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OmicVerse: a framework for bridging and
deepening insights across bulk and single-
cell sequencing

Zehua Zeng 1,2,9 , Yuqing Ma3,4,9, Lei Hu 1,5,9, Bowen Tan 6,7, Peng Liu1,
Yixuan Wang1, Cencan Xing 1,2 , Yuanyan Xiong 8 & Hongwu Du 1,2

Single-cell sequencing is frequently affected by “omission” due to limitations
in sequencing throughput, yet bulk RNA-seq may contain these ostensibly
“omitted” cells. Here, we introduce the single cell trajectory blending from
Bulk RNA-seq (BulkTrajBlend) algorithm, a component of the OmicVerse suite
that leverages a Beta-Variational AutoEncoder for data deconvolution and
graph neural networks for the discovery of overlapping communities. This
approach effectively interpolates and restores the continuity of “omitted” cells
within single-cell RNA sequencing datasets. Furthermore, OmicVerse provides
an extensive toolkit for both bulk and single cell RNA-seq analysis, offering
seamless access to diverse methodologies, streamlining computational pro-
cesses, fostering exquisite data visualization, and facilitating the extraction of
significant biological insights to advance scientific research.

Single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing
(RNA-seq) have emerged as essential techniques for exploring cellular
heterogeneity, differentiation, and disease mechanisms1–6. These
technologies facilitate numerous applications, including converting
bulk-seq data into single-seq analyses7, performing differential
expression analysis8, pathway enrichment9, gene co-expression net-
work analysis in bulk RNA-seq10, cell annotation11, cell interaction
analysis12, cell-trajectory inference13, evaluating cell-state in gene sets,
and predicting drug response in scRNA-seq14. Many of these approa-
ches rely on open-source algorithms contributed by the research
community15,16.

Nevertheless, the growing diversity and abundance of omics
algorithms pose challenges in selecting tools that are accurate, user-
friendly, and appropriate for specific analyses. Learning to use various
algorithms often leads to computational inefficiencies, as users are

required to adapt to various systems.Moreover, for analyses involving
low data quantities, researchers commonly employ web servers and
the R language17, whereas Python is preferred for processing large-
scale datasets18.

Integrating single-cell and bulk sequencing results can be intri-
cate, producing complex, multi-layered data sets that challenge the
extractionofmeaningful biological insights. A recognized impediment
in single-cell sequencing is the “omission”—the omission of certain cell
types due to technological constraints on the sequencing platformand
interruption of the trajectory of cell differentiation, such as the enzy-
matic lysis-related loss of podocytes and intercalated cells19. For
example, the differentiation from hematopoietic cells (HPC) to
podocytes was interrupted, and the filtering-induced absence of neu-
trophils, cardiomyocytes, neuronal cells, and megakaryocytes and the
differentiation from neural intermediate progenitor cells (nIPC) to
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neurons was interrupted20,21. The BD Rhapsody™ single-cell platform
overcomes granulocyte loss by accommodating their natural
sedimentation22. Conversely, bulk RNA-seq of whole tissues intrinsi-
cally includes these “omitted” cells. It should be acknowledged that
there is no existing algorithm that can directly solve the “omitted” cell
problem. However, similar to this problem, there are some deconvo-
lution algorithms, such as TAPE23, CIBERSORT (CS)24, MuSiC25, CIBER-
SORTx (CSx)26, and Bisque27, which are not really effective in solving
the “omitted” cell problem because they lack a generative capability.
This suggests that Generative Adversarial Networks (GANs)may be the
best solution to the “omitted” cell problem.

To address these challenges, we have developed OmicVerse
(https://omicverse.readthedocs.io/), a comprehensive Python library
designed for transcriptomic research.OmicVerse streamlines access to
a spectrum of models and algorithms for bulk-seq and scRNA-seq
analyses, improving computational efficiency and visual engagement.
Rewritten models and algorithms and integrated different pre-
processing options stem from benchmark testing28 (Supplementary
Note 1). Moreover, OmicVerse features single cell trajectory blending
from Bulk RNA-seq (BulkTrajBlend), a specialized algorithm for
addressing “omission” in single-cell data. BulkTrajBlend employs a
beta-variational autoencoder and graph neural network-based algo-
rithm todeconvolve single-cell data frombulkRNA-seq, facilitating the
identification of “omitted” cells within the reconstructed single-cell
landscape.

