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Prediction of hematoma expansion 
in spontaneous intracerebral 
hemorrhage using a multimodal 
neural network
Satoru Tanioka 1,2*, Orhun Utku Aydin 1, Adam Hilbert 1, Fujimaro Ishida 3, Kazuhiko Tsuda 4, 
Tomohiro Araki 5, Yoshinari Nakatsuka 5, Tetsushi Yago 3, Tomoyuki Kishimoto 4, 
Munenari Ikezawa 5, Hidenori Suzuki 2 & Dietmar Frey 1,6

Hematoma expansion occasionally occurs in patients with intracerebral hemorrhage (ICH), associating 
with poor outcome. Multimodal neural networks incorporating convolutional neural network (CNN) 
analysis of images and neural network analysis of tabular data are known to show promising results in 
prediction and classification tasks. We aimed to develop a reliable multimodal neural network model 
that comprehensively analyzes CT images and clinical variables to predict hematoma expansion. We 
retrospectively enrolled ICH patients at four hospitals between 2017 and 2021, assigning patients 
from three hospitals to the training and validation dataset and patients from one hospital to the test 
dataset. Admission CT images and clinical variables were collected. CT findings were evaluated by 
experts. Three types of models were developed and trained: (1) a CNN model analyzing CT images, 
(2) a multimodal CNN model analyzing CT images and clinical variables, and (3) a non-CNN model 
analyzing CT findings and clinical variables with machine learning. The models were evaluated on the 
test dataset, focusing first on sensitivity and second on area under the receiver operating curve (AUC). 
Two hundred seventy-three patients (median age, 71 years [59–79]; 159 men) in the training and 
validation dataset and 106 patients (median age, 70 years [62–82]; 63 men) in the test dataset were 
included. Sensitivity and AUC of a CNN model were 1.000 (95% confidence interval [CI] 0.768–1.000) 
and 0.755 (95% CI 0.704–0.807); those of a multimodal CNN model were 1.000 (95% CI 0.768–1.000) 
and 0.799 (95% CI 0.749–0.849); and those of a non-CNN model were 0.857 (95% CI 0.572–0.982) and 
0.733 (95% CI 0.625–0.840). We developed a multimodal neural network model incorporating CNN 
analysis of CT images and neural network analysis of clinical variables to predict hematoma expansion 
in ICH. The model was externally validated and showed the best performance of all the models.
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Spontaneous intracerebral hemorrhage (ICH) is a severe form of stroke with a high mortality  rate1. In its early 
clinical stage, 20–30% of patients experience hematoma expansion, leading to neurological deterioration or the 
need for surgical  treatment2,3. Accurate stratification of expansion risk on admission therefore guides patient 
management, including admission to the intensive care unit and transfer from remote areas to specialist care.

CT image analysis plays an important role in predicting hematoma expansion. Several CT findings, such 
as blend sign or intrahematoma hypodensities, have been identified as potential indicators of hematoma 
 expansion4–10. Scoring systems incorporating both CT findings and clinical variables have also been  proposed11–13. 
However, their sensitivity and C-statistics have been found to be low to moderate in external validation and 
remain unsatisfactory for clinical  application14–16. Machine learning models based on CT findings and clinical 
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variables have been proposed, demonstrating superior predictive ability compared to the traditional scoring 
 systems14,17. However, a major drawback of both the scoring systems and machine learning models is that pre-
diction requires CT findings to be evaluated by human experts.

Recently, a convolutional neural network (CNN) has been applied to image analysis in  ICH18–23, with superior 
predictive ability of hematoma expansion compared to previously proposed CT findings and scoring  systems18. 
CNNs can directly interpret the image data without the evaluation of human experts, overcoming the drawbacks 
of the scoring systems and machine learning models. Furthermore, in other fields, a multimodal neural network 
that combines CNN analysis of images and neural network analysis of clinical information such as age, sex, 
medical history, etc. has been introduced for disease type or risk classification tasks, which has demonstrated 
better performance than CNN analysis of images  alone24,25.

