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CGMega: explainable graph neural network
framework with attention mechanisms for
cancer gene module dissection

Hao Li 1,5, Zebei Han2,5, Yu Sun1,5, Fu Wang2, Pengzhen Hu3, Yuang Gao4,
Xuemei Bai1, Shiyu Peng1, Chao Ren1, Xiang Xu1, Zeyu Liu1, Hebing Chen 1 ,
Yang Yang 2 & Xiaochen Bo 1

Cancer is rarely the straightforward consequence of an abnormality in a single
gene, but rather reflects a complex interplay of many genes, represented as
gene modules. Here, we leverage the recent advances of model-agnostic
interpretation approach and develop CGMega, an explainable and graph
attention-based deep learning framework to perform cancer gene module
dissection. CGMega outperforms current approaches in cancer gene predic-
tion, and it provides a promising approach to integrate multi-omics informa-
tion. We apply CGMega to breast cancer cell line and acute myeloid leukemia
(AML) patients, and we uncover the high-order gene module formed by ErbB
family and tumor factors NRG1, PPM1A and DLG2. We identify 396 candidate
AML genes, and observe the enrichment of either known AML genes or can-
didate AML genes in a single gene module. We also identify patient-specific
AML genes and associated genemodules. Together, these results indicate that
CGMega can be used to dissect cancer gene modules, and provide high-order
mechanistic insights into cancer development and heterogeneity.

The complex functions of a living cell are conducted through the
concerted activity of many genes and gene products. Much of the
activity of a cell is organized into gene modules: sets of genes that are
coregulated to respond to different conditions1. Gene modules have
been widely studied in cell identity dissection2, transcription factor
(TF)-gene regulation3,4, functional genome annotation5, disease
progression6, disease origin7, drug repurposing8, and cancer
research9,10. Disease-associated genes are not randomly scattered
across biological networks. Instead, they tend to be located in disease
gene modules11,12. Dissecting the gene modules that drive disease
progression enables screening for the molecules that correct the net-
work rather than targeting peripheral downstream effectors that may
not be disease modifying13–15. Active driver modules can trigger the
hallmarks of cancer and confer fitness advantages to cancer cells16,17.

The elucidation of cancer gene modules can substantially further our
understanding of cancer development and inform the design of opti-
mal treatments18,19.

Ever since the development of high-throughput sequencing
technologies, gene module detection methods have been a corner-
stone for the biological interpretation of large gene compendia.
Numerous approaches and algorithms have been proposed for the
detection of gene modules through measuring gene expression3,20,21

and across omics information22–25. However, themethods currently in
use suffer from two main drawbacks. First, recent technologies for
chromosome conformation capturing have uncovered the three-
dimensional (3D) genome architecture and demonstrated its critical
role in establishing gene–gene relationships26,27. Apart from the
genome, epigenome, transcriptome, and proteome information, the
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3D chromatin structure information is indispensable for detecting
genemodules, especially in cancer study. But few related works have
yet investigated gene module using Hi-C data. 3D chromatin data
such as Hi-C data can either be represented as gene attributes that
depict the spatial features of genes, or structural relationships
between genes. Thus, how to encode Hi-C data and integrate with
other multi-omics data challenge the precise detection of gene
modules. Second, genemodules exhibit characteristics of high-order
network, and the high-order interactions regulate complex functions
in biological systems28. For example, essential genes are densely
connected hubs in gene modules29,30. Deciphering the high-order
relationships that are embedded in gene modules remains challen-
ging. Multi-omics features have different impacts on each gene from
the same genemodule. For example, many genes that play important
roles in tumorigenesis are not only altered on the level of their DNA
sequences, but are dysregulated through epigenetic effects or other
cellular mechanisms16,31,32. Most current co-expression clustering or
correlation-based methods are not able to assign important omics
features to module genes.

Recent studies have shown the utility of deep-learning algorithms
to data-driven sciences, in particular, to biological data analysis33.
These approaches provide the ability to measure large and complex
multi-omics data, and support the discovery of unanticipated rela-
tionships, and from which novel hypotheses and models can be
derived and used to make predictions34. It is worth mentioning that
graph neural network (GNN) constitutes a powerful approach for
measuring graph-structured data such as biological network35, and
succeed in modeling PPIs36 and Hi-C data37, as well as in discovering
gene modules across cellular networks38. GNN is capable of handling
different Hi-C representations, that is, either gene attributes as node
features or relationships between genes as graph edges. Moreover, we
have demonstrated that GNN together with its interpretation techni-
ques are powerful tools for dissecting high-order relationships among
genome interactions39. Together, advances in graph deep learning
make it possible to dissect cancer gene modules from a multi-omics
perspective, further leveraging deep understanding of the
underlying data.

Here, we present a new framework (CGMega) for dissecting can-
cer gene module with explainable graph attention. First, we con-
structed a multi-omics representation graph in which nodes were
genes and edges were defined as protein–protein interactions (PPIs)
between genes. Node features are the concatenation of condensed Hi-
C features, promoter densities of ATAC, CTCF, the histone modifica-
tions H3K4me3 and H3K27ac, and frequencies of single nucleotide
variants (SNVs), copy number variants (CNVs). Then, CGMega utilized
a transformer-based graph attention neural network over the multi-
omics representation graph and predicted cancer genes in a semi-
supervisedmanner. ThegoodperformanceofCGMega (area under the
precision recall curve, AUPRC 0.9140) ensured downstream cancer
gene module detection. Finally, we adopted the model-agnostic
approach GNNExplainer40 to interpret the contribution factors to
cancer genes under the context of multi-omics, and further detected
the cancer gene modules with representative features. We applied
CGMega to breast cancer cell line and acute myeloid leukemia (AML)
patients, and uncovered the high-order relationships between genes in
cancer gene modules. Together, CGMega harnesses the recent advent
of GAT over multi-omics data, and gains fundamental discovery and
understanding of the hierarchy in cancer gene modules.

Results
Overview of CGMega framework
We proposed a new framework, CGMega, for studying cancer gene
modules based on graph attention and graph interpretation technol-
ogies (Fig. 1a). CGMega leverages a combination of multi-omics data
across genomics, epigenomics, protein–protein interactions (PPIs),

and especially 3D genome architecture. In CGMega, we first removed
the potential effects of structural variation on Hi-C contact map and
normalized it with iterative correction and eigenvector decomposition
(ICE)41, and calculated the spatial distances between genes (see
“Methods”). Then, singular value decomposition (SVD) was applied on
thenormalizedmatrix to get condensedHi-C features (see “Methods”).
Simultaneously, we calculated the SNV and CNV frequencies for each
gene and calculated epigenetic densities within each gene promoter
(see “Methods”). Then, we constructed a multi-omics information
combination graph, in which the nodes represent genes and the edges
are obtained from PPIs. The features of nodes are the concatenation of
condensed Hi-C features, SNV and CNV frequencies, and epigenetic
densities. Notably, based on the detailed evaluation in the following
section, we deployed Hi-C data as node features instead of edge fea-
tures. Further, we constructed a transformer-based GAT model to
predict cancer genes in a semi-supervised manner (see “Methods”).
Finally, CGMega implemented the model-agnostic approach GNNEx-
plainer to detect cancer gene modules. GNNExplainer utilizes a
masking approach to detect the compact subgraph structure and a
small subset of node features that have a crucial role in GNN
prediction40. ApplyingGNNExplainer, we identified the subset of genes
that are most influential for the prediction of cancer genes, together
forming the cancer genemodules (Fig. 1b). These genes are one-hop or
two-hop neighbors to cancer genes, and GNNExplainer also provides
important features for each gene. To examine the robustness of
interpretation results in CGMega, we repeated GNNExplainer and
obtained high consistent cancer gene modules (Supplementary
Fig. S1a, S1b). In sum, the output of CGMega is the probability of each
gene being a cancer gene and their influential genes interpreted from
GATs. Gene-specific features are also assigned to these genes and
together formed the gene modules.