Results
Design concept of BulkTrajBlend and Benchmarking
The conceptualization of BulkTrajBlend draws upon prior research,
proposing that Bulk RNA-seq data is a composite of scRNA-seq data
through a nonlinear superposition mechanism29,30. Central to this
notion is the implementation of the beta-variational autoencoder (β-
VAE), a potent tool for approximating Bulk RNA-seq data to scRNA-seq
representation31,32. Integrating the β-VAE enables the construction of
an encoder and decoder from single-cell data, traditionally char-
acterized by unconstrained attributes.

BulkTrajBlend advances the foundational structure of auto-
encoders (AE) and β-VAE. These enhancements involve (1) employing
an AE to construct a Bulk RNA-seq generator analogous to real Bulk
RNA-seq inspired by TAPE23.Wemodeled the cellular proportion space
of Bulk RNA-seq on the output of the Encoder, the input of the
Decoder. Subsequently utilizing ground truth bulk RNA-seq generated
from single cell RNA-seq as input of Encoder for calculating the true
cellular fractions. (2)Whenwe trained β-VAE using real single cell RNA-
seq, the Encoder outputs were V (cell type fraction) and W (cell type
correlated generative factor). We added a loss function to minimize
the relationship between V and the real cell type fraction. We obtained
W for each cell at the end of model training and averaged W for each
cell type to represent that cell type. (3) We used the true cell type
fraction V calculated by AE with the cell type-associated generating
factorW obtained by β-VAE as input to β-VAE for generating single-cell
data, and deploying unsupervised clustering to denoise and refine the
outcomes of the β-VAE. (4) We employed a graph neural network
(GNN) to sample the generated single-cell data, thereby identifying
overlapping cell communities. Sampling the overlapping communities
of cells helps us to insert “omitted” cells without losing cell continuity.

The methodology based on β-VAE approximates the joint dis-
tribution of data x and latent generating factors z by estimating the
probability distribution qθ zjxð Þ relative to the true posterior qθ xjzð Þ:
Here, x denotes gene expression data, and z characterizes the nor-
mally distributed parameters of x post-sampling. It is noteworthy that
this approximation introduces a level of noise and bias into the gen-
erated data (Supplementary Fig. 1e). Consequently, unsupervised
clustering is employed as a data refinement strategy to mitigate the
impact of noise and enhance data robustness. We use unsupervised

clustering to filter out “noisy” cells, which are identified using com-
munity size.

Another notable limitation of β-VAE lies in the unconstrained
nature of the decoder’s output. This contrasts with the real Bulk
environment, where the cellular ratios are not strictly fixed. To address
this discrepancy, a simulatedBulk environment is constructed through
the sampling of single-cell data, with the procedural details outlined in
the “Methods” section. This process is facilitated by a deep neural
network (DNN)-based autoencoder model, where the simulated Bulk
serves as input, the encoder’s output reflects the proportions of actual
cells, and the simulated Bulk constitutes the decoder’s output. Mean
absolute error (MAE) is used as the evaluation metric for both the
encoder anddecoder. Subsequent tomodel convergence, the realBulk
data is utilized as input for the AEmodel, with the critical requirement
being the alignment of the generation, based on the best-pretrained
decoder, with the real Bulk data. At this point, the cell proportions
output by the encoder accurately reflect the cell proportions of the
actual Bulk (Fig. 1a).

Given that BulkTrajBlend’s primaryobjective is to interpolate data
from original scRNA-seq data, the focus shifts to the targeted extrac-
tion of cells from the generated single-cell data. Considering the
inherent challenges associated with cell annotation, the input single-
cell data containing diverse cell types is expected to exhibit overlaps in
real-world scenarios. The “omitted” cells we need to recover should
maintain the continuous state of the cells, the traditional community
discovery algorithms cannot identify the overlapping cell commu-
nities. Cells generated by β-VAE are directly restored to the original
single-cell data, which will lose the continuous state of the cell. To
solve this problem, we introduce NOCD, a GNN-based algorithm for
identifying overlapping communities that achieves the best perfor-
mance among existing baselines33. Utilizing NOCD enables the identi-
fication of overlapping cell communities. We also use the “omitted”
cell in the overlapping community state as the target cells for recovery.
This insight is crucial for the subsequent task of recovering and
reconstructing cell differentiation trajectories within the single-cell
sequencing data (Fig. 1b).

To assess the efficacy and accuracy of BulkTrajBlend in the con-
text of cell differentiation trajectory recovery, a rigorous benchmark-
ing exercise is undertaken. The VAE module within BulkTrajBlend is
systematically compared against alternative generative models,
including conditional generative adversarial networks (CGAN)34 and
auxiliary conditional GANs (ACGAN)35. This benchmarking exercise
involves assessing a range of performance metrics for generating
scRNA-seq features and trajectory inference features. These metrics
include the correlation of cell-type marker gene expression, marker
gene similarity (quantified via cosine similarity), probability of trajec-
tory conversion post-interpolation, and the degree of data variability
following interpolation. Notably, the findings consistently demon-
strate BulkTrajBlend’s superior performance, characterized by heigh-
tened correlations in marker gene expression, marker gene similarity,
trajectory conversion probabilities, and minimal post-interpolation
data variability in the generated single-cell data (Fig. 1c–f, Supple-
mentary Note 2, Supplementary Figs. 2–4).