Here, we hypothesized that it would be feasible to create a multimodal neural network model incorporating 
CNN analysis of CT images on admission and neural network analysis of clinical variables to predict hematoma 
expansion in acute ICH, and that the model would outperform CNN analysis of CT images alone and be superior 
to machine learning analysis of CT findings and clinical variables.

Methods
Patients
We retrospectively reviewed consecutive patients with spontaneous ICH, aged ≥ 18 years, admitted to a univer-
sity hospital and three community hospitals in Japan between January 2017 and December 2021. Patients were 
included if they underwent a baseline CT scan with a thickness of 2.0 mm or less within 24 h of onset and a 
follow-up CT scan within 30 h of the baseline CT scan. Patients were excluded if they had a secondary cause of 
ICH (e.g., tumor, aneurysm, arteriovenous malformation, arteriovenous fistula, and hemorrhagic transformation 
of ischemic infarction), head trauma, or surgical hematoma evacuation before the follow-up CT scan, or if they 
had missing data. Patients from a university hospital and two community hospitals were assigned to training 
and validation dataset, while patients from the other community hospital were assigned to a test dataset (Fig. 1).

This study was approved by the following institutional review boards: Mie Chuo Medical Center institutional 
review board [permit number: MCERB-202321], Matsusaka Chuo General Hospital institutional review board 

• CT slice thickness > 2mm, n=207
• Baseline CT at > 24 hours of onset, n=48
• Unknown onset time, n=384
• No follow-up CT or follow-up CT at > 30 hours after baseline CT, n=155
• Secondary cause of ICH, n=64
• Surgical treatment before follow-up CT, n=146
• Insufficient data, n=59

Screened ICH patients
for eligibility, n=1336

Included for the study,
n=273

Training and validation dataset

Excluded, n=1063

• CT slice thickness > 2mm, n=9
• Baseline CT at > 24 hours of onset, n=4
• Unknown onset time, n=112
• No follow-up CT or follow-up CT at > 30 hours after baseline CT, n=23
• Secondary cause of ICH, n=6
• Surgical treatment before follow-up CT, n=41
• Insufficient data, n=11

Screened ICH patients
for eligibility, n=312

Included for the study,
n=106

Test dataset

Excluded, n=206

Figure 1.  Flow diagram of patient selection. ICH = intracerebral hemorrhage.
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[permit number: 325], Suzuka Kaisei Hospital institutional review board [permit number: 2020-05], and Mie 
University Hospital institutional review board [permit number: T2023-7]. Because this was a retrospective study, 
separate informed patient consent was waived by the following institutional review boards: Mie Chuo Medical 
Center institutional review board [permit number: MCERB-202321], Matsusaka Chuo General Hospital insti-
tutional review board [permit number: 325], Suzuka Kaisei Hospital institutional review board [permit number: 
2020-05], and Mie University Hospital institutional review board [permit number: T2023-7]. All study protocols 
and procedures were conducted in accordance with the Declaration of Helsinki. This manuscript was prepared 
according to the standards for reporting of diagnostic accuracy (STARD) statement.

Clinical variables
Demographic and clinical data on admission were collected. The following variables were recorded: age, sex, 
medical history (hypertension, diabetes mellitus, dyslipidemia, ICH, cerebral infarction, and ischemic heart 
disease), anticoagulant use, antiplatelet use, systolic and diastolic blood pressure, Glasgow Coma Scale, white 
blood cell count, hemoglobin, platelet count, prothrombin time-international normalized ratio (PT-INR), serum 
creatinine, serum total bilirubin, and time from onset to baseline CT scan.