CGMega is effective in cancer gene prediction
CGMega identified gene modules based on the accurate prediction of
cancer genes, and we thus tested the performance of CGMega in
cancer gene prediction on theMCF7 cell line (see “Methods”), a human
breast cancer cell line with high-confidencemulti-omics data. CGMega
achieved 0.9140 AUPRC (Fig. 2a, Source Data file) and 0.9630 area
under the receiver operating characteristic curve (AUROC) (Supple-
mentary Fig. S2a). To demonstrate the advances of CGMega in cancer
genes prediction task, we compared CGMega with various methods
(see “Methods”), encompassing both universal models GCN, GAT,
MLP, SVM, and as well as specific models designed for cancer gene
classification, including MTGCN42, EMOGI25, and MODIG43. Most of the
models were evaluated using the same input features, while SVM and
MLP had additional PPI features generated by node2vec (N2V). By
computing AUPRC, AUROC, accuracy (ACC), and F1 score, CGMega
outperformed all other methods across these four metrics (Fig. 2b).

Accurately predicting cancer genes often necessitates a sub-
stantial number of labeled genes, a resource that is often limited in rare
cancer research scenarios. Thus, it becomes crucial to leverage the
knowledge acquired fromwell-studied cancer genes and apply it to the
context of rare cancers, thereby enhancing their prediction. To this
end, we adopted a two-step approachwith CGMega. In the initial stage,
CGMega was pretrained on the MCF7 cell line, allowing it to grasp
fundamental patterns and characteristics prevalent in cancer genes.
Following pretraining, we performed fine-tuning on other cancers,
enabling CGMega to adapt and fine-tune its learned representations to
the specific context of those rare cancers.

To assess the performance of transfer learning, we conducted
tests on the non-pretrained CGMega (trained from scratch) and the
pretrained CGMega using all labeled genes (597 positives and 1839
negatives) on theK562 cell line. The pretrainedCGMegademonstrated
superior accuracy and F1 score, while also exhibiting comparable
AUPRCandAUROCvalues (Supplementary Fig. S2b). Subsequently, we
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evaluated the non-pretrained CGMega and pretrained CGMega using
downsampled labeled genes. Here, we also tested CGMega models
without Hi-C features. As the number of labeled genes decreased, the
performance of non-pretrained CGMega dropped sharply while the
pretrained CGMega continued to have high performance (Fig. 2c,
Source Data file). Moreover, the Hi-C features exhibited powerful
improvements in prediction especially when the labeled genes were
less than 200. Further, we compared the performance of few-shot
transfer learning in CGMega with other methods, and pretrained
CGMega had the highest value (Supplementary Fig. S2c).

CGMega leverages 15-dimensional gene features including 10-
dimensional omics features and 5-dimensional condensed Hi-C fea-
tures derived from dimensionality reduction of the Hi-C data. We
performed ablation experiments by removing or shuffling gene fea-
tures (Supplementary Fig. S2d), and we observed that both omics and
Hi-C features made contributions for model prediction (Fig. 2d).
Moreover, CGMega with 5-dimensional condensed Hi-C-only features
was not as good as CGMega with 10-dimensional omics features, sug-
gesting that the structural featuresmayhave a compensatory effect on
the quality of omics features.

We tested CGMega on Hi-C data with different resolutions and
read depths, CGMega maintained its stable performance using Hi-C
data with resolutions from 5-kb to 25-kb, and the AUPRC slightly
dropped while the Hi-C read depth decreased (Fig. 2e, Source Data
file), demonstrating that our approach is robust in its adaptation to
scenarioswith lower data quality andholds promise for awide rangeof
application settings.We also tested CGMega on datasets with different
ratios of positive to negative. CGMega can still achieve stable well
performance with extreme ratios (Supplementary Fig. S2e) and is

better compared to other methods (Supplementary Fig. S2f). In addi-
tion, CGMega is effective for majority of the well-known PPI datasets
(Supplementary Fig. S2g) and achieved better than most other meth-
ods (Supplementary Fig. S2h). We observed that the relatively poor
performance of CGMega on the Multinet PPI dataset was due to its
severe sparsity, and the AUPRC increased from 0.8062 (Multinet) to
0.8991 (condensed Multinet, See “Methods”). Furthermore, CGMega
was also evaluated on an external dataset built with entirely new data
for MCF7 cell line and achieved stable performance (Supplementary
Tables 1 and 2).

CGMega provides a new strategy for multi-omics data
integration
The outperformance of CGMega benefits from the effective integra-
tion of multi-omics information, including genome, epigenome, PPIs,
and especially the 3D genome architecture. Hi-C is currently the most
widely used assay for investigating the 3D genome organization.
However, measuring Hi-C data together with other omics data is often
limitedby its noise, sparsity, and variable resolution. Toobtain thebest
performance on the cancer gene prediction task, we tested integration
approaches with different Hi-C data embeddings (Fig. 3a).

Regarding Hi-C data as gene linkages. Molecular networks are
important issues in biological studies2,11,29. For example, EMOGI has
demonstrated the utility of PPIs in cancer gene prediction25. Hi-C data
measure the interactions that connect different genomic loci and thus
enables the construction of gene interaction networks. Using Hi-C
contact maps, we constructed unweighted and weighted networks,
respectively. In the unweighted network, interactions between genes
were determined by the existence or nonexistence of contacts. For

Fig. 1 | OverviewofCGMega framework. aCGMegapipeline. First, condensedHi-C
features were obtained by removing SV effects, ICE normalization, and SVD on raw
Hi-C contact map step-by-step. Simultaneously, we calculated omics features,
including SNVs and CNVs frequencies for each gene as well as epigenetic densities
within each gene promoter. To combine multi-omics information, we created a
graph, where nodes represent genes and edges are derived from CPDB PPIs. Node
features were the concatenations of condensed Hi-C features and omics features.

Next, a cancer gene prediction model consisting of two Graph Transformer layers,
two Layer-Norm layers, one max-pooling layer, and two fully connected linear
layers was constructed. Finally, the model-agnostic approach GNNExplainer was
employed to detect cancer gene modules. b GNNExplainer interpretation. Given a
gene (represented as a node in a graph), GNNExplainer identified a subgraphG that
contains the relevant features crucial for the prediction. G is a connected subgraph
where the gene nodes cover atmost a two-hop region with nomore than 20 edges.
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weighted networks, interaction values were log10 or tenth root of
contact strength. Then, epigenetic information was assigned as gene
features. Finally, we combined gene interaction network with the PPI
network and constructed three types of graphs: a Hi-C only graph, aHi-
C/PPI independent graph, and a Hi-C/PPI combined graph. In these,
nodes represent genes and the node features are epigenetic informa-
tion. We trained GAT-based neural networks on these graphs. Among
these methods, the Hi-C-only graph was ineffective for predicting
cancer genes (AUPRC<0.5). The Hi-C/PPI independent graph exhibits
only a marginal improvement over the PPI-only strategy. It is solely
when Hi-C is combinedwith PPI that amodest increase, of roughly half
a point, is observed in the two-edge construction methods (Fig. 3b).
This result does not offer compelling support for the inclusion of Hi-C
as graph structure information within the model.