Impact of varied hyperparameters on interpolation perfor-
mance in BulkTrajBlend
This study explores the effect of varying hyperparameter settings on
the performance of BulkTrajBlend, a tool reconstruction OPC tra-
jectories in the Dentate gyrus dataset and interpolating Basophil
within the HPC dataset. We analyzed the impact of hyperparameter
variations by examining five key factors: (1) the number of inter-
polated cells, (2) the correlation of marker gene expression between
interpolated and actual cells, (3)marker gene similarity, (4) transition
probabilities following interpolation, and (5) the prevalence of noise
clusters.
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Initially, the effect of changing the size of the input single-cell
data, ranging from 1000 to 20,000 cells, was investigated. An
increase in data size resulted in higher correlations of marker gene
expression and improved single-cell similarity as performed by
BulkTrajBlend (Fig. 2a, b). The transition probabilities, however, were
only slightly better (Fig. 2c). Notably, an inverse relationship was
found between the saturation of cell numbers and the frequency of
noise clusters (Fig. 2d).

Next, the effect of interpolation size was examined, with sizes
ranging from 1 to 10 times the original number of target “omitted”

cells. Marker gene correlation and single-cell similarity improved sig-
nificantly within the 1-4x interpolation range, outperforming the 6-10x
range. Conversely, larger interpolation sizes were correlated with a
notable increase in noise clusters (Fig. 2e–h).

Contrary to expectations, a detailed analysis of the number of
neurons in BulkTrajBlend’s hidden layer, with a range from 64 to 1024,
revealed that a hidden layerwith only 64 neurons exhibited the highest
marker gene correlation, similarity, and transition probability for
interpolated single cells, while also reducing noise cluster occurrences
(Fig. 2i–l).
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Fig. 1 | Architecture of the BulkTrajBlend framework. a Single-Cell Profile Gen-
eration in BulkTrajBlend: This stage outlines the creation of single-cell profiles. An
initial single-cell profile, representing the ground truth for cell fractions, and
simulated bulk transcriptome data are input into an autoencoder (AE). Simulta-
neously, real bulk transcriptomedata serve as the optimal input for the AE. TheAE’s
predicted cell fractions define the clustering space of the resulting single-cell
profile, which is then processed by a β-VAE to generate a profile similar to that of
real bulk data. Any noise in this profile is reduced using unsupervised clustering.
b “Omitted” Cell Detection in BulkTrajBlend: Here, a neighborhood graph con-
structed via UMAP based on the generated single-cell data identifies nodes corre-
sponding to individual cells and delineates distinct communities by cell type. The
annotated graph is the input for a Graph Neural Network (GNN) that detects
overlapping communities and identifies mixed cell types, which are then reinte-
grated into the original single-cell profile. Overlap-CellType: a one-hot matrix of

cell types for the overlapping Celltypes. c Correlation Score of Cell-Type Marker
Gene Expression: This component displays correlation scores for cell-type marker
gene expression across three models within the Dentate Gyrus and Hematopoietic
datasets. d Cell-Type Marker Similarity Assessment Using Cosine Similarity: This
part addresses the assessment of similarities between cell-typemarker genes using
cosine similarity. e Probability of Cell Conversion: The framework evaluates the
likelihood of nIPC (neurogenic intermediate progenitor cells) becoming OPC (oli-
godendrocyte progenitor cells) against the backdrop of interpolated OPC cells in
the Dentate Gyrus dataset, and the corresponding likelihood for the conversion of
HSC (hematopoietic stem cells) to Basophil cells with interpolated Basophil cells in
the Hematopoietic dataset. f Pseudotime Density for OPC Cells: This final compo-
nent illustrates the pseudotime density of OPC cells incorporating interpolated
OPC cells in the Dentate Gyrus dataset, coupled with an analogous representation
for Basophil cells post-interpolation in the Hematopoietic dataset.
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Fig. 2 | The systematic hyperparameter testing for interpolation performance.
The tests examine varying sizes of raw single-cell profiles as input in a–d: (a) The
quantity of “omitted” cells generated from Basophil cells in the Hematopoietic
dataset and OPC cells in the Dentate Gyrus dataset, respectively. b The analysis
juxtaposes two aspects: on the left panel, the expression trends’ correlation of
marker genes between the reference and generated single-cell profiles; and on
the right panel, the similarity between marker genes of the two profiles. c The
transition probability of the generated target cells is computed along the cellular
developmental trajectories, with Basophil cells in the Hematopoietic dataset and
OPC cells in the Dentate Gyrus dataset. d The extent of noise clusters present in