Image acquisition and segmentation
CT scans were performed in the supine position at 120 kVp with a thickness of 0.5–2.0 mm and an image shape 
of 512 × 512 or greater; the images were exported as original images in the Digital Imaging and Communica-
tions in Medicine (DICOM) format. For baseline and follow-up CT scans, intraparenchymal hematomas were 
manually segmented by two raters, board-certified stroke specialists with more than 15 years of experience, using 
3D Slicer, with hematoma volumes calculated by planimetry (Fig. 2). Intraventricular hematomas were neither 
segmented nor included in the hematoma volume. Hematoma expansion was defined as a volume increase 
between baseline and follow-up CT scans greater than 6  cm3 or 33% of baseline  volume11–13,15,16. According to 
this definition, all the patients were labeled as having hematoma expansion or no hematoma expansion. On the 
baseline CT, segmented areas were marked with a value of 1 and other areas were marked with 0; the images 
were exported as masked images in DICOM format for the CNN analysis (Fig. 2).

Evaluation of CT findings at baseline
As CT findings in predicting hematoma expansion, blend sign, intrahematoma hypodensities, and irregular 
shape were evaluated. Blend sign was defined as the blending of a relatively hypoattenuating area with an adjacent 
hypoattenuating area within the  hematoma6,7,9. Intrahematoma hypodensities were defined as the presence of 
any hypodense region encapsulated within the hematoma and separated from the surrounding  parenchyma7,10. 
Irregular hematoma shape was defined as having 2 or more edge  irregularities4,5,7. These were assessed indepen-
dently by two raters; prior to assessment, the raters were trained using at least 10 patients with ICH that were 
not included in this study. In case of disagreement, the findings were reassessed by both raters together until 
a consensus was reached. Hematoma location and intraventricular hematoma extension were also evaluated.

Figure 2.  Baseline (a) and follow-up (b) CT images of a case with hematoma expansion. Intraparenchymal 
hematomas were manually segmented (green areas), with hematoma volumes computed by planimetry. (a) For 
baseline images, segmented areas were marked as 1 and other areas were marked as 0, which were exported as 
masked images.
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Statistical analysis
Categorical variables were summarized as counts with percentages and compared using Fisher’s exact test. 
Continuous variables were summarized as mean with standard deviation or median with interquartile range 
and compared using Student’s t-test or Mann–Whitney U-test, depending on the distribution of the variable 
assessed by the Shapiro–Wilk test. Sensitivity, specificity, accuracy, and area under the receiver operating curve 
(AUC) were calculated along with the 95% confidence intervals derived from the actual and predicted labels. P 
values less than 0.05 were considered significant. Statistical analyses were performed using EZR (Saitama Medical 
Center, Jichi Medical University, Saitama, Japan)26.

Designing models for prediction
Three types of models were designed to predict hematoma expansion: (1) a CNN model, (2) a multimodal CNN 
model, and (3) a non-CNN model. A CNN model used CT images as input. A multimodal CNN model used CT 
images and clinical variables as input, combining CNN analysis of CT images and neural network analysis of clin-
ical variables. A non-CNN model used human-assessed CT findings and clinical variables as input, which were 
analyzed with machine learning. For each type, several models were devised with different algorithm or input.

CNN Model 1 used unmodified original CT images as input. CNN Model 2 used only intraparenchymal 
hematoma images, which were generated from original and masked images (Fig. 3).

Multimodal CNN Model 1 used all available clinical variables as one input. For Multimodal CNN Model 2, 
we first analyzed all clinical variables with univariate analyses between expansion and no expansion cases in the 
training and validation dataset, and used the clinical variables associated with hematoma expansion with statis-
tical significance. For both models, the original images or the intraparenchymal hematoma images, whichever 
performed better in the comparison between CNN Model 1 and 2, were used as the other input.

Non-CNN Model 1 and 2 employed k-nearest neighbors as algorithm, while Non-CNN Model 3 and 4 
employed fully connected neural network. Non-CNN Model 1 and 3 used all available CT findings and clini-
cal variables as input, whereas non-CNN Model 2 and 4 used CT findings and clinical variables significantly 
associated with hematoma expansion in univariate analyses between expansion and no expansion cases in the 
training and validation dataset.