Regarding Hi-C data as gene features. Hi-C data are intuitively
used for measuring gene interactions. However, due to the noise and
sparsity of Hi-C data, gene interaction networks based on Hi-C data
tend to be incomplete and flawed. For this reason, we tested different
methods of obtaining condensed Hi-C features, including Node2Vec,
SVD, locally linear embedding (LLE), isometric feature mapping (ISO-
MAP), non-negative matrix factorization (NMF), and t-SNE. The con-
densed Hi-C features were concatenated with epigenetic information
as gene features. PPI networks were still used to measure the interac-
tions between genes. We also trained GAT-based neural networks on
these graphs, and the situation improved significantly. Generally,
incorporating Hi-C features using dimensionality reduction methods
improved the prediction of cancer genes. The best-performing

method, SVD, achieved an AUPRC of 0.9140, while Node2Vec, NMF,
and t-SNE also demonstrated promising results (Fig. 3c). In addition,
we compared the impact of different dimensions of condensed Hi-C
features formodel prediction (Fig. 3d). Combining the fourmetrics, all
methods with the Hi-C feature received a performance improvement
compared to those without the Hi-C feature (Supplementary Fig. S3a).
SVD-based reduction of Hi-C data to a condensed five-dimensional
feature set was found to be the optimal solution based on both results.

Taken together, by systematically comparingdifferent integration
approacheswith Hi-C data embedding, we showed that, in cancer gene
prediction task, using Hi-C latent features as gene features outper-
forms measuring Hi-C data as the gene interactions directly. SVD is an
effective dimensionality reduction method for combining Hi-C data
with other omics data.

Genemoduleswithmulti-omics features in humanbreast cancer
cell line
CGMega detects gene modules based on a model-agnostic neural
network interpretation approach (Fig. 1b), and these gene modules
consist of two parts: i) a core subgraph consisting of the most influ-
ential pairwise relationships for the prediction of cancer gene, and ii)
15-dimensional importance scores that quantify the contributions of
each gene feature to cancer gene prediction. We applied CGMega to
the human breast cancer MCF7 cell line and examined the modules of
358 known cancer genes. These cancer genes were not randomly
scattered throughout gene modules; they tended to be co-located in
the same modules (Supplementary Fig. S4a). This is consistent with

Fig. 2 | CGMega performance in cancer gene prediction task. a AUPRC on breast
cancer cell line MCF7. b Methods comparison on MCF7 cell line. N2V represents
node2vector. MLP and SVM were tested with and without (w/o) PPIs. c AUPRCs of
non-pretrained CGMega and pretrained CGMega on datasets with different

numbers of labeled genes. d Ablation experiments. AUPRCs of CGMega with ran-
domorwithout omics features andHi-C features. eAUPRC of CGMega onHi-C data
under different resolutions and down-sampling rates. Source data are provided as a
Source Data file.
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previous reported as so-called disease modules8. Among these gene
modules, TP53 showed the highest enrichment and participated in 139
cancer gene modules, followed by ESR1 (63 participations) and AKT1
(61 participations) (Fig. 4a). In addition to these well-known cancer
genes,we observed another 12 highlymodule-participating genes such
as XPO1, NCOR2, and PPM1A. These genes may be the collaborators of
well-known cancer genes. We also examined the structural features of
gene modules with respect to their graphical metrics, including tran-
sitivity, clustering coefficients, degree centrality, and betweenness

centrality, and we found that the topological structure of cancer gene
modules were significantly more consistent than that of non-cancer
gene modules (P < 2.47e-5, paired t test) (Supplementary Fig. S4b).

Beyond the topology of gene modules, we next investigated the
feature importance scores. CGMega utilized 15-dimensional multi-
omics features as inputs and generated an importance score for each
feature. It is necessary to examinewhether the importance scoreswere
just related to the corresponding input. We thus examined the dis-
tributions of these two values, and found that feature importance is

Fig. 3 | Performance evaluation of multi-omics data integration approaches.
a Design of multi-omics data integration. Left: Hi-C data were regarded as graph
edges with two types. In the unweighted graph, edges were determined by the
existence of Hi-C contacts or not. In the weighted graph, edge weights were
interaction values calculated as log10 or tenth root of Hi-C contact maps. In either
graph, node features were omics features. To combine Hi-C with PPIs, we per-
formed GAT-based networks on three graph inputs, including (1) GAT on Hi-C
graph alone, (2) two GATs on Hi-C and PPI, respectively, and then combined
embeddings, and (3) first combined Hi-C graph and PPIs then performed GAT.

Right: Hi-C data were regarded as node features. Raw and normalized Hi-C data as
well as different dimensionality reduction methods were tested. Then, condensed
Hi-Cdatawereconcatenatedwithomics features, and complete node featureswere
formed. Graph edges were determined by PPIs. For either graph structure (left or
right), a GAT-based cancer gene prediction model wasmade, as described in Fig. 1.
b AUPRC of cancer gene prediction model with Hi-C input as edge features.
c AUPRC of cancer gene prediction model with Hi-C input as node features.
d AUPRC of cancer gene prediction model with raw and normalized Hi-C.
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Fig. 4 | Gene modules in breast cancer cell line. a Scatter plot shows the gene
participation in cancer gene modules. In gene modules of 358 well-known breast
cancer genes, 22 known cancer genes (blue dots) and another 12 genes (red dots)
which were not known as breast cancer genes were highly involved (participated in
over 20 cancer genemodules). Gray dots donated known cancer genes which were
not highly involved in cancer genemodules. b In total, 347 positive cancer genes of
breast cancer were generally divided into five clusters (by K-means clustering)
based on feature importance scores. c An example for illustrating gene repre-
sentation features (RFs). For a given gene, if a feature is assigned with an impor-
tance score (calculated byGNNExplainer) 10 times higher than theminimum score,