single-cell profiles, with the Hematopoietic dataset on the left and Dentate Gyrus
on the right. e–h The scale sizes of the generated target cells utilized as input is
scrutinized. i–l The sizes of neurons in the hidden layer vary as input.m The flow
trend of cell developmental trajectories of neurogenic intermediate progenitor
cells (nIPC) is visualized on UMAP plots for the Dentate Gyrus on the left and the
Hematopoietic dataset on the right. n Cell-state transition directed graphs within
the trajectory of Partition-based Graph Abstraction (PAGA) graphs are presented
for the Dentate Gyrus on the left and Hematopoietic dataset on the right. o The
model’s runtime in relation to different sizes of raw single-cell profile inputs is
illustrated.
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In conclusion, the ideal hyperparameter setting involves using the
entire single-cell dataset, interpolating at a scale of 2x or 4x, and
configuring a hidden layer with 64 neurons. Under these optimal
hyperparameters, BulkTrajBlend effectively reconstructs the nIPC-
OPC developmental flow pattern in dentate gyrus datasets and the
HSC-Basophil flow pattern in hematopoietic system development
datasets (Fig. 2m,n). It is important to note that using the full single-cell
dataset improves accuracy, which also significantly increases compu-
tational demands (Fig. 2o).

Proficient reconstruction of cell developmental trajectories in
simulated “omission” single-cell profiles
Our study extended beyond evaluating BulkTrajBlend’s ability to
reconstruct developmental trajectories in real datasets, by also
examining its performancewithin simulateddatasets.We crafted three
simulated datasets with specific “omission”: the first omitted a subset
of Ngn3High endocrine progenitor-precursor (Ngn3High EP) cells in
mouse pancreas development, the second removed immature gran-
ules from mouse dentate gyrus neurons development, and the third
excluded hematopoietic stem cells (HSC) mesomorphic cells from
human bone marrow development. These cells were successfully
recognized in the reconstructed developmental trajectories within
these simulated “omission” datasets (Fig. 3a–c, Supplementary Fig.
5a–c, Supplementary Fig. 5g–i).

In the mouse pancreatic development dataset, PAGA plots illu-
strated a baseline probability of 0.04 for Ngn3High EP cells

differentiating into Pre-endocrine cells. In the corresponding “omis-
sion” dataset, this probability was 0. BulkTrajBlend interpolation
increased the probability to 0.035 (Fig. 3d–g, Supplementary Fig.
6a–c). In the mouse dentate gyrus neurons development, Granule
Immature cells had baseline differentiation probability to Granule
Mature cells of 0.018, while no probability was observed in simulated
“omission” dataset. BulkTrajBlend’s interpolation resulted in a prob-
ability increase to 0.019 (Fig. 3g, Supplementary Fig. 5d–f, Supple-
mentary Fig. 6d–f). In human bone marrow development,
hematopoietic stem cells stage 2 (HSC 2) cells showed a differentiation
probability into monocytes of 0.082, compared to 0 in the simulated
“omission” dataset. Following BulkTrajBlend interpolation, the prob-
ability increase to 0.079 (Fig. 3g, Supplementary Fig. 5j–l, Supple-
mentary Fig. 6g–i). Notably, the original pseudotime variability in the
three datasets was preserved after interpolation (Supplement Note 3).
These analyses collectively highlight BulkTrajBlend’s effectiveness in
accurately reconstructing authentic developmental trajectories.

OmicVerse provides a comprehensive analysis platform for Bulk
RNA-seq data
Bulk RNA-seq is an established method for investigating the tran-
scriptome of combined cellular samples, tissue or biopsies6. It probes
gene expression, isoform variations, alternative splicing, and single-
nucleotide polymorphisms, revealing critical biological information
such as copy number variations, microbial contamination, transpo-
sable elements, cell-types deconvolution, and neoantigens. Advances

Pancreas (BulkTrajBlend)Pancreas
(Dropouts of Ngn3 high EP)

Pancreas (Raw)a b c

PAGA Pancreas (BulkTrajBlend)PAGA Pancreas 
(Dropouts of Ngn3 high EP)