Preprocessing
All processing was done with Keras (version 2.12.0), a deep learning application programming interface in 
Python, running with 40 GB of GPU memory. All of the code in this study is available on GitHub (https:// github. 
com/ AI- neuro surg/ Multi modal- netwo rk- for- predi cting- hemat oma- expan sion- in- ICH).

For clinical variables, standardization was first performed for continuous variables in the training and valida-
tion dataset. Standardization of the test dataset was then performed based on the mean and standard deviation 
in the training and validation dataset.

Prior to image processing, all DICOM files were converted to Neuroimaging Informatics Technology Initiative 
(NIfTI) files. Preprocessing for CNN was performed separately for original and masked images. For the original 
images, the following steps were executed: (1) density scaling, (2) reslicing, (3) pixel size unification, and (4) 
resizing. First, after extracting the brain and hematoma by thresholding the Hounsfield units between 0 and 100, 
the pixel values were scaled between 0 and 1 by dividing the values by 100. Second, the images were resliced 
with a new slice thickness of 2 mm, and the new number of slices was set to 80, with all slices at or beyond the 
81st position from the most cranial slice being deleted. Third, the axial pixel sizes were unified to 0.5 × 0.5 mm, 
because the image magnification varied between CT scans. Since all image shapes became slightly smaller than 
512 × 512, padding was performed to keep the image shape at 512 × 512. Fourth, resizing was done by changing 
the image shape from 512 × 512 to 256 × 256 to fit the GPU memory. The preprocessed original images were used 
as input to CNN Model 1. For the masked images, the above steps were executed from the second to the fourth, 
since the masked images were already binary, either 0 or 1. Intraparenchymal hematoma images were generated 
from preprocessed original and masked images for CNN Model 2 (Fig. 3).

From the training and validation dataset, 70% were randomly assigned to the training set and the rest to the 
validation set. To balance the ratio of expansion cases to no expansion cases, data augmentation and random 
oversampling were applied only to expansion cases in the training set. Data augmentation was conducted in 

Figure 3.  Intraparenchymal hematoma images generated from original and masked images.

https://github.com/AI-neurosurg/Multimodal-network-for-predicting-hematoma-expansion-in-ICH
https://github.com/AI-neurosurg/Multimodal-network-for-predicting-hematoma-expansion-in-ICH
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CNN and multimodal CNN models, where images were flipped and rotated 30 degrees. Random oversampling 
was performed in non-CNN models.

Model architecture
CNN Model 1 and 2 were composed of four 3-dimensional convolutional layer blocks with batch normalization, 
ReLU activation function, and max pooling, followed by a dense layer block with global average pooling, ReLU 
activation function, and dropout (Fig. 4a). At the end, a final dense layer with sigmoid activation function was 
placed. The kernel sizes in the convolutional layers were 19 × 19 × 7, 19 × 19 × 7, 14 × 14 × 5, and 11 × 11 × 4 con-
secutively. Multimodal CNN Model 1 and 2 consisted of two parts: an image part and a clinical-variables part 
(Fig. 4b). The image part had the same architecture as the CNN Models except for the final block. The clinical-
variables part was composed of two dense layer blocks with batch normalization, ReLU activation function, 
and dropout. The image and clinical-variables parts were concatenated in the middle, followed by a dense layer 
block with batch normalization, ReLU activation function and dropout and a final dense layer with sigmoid 
activation function.

In non-CNN Model 1 and 2, k-nearest neighbors from scikit-learn machine learning library (version 1.2.2) 
was adopted. A hyperparameter of the number of neighbors were chosen from 3, 5, 7, 9, and 11. Non-CNN 
Model 3 and 4 were composed of three dense layer blocks with batch normalization, ReLU activation function, 
and dropout, followed by a final dense layer block with sigmoid activation function.

The labels to predict in the models were hematoma expansion or no hematoma expansion. No missing data 
were treated in the models because all the required data, including images and clinical variables, were complete 
for all patients.