it will be referred to as the RF of this gene. d Illustrations of BRCA1 and BRCA2 gene
modules. e Western Blot analysis after 24h, 48h, and 72 h treatment. Each
experiment was repeated three times independently. f, g Half maximal inhibitory
concentration (IC50) value of olaparib treatment (f) and olaparib/RKI-1447 combi-
nation treatment (g) after 24 hr. h The inhibition rate of olaparib combined with
RKI-1447 is significantly higher than that of olaparib alone after 24h treatment.
Paired t test of two-sided was used to analyze the mean inhibition rates from two
groups and the P value = 0.0023. f–h Data are presented as mean values +/− SEM
and n = 3 biologically independent experiments were carried out for each to derive
statistics. Source data are provided as a Source Data file.
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irrelevant to input data (Pearson correlation coefficients r <0.26,
Supplementary Fig. S4c), suggesting that the importance score is the
interpretation of neural networks instead of simple determination due
to its input. Besides, the feature importance scores were not evenly
distributed; instead, one or several features were dominant (Supple-
mentary Fig. S4d). The feature importance scores measure the joint
effect of multiple factors and help guide cancer gene classification
(Fig. 4b, Source Data file). Many cancer-driven genes (class-5) were as
reported to be dominated by genetic mutations. For genes in other
classes, the five Hi-C features, condensed by SVD, have provided
extended supplements based on their participation in each cluster: 1st,
4th and 5th Hi-C features showed joint effect with other regulatory
factors on cancer driver genes (cluster-3), while 2nd and 3rd Hi-C
features showed joint effect with genetic mutations (cluster-1). Some
previous studies have verified these observations: (i) Gene MYB (in
cluster-1) was reported to form fusion genes with NFIB due to the
recurrent chromosomal translocation, which serves as a clear example
of genotypic–phenotypic correlation for triple-negative breast
cancer44. (ii) Dysregulation of gene ADIPOR1 (in cluster-3) is widely
observed in many cancers, but its genomic alteration frequencies are
low45. This is consistent with CGMega that attributes HiC-1, HiC-5,
chromatin accessibility and active histone modification H3K4me3 to
ADIPOR1. (iii) Similar to ADIPOR1, gene ALOX12 (in cluster-3) were
significantly upregulated in multiple breast cancer cell lines, which
protect breast cancer cell from chemotherapy-induced growth arrest
and apoptosis46,47, suggesting the importance of transcription regula-
tion to ALOX12. (iv) Despite these isolated evidences, we collected
RNA-seq data of breast cancers from TCGA project and identified dif-
ferentially expressed genes (DEGs). The proportion of DEGs is the
highest in cluster-3 (Supplementary Fig. S4e). Based on CGMega pre-
diction, Hi-C together with other active regulatory elements have joint
effect on these genes.

Based on the feature importance score, we proposed the repre-
sentative features (RFs) as features that have top-ranked importance
scores (Fig. 4c, see “Methods” for details). For example, the RF of the
gene TP53 is SNV while gene PIK3R1’s RF is Hi-C. Generally, 1158 genes
had only one RF and 149 genes had multiple RFs (Supplementary
Fig. S4f). We next focus on the gene modules of BRCA1 and BRCA2,
which are the most commonly encountered genes in breast cancer. As
previously reported, these two cancer genes play different roles in the
common pathway of genome protection48. We also observed topolo-
gical differences between their genemodules. In brief, BRCA1, which is
a pleiotropic DNA damage response (DDR) protein working in several
stages of DDR, was also found to be widely connected with another 20
genes (Fig. 4d). By contrast, BRCA2, as a mediator of the core
mechanism of homologous recombination (HR), was connected with
other genes via ROCK2, an important gene that directly mediates HR
repair49. Based on gene expression data from TCGA project, we found
that ROCK2 expression was positively correlated with BRCA2 expres-
sion in breast tumor donors while there is no such correlation in
normal breast tissue (Supplementary Fig. S4g). The co-expression of
BRCA2 and ROCK2 in breast cancer suggest the joint effect in tumor-
igenesis, whichmayguide the effect enhancement of BRCA2 inhibitors
on tumor cells. To test this hypothesis, we treated MCF7 cells with
BRCA2 inhibitor olaparib50,51 and with both BRCA2 inhibitor olaparib
and ROCK2 inhibitor RKI-144752. Western Blot results have demon-
strated the protein inhibition after 24-, 48-, and 72-h treatment (Fig. 4e,
Source Data file). Then, we determined the half maximal inhibitory
concentration (IC50) of olaparib (Fig. 4f and Supplementary Fig. S5a,
Source Data file) and olaparib/RKI-1447 combination (Fig. 4g and
Supplementary Fig. S5b, Source Data file). IC50 value of inhibitors
combination was lower than that of BRCA2 inhibitor alone. Moreover,
the inhibition rates of olaparib combined with RKI-1447 were sig-
nificantly higher than those of olaparib alone after 24-h treatment
(Fig. 4h, P value = 0.0023, paired t test, Source Data file). But it was

comparable between two groups after 48h and 72 h treatment (Sup-
plementary Fig. S5c). These results showed that the combination of
BRCA2 and ROCK2 inhibitors was more effective than using BRCA2
inhibitor alone in inhibiting MCF7 tumor cells after 24-h treatment,
suggesting a potential strategy for enhancing BRCA2 inhibitor sensi-
tivity. In addition, SNV was the RF for both BRCA1 and BRCA2. We also
observed a high-order gene module combined from the BRCA1 gene
module and the BRCA2 gene module through three shared genes
including TP53, SMAD3, and XPO1 (Supplementary Fig. S5d). Taken
together, these indications mean that CGMega is capable of detecting
the interpretable and high-order gene modules with multi-omics
features.

The complex gene module formed by ErbB family
The ErbB family, including ERBB1 (also known as EGFR), ERBB2 (also
known as HER2), ERBB3 (also known as HER3) and ERBB4, plays a
central role in the tumorigenesis of many types of solid tumor. The
members of the ErbB family are receptor tyrosine kinases (RTKs),
which have an analogous structure53. However, their gene modules
exhibit heterologous structures and none of these four ErbB genes
were hubs in their gene modules (Fig. 5a). In the ERBB1 gene module,
PTPRD located at the center and connected ERBB1 and other genes.
The ERBB2 and ERBB4 gene modules shared the same center gene
DLG2.NRG1 located at the center of the ERBB3 genemodule and ERBB4
was also present in this genemodule. We examined the representative
features of the ErbB family. Hi-C and SNV were major RFs for ERBB2,
ERBB3, and ERBB4 (Fig. 5b, Source Data file). The mechanisms of
genetic alteration such as SNV in cancer development have been
demonstrated previously54–56. TheHi-C features uncoveredbyCGMega
suggest new insights regarding the signal and crosstalk between the
ErbB family genes in the context of the chromatin structure in tumor
progression.

In spite of the difference among the gene modules of the ErbB
family, we observed several shared genes connecting the ErbB mem-
bers and forming a complex module (Fig. 5c). NRG1, PPM1A, and DLG2
were key connectors in this high-order module. Previous studies have
demonstrated the importance of these three genes for cancer devel-
opment. NRG1 is a main physiological ligand to ErbB family and,
together with ERBB2 and ERBB3, can form a potent pro-oncogenic
heterocomplex57. DLG2 is a member of a family of membrane-
associated guanylate kinase (MAGUK), and DLG2 overexpression will
affect the level of protein phosphorylation58,59. The protein serine/
threonine phosphatase PPM1A is a crucial regulator of cell cycle pro-
gression in triple-negative breast cancer60, and PPM1A is also an
important factor in protein dephosphorylation61–63. By combining
these isolated evidencewith thehigh-order genemodule,weproposed
a hypothetical model of the gene module in maintaining protein
phosphorylation homeostasis (Fig. 5d). The NRG1 ligand binds to
homo- or hetero-dimers of ErbB proteins, leading to the activation of
ErbB-mediated downstream signaling pathways that mediate the
activity of serine/threonine (Ser/Thr) protein kinases. Ser/Thr protein
kinases and proteins encoded by DLG2modulate the phosphorylation
of Ser/Thr proteins, while PPM1A mediates their dephosphorylation,
together maintaining protein phosphorylation homeostasis.