PAGA Pancreas (Raw)d e f

Transitions Confidence
of Dropouts Celltype

Variance of Pesudotime Between
Raw, Dropouts and BulkTrajBlend

g

h

Fig. 3 | Reconstruction of cell developmental trajectories in simulated “omis-
sion” within single-cell Profiles. a–c Sequentially depicted are the raw pancreas
dataset’s velocity stream, the effect of simulatedomission via cell dropouts, and the
refined dataset post-interpolation with BulkTrajBlend for dropout imputation as
determinedby pyVIA. The UMAP embedding is color-coded by cell type, consistent
with the initial cluster annotations. Explained are the following cell types: Ngn3High

EP, Ngn3High endocrine progenitor-precursor; Ngn3Low EP, Ngn3Low endocrine pro-
genitor-precursor, Alpha, glucagon- producing α-cells; Beta, insulin-producing β-
cells; Delta, somatostatin-producing δ-cells and Epsilon, ghrelin-producing ε-cells.
d–fDisplayed in sequence is the directed graph overlaid on the UMAP embeddings
for the raw pancreas dataset, the dataset with “omission” in cell dropouts, and the

dataset post-BulkTrajBlend interpolation based on pyVIA’s dropout assessments.
g The confidence in cell state transitions as determined by pyVIA is presented for
variousdatasets and experimental conditions. The corresponding colorbars signify
the methodology employed. Specifically, for the pancreas dataset with Ngn3High EP
dropouts, the displayed confidence indicates the transition fromNgn3High EP to pre-
endocrine cells. In the bone marrow dataset with HSC dropouts, the values repre-
sent the transition confidence fromHSC toMonocytes. Likewise, theDentateGyrus
dataset with dropouts of Granule Immature cells indicates the transition con-
fidence from Granule immature to Granule mature cells. h The variance in pseu-
dotime, as estimated by pyVIA, is documented across different datasets and
experimental manipulations.
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in bioinformatics have enhanced the ability to reveal these hidden
dimensions inBulk RNA-seqdata, expanding its analytical applications.

OmicVerse integrates an extensive collection of Bulk RNA-seq
analysis algorithms, previously developed mostly in R but now
increasingly in Python, to promote their utilization and
interconnectivity36. Our integration enhances the existing repertoireof
analysis algorithms catering to single-cell, spatial transcriptomics, as
well as machine learning and deep learning models37.

The platform hosts a comprehensive assortment of Bulk RNA-seq
algorithms, including pyComBat38 for batch correction, pyDEG for
differential expression analysis using Deseq239, t-test, and Wilcoxon
tests, pyPPI for protein-protein interaction network using STRINGweb
API40, pyWGCNA for gene co-expression network41, pyGSEA for gene
set enrichment analysis42, and pyTCGA for The Cancer Genome Atlas
(TCGA) data analysis, complete with survival analysis (Fig. 4a).

To evaluate the OmicVerse’s analytical pipeline, we analyzed
Alzheimer’s disease (AD) data, beginning with pyDEG to identify dif-
ferential expressed genes between AD patients and controls, high-
lighting the top 10 foldchange genes. Then, we conducted Gene Set
Enrichment Analysis at the gene level using pyGSEA, ordering genes
according to p-values derived from pyDEG’s differential expression
analysis. We further built a co-expression network from the top 5000
genes exhibiting the highest absolute median difference (MAE),
selecting the most differential expression module for visualization
(See Supplementary Note 4 for Methods).

OmicVerse’s workflow simplifies Bulk RNA-seq analyses with
minimal coding required (Fig. 4b). Parameter adjustments may
enhance visual outputs. Our analysis revealed 56 genes differentially
expressed in AD: 48 upregulated and 8 downregulated. Box plots
showcased the most altered genes (Fig. 4c–e). Gene Set Enrichment
Analysis exposed over-represented pathways relevant to Alzheimer’s,
consistent with established literature (Fig. 4f,g).Moreover, we focused
on the most variable genes from the top 5000, discerning 12 modules
through pyWGCNA at 5 soft threshold. Notably, modules 4 and
5 showed the highest rates of differential gene expression, with mod-
ule 5 containing APP proteins. Further probing of these modules pro-
vides insight into their network connectivity (Fig. 4h–j).