Training, validation and test
For CNN Models, Multimodal CNN Models, and Non-CNN Model 3 and 4, 70 epochs of training were per-
formed with a batch size of 2, where binary cross-entropy and Adam were used for the loss function and opti-
mizer,  respectively27. For Adam, the following settings were used: learning rate = 0.001, beta 1 = 0.9, beta 2 = 0.999, 
and epsilon = 1e-07. The cut-off value of 0.5 was used to binarize the cases. At each epoch, sensitivity and area 
under the receiver operating curve (AUC) were calculated with the validation dataset to monitor the training 
process. Five trained model weights from all epochs that had better sensitivity and AUC in validation were 
selected and used for testing, where the final test result was derived from the weights with the highest sensitivity.

For Non-CNN Model 1 and 2, the training and validation dataset were fitted to the k-nearest neighbors 
algorithm while changing the hyperparameter of the number of neighbors, to which the test dataset was applied 
and the final result was derived from the number of neighbors with the highest sensitivity.

Ethical approval
This study was approved by the following institutional review boards: Mie Chuo Medical Center institutional 
review board [permit number: MCERB-202321], Matsusaka Chuo General Hospital institutional review board 

Figure 4.  (a) The CNN models were composed of four 3-dimensional convolutional layer blocks and one 
dense layer block, followed by a final dense layer block with sigmoid activation function. The kernel sizes of the 
convolutional layers were 19 × 19 × 7, 19 × 19 × 7, 14 × 14 × 5, and 11 × 11 × 4, respectively. (b) The multimodal 
CNN models consisted of an image part and a clinical-variables part. The architecture of the image part was the 
same as in the CNN models (a), except for the last block. The clinical-variables part was consisted of two dense 
layer blocks. These two parts were concatenated, followed by a dense layer block and a final dense layer block.
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[permit number: 325], Suzuka Kaisei Hospital institutional review board [permit number: 2020-05], and Mie 
University Hospital institutional review board [permit number: T2023-7]. Because this was a retrospective study, 
separate informed patient consent was waived by the following institutional review boards: Mie Chuo Medical 
Center institutional review board [permit number: MCERB-202321], Matsusaka Chuo General Hospital insti-
tutional review board [permit number: 325], Suzuka Kaisei Hospital institutional review board [permit number: 
2020-05], and Mie University Hospital institutional review board [permit number: T2023-7]. All study protocols 
and procedures were conducted in accordance with the Declaration of Helsinki. This manuscript was prepared 
according to the standards for reporting of diagnostic accuracy (STARD) statement.

Results
After applying the inclusion and exclusion criteria, 273 patients were assigned to the training and validation 
dataset, while 106 patients were assigned to the test dataset. Patient characteristics of the study population are 
shown in Table 1. Their row data are stored in OSF in comma-separated values format (https:// osf. io/ jmnzs).

On CT findings, intrahematoma hypodensities, hematoma location, and hematoma volume were statisti-
cally significant in univariate analyses between expansion and no expansion cases in the training and validation 
dataset; these were used as input in Non-CNN Model 2 and 4. On clinical variables, anticoagulant use, systolic 
and diastolic blood pressure, PT-INR, and time from onset to baseline CT were significant and used as input in 
Multimodal CNN Model 2 and Non-CNN Model 2 and 4.

The performance of each model is shown in Table 2 and Fig. 5. In CNN Model 1 and 2, sensitivity was the 
same, but specificity and AUC were higher in CNN Model 2. Therefore, intraparenchymal hematoma images, 

Table 1.  Characteristics of the study population. Data are presented as n (%), mean ± standard deviation, or 
median (interquartile range). PT-INR = prothrombin time-international normalized ratio.