Gene module dissection in acute myeloid leukemia patients
We applied CGMega to acute myeloid leukemia (AML), a myeloid
neoplasm that is characterized by differentiation blockade and clonal
proliferation of abnormal myeloblasts in the bone marrow64. We col-
lectedmulti-omics data for eight AMLpatients fromaprevious study64.
Unlike the case of those cell lines, gene modules are heterogeneous
across different patients65, and the clinical course of AML is also highly
heterogeneous66. Thus, we studied both patient-common and patient-
specific cancer gene modules (Fig. 6a). First, we used CGMega to
predict cancer genes and identified 2746 new genes in total
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(Supplementary Table 3). Among these, 396 were predicted to be
cancer genes in all AML patients (referred as “candidate AML genes”,
Supplementary Table 4). We next investigated gene functions and
found that these candidate AMLgenes containedmany essential genes
and TFs, and the pan-cancer genes were significantly enriched in these
396 genes (P = 1.32e-22, hypergeometric test) (Fig. 6b). Moreover,
Gene Ontology (GO) analysis showed that candidate AML genes
together with known AML genes participated in 15 hematopoietic and
blood diseases biology processes such as leukocyte migration and
T-cell receptor signaling pathway (Fig. 6c). This enrichment could not
be retrieved using known AML genes alone.

We then examined the AML genemodules. As withMCF7 cell line,
cancer genes were also enriched in same AML gene module. This
enrichment was observed not only in known AML genes but also in
candidate AML genes (Supplementary Fig. S6a). In addition, 10.5% of
these pairwise relationships in cancer gene modules were conserved
over half of total patients. For example, in the DLX4 gene module,
connections among DLX4, the known cancer gene ABL1, and four
candidate AML genes (SP1, FYN, GRB2, and SMAD2) co-occurred in
multiple patients (Fig. 6d). Beyond the enrichment and co-occurrence

of AML gene modules, we observed that some candidate AML genes
were shared by dozens of known AML gene modules (Supplementary
Table 5). For example, ESR1 was predicted to be candidate AML gene
and it existed in modules of various known AML genes, such as EGFR,
PIK3CA, and FOS (Supplementary Fig. S6b). This hub location implies a
high-order pattern of cancer gene modules. A total of 12 known driver
genes and 5 candidate AML genes were identified as hub genes, which
participate in more than 20 cancer gene modules (Supplementary
Fig. S6c). Among these genes, EGFR, MYC, TP53, MAPK1, and PIK3R1
were well-known genes in cancer pathway67–71. EP300, CREBBP, and
STAT3were used as clinical testing gene panel formyeloid tumors72–74.
The detection of these hub genes in all AML samples demonstrates the
reliability of CGMega interpretation, and suggests the potential usage
as AML gene panels of those five new hub genes, including ESR1,
HDAC1, FYN, LYN, and GRB2.

The AML patients used in this study come from seven different
mutation types and CGMega achieved good performance (AUPRC =
0.8528 on average).We next identified patient-specific candidate AML
genes for each patient (Supplementary Table 6). Examining the mod-
ules of these genes, we also observed patient-specific patterns. For
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Fig. 5 | Genemodules of ErbB family. a Illustrations show the genemodules of the
ErbB family. Blue dots indicate query genes, namely ERBB1, ERBB2, ERBB3 and
ERBB4. Yellow dots indicate genes located at the center of gene modules. Green
boxes show the RFsof query genes.b Feature importance scores of the ErbB family.

c The high-order gene module formed by the ErbB family gene modules.
d Hypothetical model of the high-order gene module formed by the ErbB family
gene modules in maintaining protein phosphorylation homeostasis. Details were
described in the main text. Source data are provided as a Source Data file.
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Fig. 6 | Gene modules in AML patients. a Application of CGMega on AML. Multi-
omics data of eight AML patients were obtained from a previous study. b In total,
396 candidateAML genes containedessential genes, transcription factors, andpan-
cancer genes. Gray boxes show genes in two categories. c Gene ontology (GO)
enrichments. We performed GO analysis on 597 known AML genes (first line), and
on 993 genes (597 known AML genes and 396 candidate AML genes), respectively.
GO analysis was conducted using DAVID and GO terms with p value lower than 1e-5
were shown. d Illustration of DLX4 gene module. Blue dots indicate known AML

genes, while yellow dots indicate candidate AML genes. e Illustration of KLF4 gene
modules in separate patients. SETD7was located at the center in Patient 168while it
was just a participant in Patient 027 and Patient 270. In other patients, SETD7 did
not appear in KLF4 gene modules. f We totally identified 142 neighbor-cancer
gene pairs, these gene pairs were conserved in over four AML samples. Gene
pairs in red box were detected in all eight AML samples and gene pairs in yellow
box were detected in seven AML samples. Source data are provided as a Source
Data file.
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example, in the KLF4 gene module drawn from patient 168, the can-
didate AML gene SETD7 connected KLF4with other known AML genes
including TP53, STAT3, DNMT1, PCNA, and MDM2. However, this two-
hop genemodule did not appear in other patients (Fig. 6e). Moreover,
we found that the two-hop pattern was widespread in AML samples,
covering about 1/3 of all AML genemodules (Supplementary Fig. S6d).
The key neighbor genes, which formed neighbor-cancer gene pair in
two-hop module (such as ROCK2-BRCA2 pair in BRCA2 gene module,
Fig. 4d), provide new insights to understand tumorigenesis and drug
combination strategy. We totally identified 142 such gene pairs, which
were conserved in over four samples (half of the total AML samples),
and found several pairs were highly conserved in all AML samples
(Fig. 6f). We then performed GO analysis using both the cancer genes
and key neighbor genes in these 142 pairs, and found that, different
from cancer genes, the key neighbor genes were significantly enriched
in signaling processes such as signal transduction and signaling path-
way (Supplementary Fig. S6e), suggesting that genes participating in
signal processes may be the regulator or collaborator of known
cancer genes.

Discussion
With the recent accumulation of multi-omics cancer data, different
phenotypic manifestations of cancer hallmarks have seen intensive
exploration75. However, beyond thesedata, themolecularmechanisms
of cancer are far from transparent. The challenge of finding candidate
drivers is considerable: tumors are heterogeneous, the data are noisy
and highly correlated, and there are a large number of possible com-
binations of drivers and genes in modules76.