OmicVerse provides a versatile multifaceted framework for
Single-Cell RNA-Seq Analysis
Single-cell RNA-seq is a powerful high-throughput technique that
enables themeasurement of gene expression patterns and cell types at
the single-cell level. It has become a crucial technique for delineating
cellular heterogeneity, differentiation, and disease mechanisms, par-
ticularly in cancer research. scRNA-seq unravels tumor cell diversity
and tracks tumor progression to anticipate cellular deterioration43.
The breadth of scRNA-seq data analysis facilitated by OmicVerse
includes cell annotation, examination of cell interactions, trajectory
inference, states evaluation within gene sets, and drug responses
prediction44. The framework supports Anndata-standardized data
processing for integrated downstream analysis and benefits from
benchmarked data transformations28. Preprocessing methods in
OmicVerse feature optimal logarithmic transformation with pseudo-
count addition, principal-component analysis (PCA), and Pearson
residual normalization. For visualizing reduced dimensions, it employs
GPU-accelerated Uniform Manifold Approximation and Projection
(UMAP) through pymde45.

Incorporating a suite of state-of-the-art scRNA-seq algorithms,
OmicVerse’s integrated toolset includes pyHarmony46, pyCombat38,
scanorama47 for batch correction, pySCSA48, updated with
CellMarker49 2.0 and CancerSEA50 for enhanced cell-type annotation,
CellPhoneDB12 for cell-cell interactions analysis pyVIA13 for trajectory
inference, AUCell for geneset score evaluates based on Area Under the
Curve51, and scDrug for drug prediction14 (Fig. 5a). The OmicVerse
framework also introduces SEACells for metacell analysis, effectively

minimizing single cell profile noise52. Importantly, the data format
input for all the aforementionedmethods is consistent, enabling users
to conduct analyses using Anndata format, with significantly improved
visualization for more elegant results. OmicVerse’s user-friendly nat-
ure and straightforward application are exemplified in Fig. 5b.

Illustrating Omicverse’s practical application in scRNA-seq, we
analyzed a colorectal cancer (CRC) dataset, emphasizing the tumor
microenvironment (TME) cell atlas integration53,54. Beginning with
automatic cell annotation via pySCSA, the results showed high con-
cordance with manual annotations (Fig. 5c), with an f1_score of 0.856,
highlighting OmicVerse’s annotation accuracy (Fig. 5d). Using AUCell,
we confirmed the expected signaling pathway enrichment in cell-
specific receptor pathways: the B-cell receptor signaling pathway was
prominence in B cells, while the T-cell receptor signaling pathway was
most pronounced in T cells and NK cells (Fig. 5e). In addressing the
sparsity inherent in previous CRC single-cell data analysis and
to enhance resolution and depth, we utilized SEACells to extract
metacells from the scRNA-seq data. After 39 epochs, the metacell
aggregation iteration converged, attaining a high cell purity of 0.98,
with compactness and separation values closely approximating 0 (Fig.
5f, Supplementary Fig. 7a–c). The SEACells algorithm enhanced cell
type differentiation, with the signal intensity for receptor pathways
being significantly accentuated (Supplementary Fig. 7d).

Furthermore, we traced epithelial-to-cancer cell differentiation
trajectories using pyVIA and annotated cancer cell types within the
epithelial population with pySCSA, identifying distinct pathways
including Epithelial-to-Mesenchymal Transition (EMT) and Metas-
tasis. This analysis provided deep insights into cancer progression
(Fig. 5g). By commencing the trajectory with stemness as the starting
point, we delineated the pseudotime trajectory of cancer cell dif-
ferentiation, revealing three distinctive directions: EMT-Differentia-
tion and Metastasis, representing two stages in the transition from
epithelial cells to cancer cells. This analysis provided deep insights
into the dynamics of cancer evolution. In a parallel approach,
metacells within the epithelial cell subpopulation were subjected to
further aggregative analysis. Due to the inherent similarities among
epithelial cells, the average cell purity of the metacells obtained
was reduced to 0.9, while compactness and separation values
remained in close proximity to 0 (Supplementary Fig. 7e, f). Conse-
quently, we extrapolated the metacells of epithelial cells into tra-
jectories, revealing that EMT-differentiation andMetastasis served as
the two primary differentiation pathways, aligning with the analysis
conducted on all cells (Supplementary Fig. 7g–i).

Finally, to investigate the interaction network between epithelial
cells and other TME cells, we established a CRC cell communication
network using CellPhoneDB (Fig. 5h). The analysis included immune
cells, including B-cells, T-cells, NK-cells, and plasma cells, exploring
their interactions with eight subtypes of epithelial cells. The analysis
revealed that PPIA-BSG and LTB-LTBR were recurrent ligand-receptor
pairs mediating the recognition of cancer epithelial cells by immune
cells (Fig. 5i). Notably, PPIA-BSG and LTB-LTBR have been linked to a
positive correlation in various cancers and are associated with poor
prognosis55,56. OmicVerse’s data harmonization significantly stream-
lines this comprehensive analysis, enabling researchers to delve into
personalized explorations as outlined in our detailed tutorial (Refer to
Supplementary Note 5 for the Methods).