Training and validation (n = 273) Test (n = 106) P value

Age (years) 71 (59–79) 72 (62–82) 0.099

Sex (male) 159 (57.9) 63 (59.4) 0.817

Medical history

 Hypertension 162 (59.3) 74 (69.8) 0.060

 Diabetes mellitus 58 (21.3) 30 (28.3) 0.175

 Dyslipidemia 93 (34.1) 37 (34.9) 0.904

 Intracerebral hemorrhage 18 (6.6) 7 (6.6) 1.000

 Cerebral infarction 30 (11.0) 14 (13.2) 0.593

 Ischemic heart disease 15 (5.5) 7 (6.6) 0.633

Anticoagulant use 30 (11.0) 10 (9.4) 0.714

Antiplatelet use 34 (12.5) 25 (23.6) 0.011

Systolic blood pressure (mmHg) 187.6 ± 33.3 182.6 ± 33.6 0.193

Diastolic blood pressure (mmHg) 105.7 ± 23.3 104.2 ± 23.1 0.580

Glasgow Coma Scale 14 (11–15) 15 (12–15) 0.046

White blood cell count  (106/mL) 7.60 (5.80–9.60) 7.85 (6.15–9.78) 0.163

Hemoglobin (mg/dL) 13.9 ± 2.1 13.3 ± 1.8 0.005

Platelet count  (106/mL) 216.2 ± 59.3 225.1 ± 68.0 0.212

PT-INR 0.96 (0.92–1.02) 0.99 (0.95–1.05) 0.003

Serum creatinine (mg/dL) 0.74 (0.59–0.91) 0.72 (0.58–0.90) 0.589

Serum total bilirubin (mg/dL) 0.7 (0.5–0.9) 0.7 (0.5–1.0) 0.770

Time from onset to baseline CT scan (h) 1 (1–3) 2 (1–4) < 0.001

CT findings at baseline

 Blend sign 25 (9.2) 5 (4.7) 0.203

 Intrahematoma hypodensities 118 (43.2) 33 (31.3) 0.035

 Irregular hematoma shape 160 (58.6) 56 (52.8) 0.355

Hemorrhage location

 Brain stem 17 (6.2) 3 (2.8) 0.304

 Cerebellum 11 (4.0) 12 (11.3) 0.014

 Thalamus 81 (29.7) 35 (33.0) 0.537

 Basal ganglia 117 (42.9) 36 (34.0) 0.130

 Lobe 47 (17.2) 20 (18.9) 0.764

Intraventricular hematoma extension 103 (37.7) 46 (43.4) 0.349

Baseline hematoma volume, mL 12.2 (5.6–30.2) 10.2 (3.6–19.9) 0.031

Hematoma expansion 54 (19.8) 14 (13.2) 0.179

https://osf.io/jmnzs


7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:16465  | https://doi.org/10.1038/s41598-024-67365-3

www.nature.com/scientificreports/

rather than original images, were used as input of Multimodal CNN Model 1 and 2 (Fig. 3). The number of 
neighbors of 7 achieved the highest sensitivity for Non-CNN Model 1 and 2.

Sensitivity was higher for CNN Models and Multimodal CNN Models than for Non-CNN Models. In particu-
lar, CNN Model 1 and 2 and Multimodal CNN Model 2 achieved a sensitivity of 1.000 (95% confidence interval 
0.768–1.000). AUC was above 0.75 for CNN Model 2, Multimodal CNN Model 1 and 2, and Non-CNN Model 
2, with the Multimodal CNN Model 2 having the highest AUC. Specificity was highest for Non-CNN Model 1 
and 4. Accuracy was highest for Non-CNN Model 4.

Multimodal CNN Model 2 showed the highest sensitivity and AUC of all models. Its model weights are stored 
in OSF in HDF5 format (419 MB, https:// osf. io/ wm768).

Table 2.  Test results for predicting hematoma expansion in each model. Data are presented as value (95% 
confidence interval). AUC = area under the receiver operating characteristic curve.