Therefore, in this work, we introduced a general framework,
CGMega, for predicting cancer genes and dissecting gene modules.
CGMega differs from other methods in three main ways: (1) compared
to current methods, CGMega is advanced in its ability to capture the
3D genome architecture, which has been widely demonstrated as a
new perspective for the study of cancer77,78. There are three aspects of
advantages by using Hi-C data: (i) Hi-C features contribute to predic-
tion performance (Fig. 2d), AUPRC increases from 0.8964 (without Hi-
C) to 0.9140 (with Hi-C). (ii) Hi-C features contribute to few-shot
learning especially for training with less than 200 known cancer genes
(Fig. 2c). (iii) Hi-C features embody the joint effect of multiple factors,
and can be used for dissection of cancer gene modules. (2) CGMega
utilizes GNNExplainer40 to interpret contributing factors to cancer
gene prediction. Compared to attention mechanism, GNNExplainer
could measure various importance for the same PPI in different gene
modules, and it is a model-agnostic approach for providing inter-
pretable explanations for predictions of any GNN-based model on any
graph-based machine learning task, and could avoid issues related to
gradient-based methods such as LRP79 which was used in EMOGI. Uti-
lization of GNNExplainer help provide a comprehensive evaluation for
all gene neighbors (genes that connect with predicted gene via PPIs)
and molecular features (including SNVs, CNVs, histone modifications,
chromatin accessibility, and 3D genome architectures) in a masking-
based manner. This is critical for detecting complex and high-order
gene modules. For example, TP53 is a two-hop neighbor in the KLF4
gene module and SETD7 serves as the hub connecting KLF4 and other
genes (Fig. 6e). (3) CGMega shows knowledge transferability between
different cancers. Previous methods, such as EMOGI, have primarily
focused on pan-cancer data, neglecting the potential for knowledge
transfer betweendifferent cancer types. Thewell performanceof these
methods benefits a lot from the abundant labeled genes from pan-
cancer data. However, as we noted, some cancers have abundant
known data, while others may not. Thus, it will be a significant
achievement to explore cancer-specific driver genes. To accomplish
this, we constructed pretrainedmodel on large dataset (MCF7 cell line)
and tested the performance of model fine-tuning on small dataset
(sampled from K562 cell line). Furthermore, Hi-C features contribute

to this pretraining and fine-tuning strategy especially for few-shot
transfer learning as trained on less than 200 known cancer genes
(Fig. 2c). These results demonstrate the transferability of CGMega on
different cancer types, and it is an important aspect of our study.
Together, as a result, CGMega has improved performance in cancer
gene prediction and cancer gene module dissection.

In addition to these advantages of CGMega, we also provided a
comprehensive evaluation of approaches for Hi-C data integration
with other omics data, and we demonstrated that (1) the graph struc-
ture is advanced in integrating multi-omics information, especially for
molecular signals and gene relationships combination, and (2) using
SVD to encodeHi-Cdata as gene features is better thanmeasuringHi-C
data as gene linkages. Thismay be due to the high sparsity and noise of
Hi-C data.

Incorporating multi-omics information enables us to consider any
class of genes in a functional module and to relate the malignant phe-
notype to the molecular features from which it is likely to have origi-
nated. The application of CGMega on the breast cancer cell line and
AML patients helped uncover that (1) cancer gene modules are wide-
spread and well-organized including cancer gene-centered patterns
(such as the BRCA1 module in Fig. 4d) and non-cancer gene-centered
patterns (such asmodules of the ErbB family in Fig. 5a). (2) cancer genes
(both known cancer genes and predicted ones) tend to be enriched in a
single module (Supplementary Figs. S4a and S6a), suggesting the
complex interplay of cancer genes in tumorigenesis. (3) beyond these
well-known cancer genes, there are hub genes that are either located at
the center in cancer gene modules (such as SETD7 in the KLF4 gene
module, Fig. 6e) or are present in dozens of cancer genemodules (such
as ESR1 present in 95 cancer gene modules, Supplementary Fig. S6b).
Not only can this help distinguish between driver and passenger genes,
but the genes in the associatedmodule can also provide insight into the
role of the driver. (4) Combination of ROCK2 inhibitor RKI-1447 pro-
vides a potential strategy for enhancing BRCA2 inhibitor sensitivity, but
more experiments are required to investigate what is the best effective
time of olaparib/RKI-1447 combination and why this effect of olaparib/
RKI-1447 combination disappears after 48 h. In addition, the good
performance of CGMega in the breast cell line (AUPRC=0.9140) and
AML patients (average AUPRC=0.8528) demonstrates that (1) CGMega
exhibits efficacy for both cell line and donor samples, as well as for both
solid tumor and liquid tumor studies. (2) CGMega is flexible for inputs
with few missing molecular features (for example, a lack of SNV and
CNV information in AML application), suggesting that our framework
may be applicable to other similar tasks.

Methods
Data collection and preprocessing
Our research complies with all relevant ethical regulations. In this
study, we collected well-known cancer genes and obtained mutations
(SNVs), CNVs, chromatin accessibility (ATAC-seq), histone modifica-
tion (H3K4me3 and H3K27ac), CTCF ChIP-seq, PPIs and 3D chromatin
(Hi-C) data from public databases. The details are as follows:

Collection of positive and negative training samples. The collection
of positive and negative samples was performed as previously
reported25. In brief, known cancer genes were extracted from the
Network of Cancer Genes (NCG)80, Cancer Gene Census (CGC)81 along
with high-confidence (level ≥0.95) cancer genes using DigSEE82.
Negative samples were selected using a rigorous exclusionary process,
considering all protein coding genes that were not marked as positive
and removing genes labeled as cancer-related or cancer candidates in
NCG and KEGG (https://www.kegg.jp/kegg/kegg1.html), along with all
genes from theOMIMdatabase (https://omim.org/). In addition, genes
predicted to be involved in cancer-related expressions and those with
regulatory effects on oncogenes by MSigdb83 were excluded. The
remaining genes were completely unrelated to cancer (where possible
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pan-oncogenes were also excluded) and were negative samples. The
final dataset consisted of positive samples and negative samples
obtained through these steps. Finally, 358 positive and 1581 negative
samples were collected for breast cancer cell line MCF7, and 598
positive and 1838 negative samples were collected for leukemia cell
line K562 and AML patients.

Omics data. The SNVs and CNVs information were retrieved from The
Cancer Genome Atlas (TCGA) project using the corresponding data
generated from the closest tumor types of breast cancer and myeloid
leukemia. As for SNVs, wefirstfiltered out the silent somaticmutations
and then we calculated the mutation frequency for a gene in a sample
by dividing the number of single nucleotide mutations of this gene by
its genomic length. We next averaged the mutation frequency of each
gene over all samples. The mean value of the obtained gene mutation
frequency was magnified by 1000 times as a dimension of gene fea-
tures. As for CNVs, we used the number of copy numbers of all samples
of the cumulative gene and divided them by the total number of
samples as the average CNV value as a dimension of gene features. For
chromatin accessibility, histone modification and transcription factor
binding, we downloaded ATAC-seq, H3K4me3, H3K27ac, and CTCF
ChIP-seq data from the ENCODEproject84 forMCF7 andK562 cell lines,
and from Gene Expression Omnibus (GEO) with accession number
GSE152136 for AML patients. We then calculated the signal densities at
gene promoter (TSS ± 1 kb) for each marker as gene features. Human
genome annotation (GRCh38) was used in this study.

Hi-C data. We collected Hi-C data from GEO with accession number
GSE66733 for the MCF7 cell line, GSE63525 for the K562 cell line, and
GSE152136 for AML patients. To remove the complex structural var-
iants and improve accuracy, we first performed NeoLoopFinder85 on
raw Hi-C contact maps to reconstruct local Hi-C data. Then, we nor-
malized Hi-C data using iterative correction and eigenvector decom-
position (ICE)41. Finally, we decomposed normalizedHi-C data into five
dimensions as gene features using SVD.

