (d) standard CT images seem to show bone 

impaction of lateral tibial plateau as subtle subchondral hyperdensity 
(arrows), while the corresponding coronal (e) and axial (f) virtual 
noncalcium DECT images clearly demonstrate bone edema (arrows)
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the lower limbs of 44 patients suspected of having osteo-
myelitis, Foti et. al reported about 90% sensitivity and 
80% specificity values of DECT in the detection of BME 
[64]. Furthermore, in a study of 40 subjects with presumed 
sacroiliitis, Chen et al. obtained about 77% sensitivity and 
90% specificity [65]. The diagnostic performance in the 
identification of BME in post-traumatic and non-traumatic 
musculoskeletal pathology of the main studies is in line. 
DECT presents itself as an excellent radiological diagnos-
tic alternative in those musculoskeletal clinical conditions 
predisposing to BME: avascular necrosis, infection, stress 
fractures and bone tumors [63].

As abovementioned for deeper anatomic structures, 
also BME detection may be challenging in larger patients. 
In these cases, 100 kVp should be applied for the lower-
energy acquisition when a dual-source system is available, 
while patients over than 120–125 kg should not be investi-
gated with single-source systems [66]. Then, all processes 
altering the attenuation of the bone marrow, like normal 
red marrow or marrow hyperplasia with phenomenon of 
marrow conversion, might be misinterpreted as BME. 
Hence, training is essential for a correct interpretation of 
BME in DECT and comparison with the contralateral side 
(i.e., for pelvis and limbs) may be helpful.

Ligaments and tendons

Ultrasound and MRI are well-established modalities to 
image soft tissue structures [67–71]. Nevertheless, DECT 
can be used as a complementary imaging modality. DECT 
can be employed to distinguish collagenous structures in 
soft tissues based on their comparatively high density and 
DUAL-energy indices (DEIs) by using a specific algorithm 
for tissue decomposition. So, tendons and ligaments can 
be identified and then color-coded to be integrated with 
gray-scale images, aiding in the identification of patho-
logical changes [19]. DECT has proven to be an interesting 
alternative technique for the visualization of tendons and 
ligaments, with promising data concerning its capability to 
detect soft tissues injuries, especially in the emergency set-
ting [72]. Liu et al. investigated 51 subjects and 102 knees, 
focusing on anterior cruciate ligament, has strengthened 
the literature which highlights how in acute cases, where 
MRI has some limitations in the evaluation of ligament 
structures, DECT represents a valid opportunity. Overall, 
DECT had excellent performance in detecting anterior cru-
ciate ligament status with sensitivity, specificity, positive 
predictive value, negative predictive value, and accuracy 
of 97–98%, with no different accuracy when compared 
with MRI (p > 0.99) (Fig. 4) [73]. The authors used MRI 
and arthroscopy as reference for evaluating the diagnostic 
performance of DECT.

Detection of bone lesions

Despite other imaging modalities have been traditionally used 
for this purpose [74–78], different ways may be used to detect 
bone metastases or locations of multiple myeloma through 
DECT. Standard CT is generally applied to identify metastatic 
lesions or bony localizations of hematological malignancies. 
CT has limited sensitivity for bone lesions, particularly when 
they present similar density of normal bone. DECT may help 
to discriminate the attenuation values of normal bone from 
those of malignancies at different energy spectra given that 
metastases and hematological proliferative disorders show 
different tissue compositions with respect to normal bone 
marrow. DECT can identify these subtle differences using 
quantitative tissue decomposition, which involves mathemati-
cal algorithms and analysis techniques that use the acquired 
DECT data to calculate the proportions or concentrations of 
different materials within a given voxel or region of interest. 
These algorithms are able to estimate the relative amounts of 
different components. In metastases, neoplastic tissues infil-
trate the bone marrow with increased water content related to 
the high vascular permeability of malignancies [79]. Malig-
nant lesions often exhibit heterogeneous compositions with 
varying densities and vascularity. DECT can identify areas 
of necrosis, hemorrhage, and calcification within the lesion, 
which are more commonly associated with malignancy. 
Benign lesions, on the other hand, tend to have more uniform 
compositions without significant necrosis or vascularity [80, 
81]. As a matter of fact, DECT increases tumor conspicuity, 
especially of focal bone isodense lesions, that might result in 
improved tumor detection in CT scans. It would be particularly 
worthful in follow-up of cancer patients. Furthermore, quanti-
tative analysis of material decomposition images may provide 
valuable insights into changes in lesion composition, volume, 
or vascularity, aiding in the assessment of responses to therapy. 
Differently, qualitative tissue decomposition can be used in 
DECT to better depict cortical and trabecular bone, even sub-
tracting these tissues thereby making tumors more evident. In a 
previous study, sensitivity of CT for bone metastases increased 
from 76–80% to 87–93% by using DECT-derived color maps 
[82]. In this regard, a potential pitfall could be related to cor-
tical lesions, given the limit of DECT in removing calcium 
components, but these tumors are generally easily recognized 
on standard CT. Another pitfall could be the misinterpretation 
of focal red marrow hyperplasia or atypical hemangiomas that 
may decrease the specificity of DECT. Then, VNC imaging 
and iodine mapping can be helpful tool for the identification 
of iodine containing lesions by iodine subtraction. The better 
iodine enhancement observed by iodine density maps in high 
density structures like bones is indeed an advantage of DECT 
for the identification of enhancing tumors [83]. Hence, VNC 
imaging may improve the sensitivity of CT in depicting bone 
metastases [84]. Iodine mapping and attenuation quantification 
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have been shown to be helpful in a retrospective study includ-
ing about 700 bone metastases on chest DECT done on 54 sub-
jects, in which DECT found more than 90% of skeletal metas-
tases confirmed on technetium-99 bone scan [85]. Another 
interesting point is the opportunity to differentiate peri-skeletal 
tissues extension from reactive edema by highlighting the dif-
ferent iodine concentration and slope curve [86]. Qualitative 
analysis of DECT images on VNCa images has shown to 
increase the diagnostic performance of DECT if compared 
to monoenergetic CT [83]. Bone metastases and myeloma 
present as hyperattenuating lesions on VNCa. A drawback 
of VNCa images in myeloma is that locations of disease can 
be hardly differentiated from reactivated marrow, with VNCa 
being more accurate in bone with poor red marrow.

Conclusion

In summary, DECT stands out as a robust and adaptable 
imaging technique, demonstrating notable progress in mus-
culoskeletal imaging. Its capacity to generate high-quality 
images with similar radiation exposure to CT positions 
it as a robust resource for radiologists, particularly as a 

complementary imaging modality in acute scenarios and 
oncologic settings in addition to MRI. Within the musculo-
skeletal system, DECT is highly regarded to image crystal 
arthropathies, BME identification, and mitigating artifacts 
related to metallic implants. As technology advances and 
new techniques emerge, it is reasonable that DECT will 
be a more and more indispensable imaging modality for 
radiologists.
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