Sensitivity Specificity Accuracy AUC 

CNN Model 1 1.000 (0.768–1.000) 0.163 (0.094–0.255) 0.274 (0.191–369) 0.582 (0.544–0.614)

CNN Model 2 1.000 (0.768–1.000) 0.511 (0.404–0.617) 0.575 (0.476–0.671) 0.755 (0.704–0.807)

Multimodal CNN Model 1 0.857 (0.572–0.982) 0.717 (0.614–0.806) 0.736 (0.641–0.817) 0.787 (0.682–0.893)

Multimodal CNN Model 2 1.000 (0.768–1.000) 0.598 (0.490–0.699) 0.615 (0.552–0.741) 0.799 (0.749–0.849)

Non-CNN Model 1 0.571 (0.289–0.823) 0.761 (0.661–0.844) 0.736 (0.641–0.817) 0.666 (0.525–0.808)

Non-CNN Model 2 0.643 (0.351–0.872) 0.696 (0.591–0.787) 0.689 (0.591–0.775) 0.669 (0.531–0.808)

Non-CNN Model 3 0.857 (0.572–0.982) 0.609 (0.501–0.709) 0.642 (0.543–0.732) 0.733 (0.625–0.840)

Non-CNN Model 4 0.786 (0.493–0.953) 0.761 (0.661–0.844) 0.764 (0.672–0.841) 0.773 (0.653–0.893)
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Figure 5.  Receiver operating curves for each model in Table 2, except for Non-CNN Model 1 and 2. These 
models were excluded because they do not return continuous values as a prediction.

https://osf.io/wm768
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Discussion
A multimodal neural network model incorporating CNN analysis of CT images and neural network analysis 
of clinical variables showed a sensitivity of 1.000 for predicting hematoma expansion in spontaneous ICH. The 
model outperformed CNN analysis of CT images alone and machine learning analysis of CT findings and clini-
cal variables. It is a highly complete model that utilizes all available patient information. The multimodal model 
would be beneficial in clinical practice, as it effectively identifies patients who require thorough and intensive 
care after admission.

For clinicians treating ICH, the greatest concern in predicting hematoma expansion is missing expansion 
cases because they may experience neurological deterioration and require careful observation in the intensive 
care  units2,3. Not missing a single case at risk is critical in stroke care. Therefore, the goal of the prediction in this 
study was set to achieve higher sensitivity while balancing with AUC. In binary classification, the binary cross-
entropy is usually used as the loss function, and training is aimed at minimizing the loss function. However, a 
low value of binary cross-entropy loss does not always equate to high sensitivity. Thus, for testing, we did not 
simply select the model weights with the lowest loss value in validation, but selected those with better sensitivity 
and AUC. However, this selection might have enhanced the model performance.

The Multimodal CNN Model 2, which used CT images and selected clinical variables as input, showed the best 
performance. The superior performance of Multimodal CNN Model 2 compared to CNN Model 2 underscores 
the importance of clinical information in predicting hematoma expansion. Here, not all clinical variables were 
necessary, only 5 were used. The fact that the model works with fewer inputs is critical to its practical use, as it 
can sometimes be difficult to collect sufficient information in clinical settings. Furthermore, the superiority of 
multimodal neural network models over non-CNN models underscores that CNN analysis outperforms human-
based CT findings evaluation, even when combined with clinical information, in predicting hematoma expansion.

One of the most challenging aspects in the development of CNN and multimodal CNN models was the size 
of the kernels in the convolutional layers. Typically, a kernel size of 3 or at most 5 is used because a larger kernel 
size consumes more computational  power28. However, in preliminary experiments, we observed a divergence 
in the training process with a kernel size of 3 or 5, even when adding layers or increasing the number of kernels. 
The voxel size of the CT images was 0.5 × 0.5 × 2.0 mm, where the kernel size of 3 or 5 may have been too small 
to extract features from the hematoma. The larger kernel sizes up to 19 × 19 × 7 worked effectively in this study; 
we could not confirm the kernel size in other studies that used CNN to predict hematoma expansion because 
the programming codes were not  disclosed18–21,29.

Several considerations have been suggested for the soundness of research using artificial intelligence (AI) 
techniques, such as the use of an external test set for the final report, transparency of algorithms, etc.30,31. How-
ever, many clinical studies have not actually followed these basic considerations. In this study, the model was 
trained on data from several hospitals and tested on external data. Multiple models were created for comparison. 
Clinical information, algorithm programming code, and model weights were disclosed to make our results 
verifiable and the model reproducible.