Protein–protein interaction network. We collected the PPI network
from theConsensusPathDB (CPDB)86 database, which incorporates the
interaction information from 32 widely used and important biological
databases. We removed the interactions with scores (indicating
experimental evidence of the interaction) lower than 0.5 and finally
included approximately 270,000 interactions as graph edges. To
validate the suitability of CGMega on other PPIs (Supplementary
Fig. S3a), we also tested CGMega on other four PPIs including IRef,
Multinet, PCNet, and STRING. These PPIs were downloaded and pre-
processed as previously described25. Notably, Multinet dataset con-
tains the fewest PPIs compared to other datasets, resulting in a 0.03%
sparsity of CGMega input graph. We constructed condensed Multinet
data by removing the 5143 isolated nodes in above Multinet input
graph and generated a connected graph, in which contains 11,022
nodes and the sparsity is 0.07%.

Dataset organization
According to the above data collection and preprocessing, we
removed genes with no corresponding information and finally
obtained 16,165 protein-coding genes. Then we constructed the multi-
omics information combination graph, an undirected graph, in which
nodes represent genes and edges are obtained from CPDB PPI net-
work. For the MCF7 and K562 cell lines, the node features include a
total of 15 dimensions including ATAC-seq (1), CTCF (3), H3K4me3 (2),
H3K27ac (2), CNV (1), SNV (1), and Hi-C (5). For AML patients, it is
unavailable to get patient genomic information (SNV and CNV), and
node features comprise a total of eight dimensions including ATAC (1),
CTCF (1), H3K27ac (1), and Hi-C (5). For experiments on different PPI
networks, graph edgeswere alternatively obtained from IRef,Multinet,

PCNet, and STRING. In this study, CGMega predicts cancer genes in a
semi-supervisedmanner. Genes were labeled as positive, negative, and
unknown according to the above section “Collection of positive and
negative training samples”. To conduct evaluation, 25% of the positive
and negative genes were assigned to the test set while the remaining
75%wereused for training. A tenfold cross-validationwasemployedon
the training set to optimize hyperparameters. Using the same evalua-
tion strategy of EMOGI, we obtained 10 models corresponding to the
tenfold cross-validation, and assessed their performance on the test
set, respectively. The reported metrics were derived from averaging
the predictions of the 10 models on the test set. The combination
graph for multi-omics information is constructed and then converted
into a graphical structure dataset using PyTorch Geometric87 for fur-
ther processing and computation.

GAT-based cancer gene prediction model
The model consists of two graph transformer layers, two fully con-
nected linear layers, two layer-norm layers, onemax-pooling layer, and
one dropout layer. The two graph transformer layers are used to
perform GATmechanism, as is discussed in the following section. The
output of each graph transformer layer is passed through a corre-
sponding layer-norm layer to normalize the activation:

x0
i =

xi � E xi

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var xi

� �
+ ϵ

q � γ +β, ð1Þ

where xi denotes the embedding of node i, ϵ denotes a small constant,
and γ and β denote learnable affine parameters.

Themax-pooling layer is used to reduce the dimensionality of the
features extracted by using the graph transformer layers. The two fully
connected linear layers are used to make the final prediction, with the
first linear layer transforming the data into a 32-dimensional repre-
sentation and the second linear layer producing the final output. The
dropout layer is used to prevent overfitting.

Multi-omics feature calculation. First, CGMega transfer original
multi-omicsdata to input embedding according toDataCollection and
Preprocessing. In detail, ATAC-seq, H3K4me3, H3K27ac, and CTCF
ChIP-seq data are processed by the computeMatrix method of
deepTools88. CNV and SNV frequency are calculated as the following
equation:

xCNV
i =

P
s2Sv

CNV
s,i

Sj j , ð2Þ

xSNV
i =

P
s2Sv

SNV
s,i

Sj j � len Genei
� � , ð3Þ

where S denotes the sample set, s denotes a single sample, vCNVs,i and
vSNVs,i denote the original value of CNV and SNV to sample s and gene i
and len Genei

� �
denotes the length of gene i. The raw Hi-C matrix is

corrected by NeoLoopFinder and ICE, and then a gene contact matrix
C is derived by mapping bin locations to genes:

C =

c11 � � � c1n

..

. . .
. ..

.

cn1 � � � cnn

2
664

3
775, ð4Þ

cij =
Xm
a=m0

Xn

b=n0
hab, ð5Þ
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where hab denotes elements in Hi-C matrix H, cij denotes elements in
gene contact matrix C and gene i and j are located within the range
½m0,m� and n0,n½ � in the chromosome respectively. Finally, the gene
contact matrix C is decomposed to 5 dimensions using SVD. All the
features after normalization are concatenated together to form the
input feature matrix X as follows:

xi = xATAC
i ,xCTCF

i ,xH3K4me3
i ,xH3K27ac

i ,xCNV
i ,xSNV

i ,xHiC
i

� �
, ð6Þ

X = x1,x2, . . . ,xn

� �T
: ð7Þ

Graph transformer layer. CGMega employs two graph transformer
layers89 to enable graph message passing. In the graph G= V ,Eð Þ, the
nodes are associated with feature matrix X 2 Rn×m. A node i passes
through a single layer as the following equation:

x0
i =GraphTransformerConv G,xi

� �

=W 1xi +
X
j2N ið Þ

αijW 2xj, ð8Þ

and the attention score of an edge from j to i can be calculated as
follows:

αij =
W 3xi

� �T W 4xj

� �
ffiffiffiffi
d

p , ð9Þ

where W 1,W 2,W 3 and W4 denote different learnable parameter
matrices,N ið Þ denotes all neighbor nodes of node i and d is the hidden
size of each head.

To further mitigate the over-smoothing and effectively leverage
the node features, CGMega also includes a residual connection for the
nodes’ initial features. The resulting representation learningmodel can
be represented using the following equation:

x l + 1ð Þ
i =GraphTransformerConv G, xl

i ,xi

h i� �
, ð10Þ

where xl
i ,x

l + 1ð Þ
i denotes the embedding before and after the last

CGMega layer and xi denotes the input embedding.

Training settings. In the experiments, a warm-up strategy for the
learning rate was employed to improve stability and avoid falling into
local minima during the initial training phase. The learning rate
increased linearly from 0 to 0.005 for the first 20% of the total itera-
tions. To prevent overfitting and over-smoothing, an early stop strat-
egy was implemented that would stop the training process if the
model’s performance on the validation set did not improve over a
consecutive 100 epochs. This strategy helps prevent the waste of
computational resources and ensures that the model can achieve its
optimal performance within a reasonable number of training itera-
tions. To improve model robustness and reduce overfitting, the
dropout ratewas set to 0.1 for the attentionmechanism and0.4 for the
other modules. The max-pooling step size was set to 2, resulting in a
32-dimensional representation. To reduce the number of parameters
and ensure that training is feasible within the time and resource con-
straints, input graphs were sampled using neighbor sampler90. The
subgraphs included all first and secondorder neighbors for each node,
and training was performed on these subgraphs. Because the positive
and negative samples in the datasetwere highly imbalanced, especially
in the breast cancer dataset, which had an approximate ratio of 1:4,
50% of the negative samples were removed from training to prevent
bias towards negative samples. These hyperparameters were deter-
mined via grid search.