OmicVerse performed multi-omics analysis with MOFA
and GLUE
Single-cell sequencing advancements enable the investigation of bio-
logical systems across different tissue levels. A key element in scRNA-
seq is understanding the impact of chromatin accessibility variation,
which is quantified by Single-cell sequencing assay for transposase-
accessible chromatin (scATAC-seq). The conjoined analysis of scATAC-
seq and scRNA-seq data is critical for unraveling transcriptional

Article https://doi.org/10.1038/s41467-024-50194-3

Nature Communications |         (2024) 15:5983 6



regulatory complexities. While scNMT-seq can capture both mod-
alities simulaneously, obtaining unpaired data from identical tissues is
more common57. Addressing this disparity, Graphical Linkage Unified
Embedding (GLUE) offers a Graphical Linkage Unified Embedding
solution for integrating unpaired data58, and Multi-Omics Factor Ana-
lysis (MOFA) elucidates the variations within omics data59. OmicVerse
utilizes both GLUE and MOFA to reveal transcriptional regulatory
dynamics.

WithinOmicVerse, the GLUE_pair algorithm leverages the Pearson
correlation coefficient to compute cell similarity between scRNA-seq
and scATAC-seq base on embedding fromGLUE (Fig. 6a). The accuracy
of GLUE_pair is verified using the Adjusted Rand Score (ARI) to confirm
cell type congruence post-normalization. For the analysis of paired cell
modalities, OmicVerse applies MOFA’s core algorithm, simplifying
ensuing data analysis and visualization tasks (Fig. 6a), all achievable
with minimal coding (Fig. 6b).
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DEG Analysis Gene Expression

#Weight Gene Co-expression Network Analysis
gene_wcgna=ov.bulk.pyWGCNA(data, save_path='result')
gene_wcgna.calculate_correlation_direct(method='pearson', save=False)
gene_wcgna.calculate_correlation_indirect(save=False)
gene_wcgna.calculate_soft_threshold(save=True)
gene_wcgna.calculate_corr_matrix()
gene_wcgna.calculate_distance()
gene_wcgna.calculate_geneTree()
gene_wcgna.calculate_dynamicMods()
module=gene_wcgna.calculate_gene_module()
gene_wcgna.plot_matrix()

1
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10
11

pyWGCNA-Weight Gene Co-expression Network Analysis

#Different expression gene analysis
data=ov.utils.read('expression.csv', index_col=0)
dds=ov.bulk.pyDEG(data)
dds.normalize()
dds.deg_analysis(treatment_groups, control_goups, method='wilcox')
dds.foldchange_set(fc_threshold=0.15, pval_threshold=0.05, logp_max=6)

1
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pyDEG-Different Expression Analysis

#Pathway Enrichment
deg_genes=result.loc[result['sig']!='normal'].index.tolist()
pathway_dict=ov.utils.geneset_prepare('WikiPathway_2021_Human.txt',
            organism='Human')
enr=ov.bulk.geneset_enrichment(gene_list=deg_genes, 
  pathways_dict=pathways_dict, pvalue_type='auto', 
  background=result.index.tolist(), organism='Human')
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pyGSEA-Pathway Enrichment Analysis
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Demonstrating the integration of GLUE and MOFA, we analyzed
simultaneous single-nucleus RNA-seq (snRNA-seq) and single-nucleus
ATAC-seq (snATAC-seq) data from cortical regions of Alzheimer’s
disease patients60. Our analysis of aligned cell types uncovered con-
sistent patterns indicative of commoncellular states (Fig. 6c,d). Froma
random subset of 5000 paired cells, MOFA unveiled 13 factors
(Fig. 6e,f). The factors 1-6 accounted for RNA-related variance, while
the second for ATAC-related variance. The interaction among these
factors and cell types revealed significant associations: EX-signature
with Factor 1, PER.END-signature with Factor 5, ASC-signature with
Factor 2, MG-signature with Factor 3, and INH-signature jointly
detailed by Factors 6 and 4. Additionally, gene weights for each factor
uncovered genes with the most considerable influence on their
respective signatures (Refer to SupplementaryNote 6 for theMethods,
Supplementary Fig. 8a–c).

Discussion
The innovative fusion of the variational autoencoder and graph neural
networks combined in the creation of the BulkTrajBlend framework.
This framework aims to deconvolve scRNA-seq data within Bulk RNA-
seq and elucidate precise cell-specific developmental trajectories in
scRNA-seq. It demonstrates significant accuracy and robustness, due
in large part to the unique integration of the topological overlap
community in graph neural networks, which skillfully addresses the
potential bias introduced by unsupervised clustering in the single-cell
data outcomes.