To date, there are 2 studies that predicted hematoma expansion in ICH by analyzing both CT images and 
clinical information with  CNN29,32. In one study, hematoma features extracted from CNN and radiomics and 
clinical variables were integrally analyzed with support vector  machine29. It achieved sensitivity of 0.83 and AUC 
of 0.95; however, the testing method was not described in detail and patient data from a single hospital were 
used for both training and  testing29. The other analyzed CNN-derived hematoma features and clinical variables 
using multivariate logistic regression, achieving sensitivity of 0.76 and AUC of 0.8332. This is also a single-center 
study, and the sensitivity is low to use the model in clinical practice. In our study, we achieved a sensitivity of 
1.00, which is critical for clinical use in stroke management.

CNN Model 2 using intraparenchymal hematoma images outperformed CNN Model 1 using unmodified 
original CT images. Therefore, intraparenchymal hematoma images were used as input for multimodal models. 
However, their segmentations were performed manually by humans in this study because automated segmen-
tation remains unsatisfactory in some cases with an inaccurate differentiation between intraparenchymal and 
intraventricular  hematoma33–35. When more accurate segmentation of intraparenchymal hematoma becomes 
possible, and clinical variables can be automatically collected from the medical record, this prediction task could 
be fully automated.

Several limitations should be noted. First, although a perfect sensitivity of 1.000 was achieved in a multimodal 
neural network model while balancing AUC, the lower limit of the confidence interval was 0.768, indicating that 
more cases are needed for more reliable model validation. Second, although the external dataset from another 
hospital was used for testing, validation with various patient demographics is required to further ensure the 
reliability of the developed models. Third, the comparisons of the model performance were not supported by 
statistical significance testing; instead, simple comparisons were conducted among the models. More cases are 
also required to statistically demonstrate significant differences based on 95% confidence intervals. Fourth, the 
images were resized to 256 × 256 to fit the GPU memory. Analysis at the original 512 × 512 size may yield bet-
ter results. Fifth, only k-nearest neighbors and fully connected neural networks were employed for non-CNN 
models. Other machine learning models may have performed better, but logistic regression, support vector 
machines, random forests, and gradient boosting were inferior to k-nearest neighbors in the previous report 
predicting hematoma  expansion14. Sixth, this is a retrospective study. Validation with prospective data is required 
as a future step. Seventh, to apply the models to clinical practice, systems that comprehensively capture patient 
information, including images and clinical variables, are required. Last, although the clinical variables that are 
included in the study were generally collected from the patients in the clinical setting for stroke care, they are 
sometimes unavailable. A model capable of handling missing data may be beneficial.
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Conclusion
We developed a multimodal neural network model incorporating CNN analysis of CT images and neural net-
work analysis of clinical variables to predict hematoma expansion in acute spontaneous ICH. The model was 
externally validated and outperformed CNN analysis of CT images alone and machine learning analysis of 
CT findings and clinical variables. The multimodal model achieved sufficient performance with a sensitivity 
of 1.000 to potentially enable decision support in clinical settings; it effectively identifies patients who require 
thorough and intensive care after admission. The algorithm programming code and model weights are available 
for verification and public use. To ensure the reliability of the models, validation with prospective datasets for 
various patient demographics is necessary as a future step. Furthermore, a model capable of handling missing 
data or systems that comprehensively capture patient information would be required to enable widespread use 
of predictive models in clinical practice.

Data availability
Row data of patient characteristics are stored in OSF in comma-separated values format (https:// osf. io/ jmnzs). 
All code in this study is available on GitHub (https:// github. com/ AI- neuro surg/ Multi modal- netwo rk- for- predi 
cting- hemat oma- expan sion- in- ICH). Model weights of the best-performing multimodal convolutional neural 
network model are stored in OSF in HDF5 format (419 MB, https:// osf. io/ wm768).
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