Gene module interpretation
We implemented GNNExplainer to interpret the important gene fea-
tures and interactions for cancer gene prediction. Given node i,
GNNExplainer identified a subgraph GSi � G that contains the relevant
features XSi that are crucial for the predicting ŷi. GSi is a connected
subgraph for which the gene nodes cover at maximum a two-hop
region with no more than 20 edges. The task can be formulated with
the following optimization framework:

max
GS

MI Y , GS,XS

� �� �
=H Yð Þ �H Y jG =GS,X =XS

� �
: ð11Þ

For undirected graphs such as PPI in this work, a symmetricMi is
maintained during optimization. The values forMi and f i represent the
importance of corresponding edges and features, and the explanation
GSi and XSi for the prediction ŷi at node i are computed as follows:

GSi =Ai � 1fM i ≥ edge thresholdg, ð12Þ

XSi = fx0
j j j 2 GSig, ð13Þ

where x0
j =xj � 1ff i ≥ feature thresholdg

Methods comparison
We compared the performance of CGMega with other relevant meth-
ods. Here, we provided detailed descriptions of the model archi-
tectures and hyperparameter settings for these methods. MTGCN,
EMOGI, and MODIG maintained the same model architectures as
described in their original papers. For MTGCN, the dimensions of the
two hidden layers were set to 300 and 100, respectively, with a linear
layer dimension of 100. The dropout rate was set to 0.5. As for EMOGI,
the dimensions of the two hidden layers were also 300 and 100, with a
dropout rate of 0.5. The lossmultiplier was set to 45.0, and the weight
decay was set to 0.0005. For MODIG, the dimensions of the two hid-
den layers were 300 and 100 but with a dropout rate of 0.25. Omics
networks fromMODIG were not used in order tomaintain consistency
with the comparison against other methods. Both GCN and GAT
adopted a two-layer architecture,withparameters kept consistentwith
CGMega. TheMLP consisted of two linear layers, with the hidden layer
and dropout settings matching those of CGMega. The optimal hyper-
parameters of SVM were determined through gird search. The poly-
nomial kernel was selected, with C set to 1.0 and gamma set to the
reciprocal of the product of the number of features and the varianceof
the input data. Though the comparison was conducted with sufficient
fairness, the performance difference between MODIG and CGMega
mainly derived fromdifferent datasets.MODIGwas developed for pan-
cancer geneswhileCGMegawas usedon cancer-specificgenes, and the
distinct difference between these two datasets affects MODIG
performance.

Cell viability assay
The cells were seeded in a 96-well plate, treated with an inhibitor or
placebo for 24 h, 48 h, or 72 h, and cultured in an incubator with cck-8
(sigma, Germany) for 1 h. The absorbanceof 450 nmwas detectedwith
an enzyme labeler (Tecan Infinite, Switzerland). Cell activity was cal-
culated as a centenary value compared to the untreated control group.
The data came from independent experiments, each of which was
repeated three times. No statistical method was used to predetermine
sample size. No data were excluded from the analyses. The experi-
ments were not randomized. The investigators were not blinded to
allocation during experiments and outcome assessment.

Western blot analysis
The total proteins were obtained by lysing cells in ice-cold radio-
immunoprecipitation assay (RIPA) buffer for 30min on ice. After
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centrifugation at 5180 × g at 4 °C for 15min, proteins in the super-
natant were subjected to 10% or 8% sodium dodecyl sulfatepolya-
crylamide gels (SDS-PAGE Gel Quick Preparation Kit, P0012AC,
Beyotime, China) and then transferred to nitrocellulosemembranes.
The membranes containing proteins were incubated at 4 °C for 16 h
with primary antibodies against BRCA2 (1:500, EPR23442-43,
Abcam, Cambridge, United Kingdom, Cat No 29450-1-AP, clone
name: FACD, FANCD1), ROCK2 (1:1000, sc-100425, SANTA CRUZ
Biotechnology, the United States, Cat No 21645-1-AP, clone name:
KIAA0619, p164 ROCK2, Rho kinase 2), GAPDH (1:30,000, 80570-1-
RR, Proteintech, the United States) and then with secondary HRP-
conjugated anti-mouse (1:3000, A0216, Beyotime, China), or anti-
rabbit antibodies (1:3000, A0208, Beyotime, China) for 1 h at room
temperature. For the validation of the above antibodies: for ROCK2,
HT-1080 cells were subjected to SDS-PAGE followed by western blot
with 21645-1-AP (ROCK2(middle) antibody) at dilution of 1:1000
incubated at room temperature for 1.5 h; for BRCA2, various lysates
were subjected to SDS-PAGE followed by western blot with 29450-1-
AP (BRCA2 antibody) at dilution of 1:4000 incubated at room tem-
perature for 1.5 h; for GAPDH, western blot of Hela cell with anti-
GAPDH (60004-1-Ig) at various dilutions. The labeled proteins were
detected using immobilon Western Chemiluminescent HRP Sub-
strote kit (WBKLS0500, Millipore, USA) and an LAS-4000 imaging
system (Fujifilm Inc., Stanford, CT, USA). Source data are provided in
the Source Data file.

Representative features calculation
According to the feature importance scores calculated by GNNEx-
plainer, we defined representative features (RFs) for each gene as
features that have relatively prominent importance scores. In detail,
for a given gene, among its features from ATAC, CTCF, H3K4me3 and
H3K27ac, SNVs, CNVs, and Hi-C, if a feature is assigned with impor-
tance score as ten times higher than the minimum score, it is referred
to as the RF for this gene. We here briefly discuss how the threshold of
10-fold of the minimum was determined. At first, we explored 16 dif-
ferent scenarios when the threshold was set from 5 to 20 and found
that either too low or too high a threshold will lead to unreasonable
results from the mechanism or scale of cancer genes. When the
threshold was set to 5, the number of genes predicted as involving
multiple carcinogenic mechanisms reaches over one thousand, an
unreasonably high number, since it is rare that a single gene being
linked to cancer through multiple ways. However, this does not mean
thehigher thresholdwill lead tomoregenuine calculations, becausean
excessively high threshold will omit the potential carcinogenic
mechanisms of different genes. Therefore, the threshold of tenfold of
minimum was determined as a trade-off of genuineness versus
comprehensiveness.

Identification of candidate AML genes
For each patient, unknown genes with prediction scores ranking in
the top 10% were reserved as the predicted cancer genes. Then, we
examined all of the predicted cancer genes across the eight patients
and defined the candidate AML genes as those genes predicted as
cancer genes for every patient. The corresponding modules for
candidate AML genes were calculated by GNNExplainer in a manner
similar to the sections of interpretation mentioned above.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. In this study,
we collected data from public databases. ATAC-seq, H3K4me3,

H3K27ac, and CTCF ChIP-seq data were obtained from the ENCODE
project for MCF7 and K562 cell lines, and from Gene Expression
Omnibus (GEO) with accession number GSE152136 for AML patients.
PPI network was obtained from the ConsensusPathDB (CPDB) data-
base. Hi-C data were obtained from GEO with accession number
GSE66733 for the MCF7 cell line, GSE63525 for the K562 cell line, and
GSE152136 for AML patients. External datasets for CGMega perfor-
mance were described in Source Data file. Source data are provided
with this paper.

Code availability
Source codes for running CGMega91 are available on Zenodo (https://
zenodo.org/records/10086978).
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