A conceptual parallel exists between back-calculating cell pro-
portions in Bulk RNA-seq from scRNA-seq and using Bulk RNA-seq as a
scaffold for interpolating scRNA-seq. However, the latter is inherently
more challenging due to the need to accurately interpolat the inade-
quate target cell type. While numerous single-cell generators perform
well in generating scRNA-seq data, the incorporation of unknown
information remains an intrinsic challenge. For example, scDesign3 is a
proficient statistical simulator that creates realistic single-cell data by
learning interpretable parameters from actual scRNA-seq data.
Nevertheless, reconstructing cell developmental trajectories often
requires elusive parameters, which necessarily leverages known data
from Bulk RNA-seq61. Hence, BulkTrajBlend is meticulously crafted
basedon theprinciples of scDesign361 and scGen32, with the state space
and parameters being informed by Bulk RNA-seq. Notably, cell cate-
gorization in the resulting single-cell data often relies on unsupervised
annotation. By introducing GNN, BulkTrajBlend effectively reduces
resolution-dependent issues associated with unsupervised clustering.

While BulkTrajBlend can efficiently extract the state space of cells
from Bulk RNA-seq and interpolate the original scRNA-seq data, this
interpolation relies on the selection of the reference scRNA-seq versus

the reference Bulk RNA-seq data. We suggest that users can adopt an
additional comprehensive single-cell profile to train BulkTrajBlend and
then perform interpolation of their data, thereby avoiding generating
BulkTrajBlend without information about the target cells.

Upon devising the interpolation algorithm for Bulk RNA-seq in
scRNA-seq, it became apparent that a unified Python-based framework
for comprehensive dual analysis of these platforms wasmissing. To fill
this void, we developed OmicVerse, seamlessly integrating single-seq
and bulk-seq. OmicVerse introduces a specialized analysis object for
each omics layer, facilitating streamlined analysis and ensuring an
intuitive user experience. OmicVerse not only has a well-established
scRNA-seq ecosystem like Seurat, which complements Scanpy, but
also features a unique Bulk RNA-seq ecosystem, thus offering a con-
sistent and user-friendly interface (Supplement Note 7).

As an integrated framework for both Bulk and single-cell RNA-seq
analysis, OmicVerse offers a suite of analytical tools that include, but
are not limited to:

(1) Bulk RNA-seq: OmicVerse provides comprehensive function-
alities, including multi-sample integration, batch effect correction,
differential gene expression analysis, gene set enrichment analysis,
protein interaction network construction, the identification of gene
co-expression modules, and TCGA database preprocessing.

(2) Single-cell RNA-seq: OmicVerse offers robust features,
including multi-sample quality control, batch effect removal and
integration, automated cell type annotation (with multiple databases
support) and migration annotation, cell type and gene set enrichment
analysis, developmental trajectory reconstruction, metacell identifi-
cation, cellular interaction network analysis, and drug response pre-
diction. It also covers scATAC-seq integration and multi-omics
analysis, inherently linked to RNA-seq.

(3) Bulk RNA-seq to scRNA-seq: OmicVerse enhances the
deconvolution of Bulk RNA-seq, cell proportions estimation, inter-
polation the scRNA-seq data and the recovery of developmental tra-
jectories within scRNA-seq. Acting as a critical bridge in the transition
from Bulk to single-cell RNA-seq.

The OmicVerse documentation provides a detailed Applica-
tion Programming Interface (API) reference for each algorithm,
coupled with tutorials that clarify their functions, limitations, and
synergies with other bulk and single-seq analysis tools. These
resources are accessible via Google Colab, offering a free compu-
tational workspace for pipeline examinations. OmicVerse also has
comprehensive developer documentation that makes it easy for
users to add tools to the ecosystem following a consistent
development logic.

Our primary goal was to foster an ecosystem replete with
visually engaging and insightful visualizations, fully integrated

Fig. 4 | A comprehensive overview of Bulk RNA-seq data analysis utilizing
OmicVerse. a A graphical depiction illustrates various analyses: differential
expression analysis (pyDEG), gene set enrichment analysis (pyGSEA), protein-
protein interaction analysis (pyPPI), and weighted gene co-expression network
analysis (pyWGCNA). b A code snippet demonstrates how to import data and
execute pyDEG, pyGSEA, and pyWGCNA, incorporating continuous covariates.
c Principal Component Analysis (PCA) embeddings distinguish samples within
Alzheimer’s and control groups.dAvolcanoplothighlights differentially expressed
genes; those upregulated are marked in red, while downregulated genes are indi-
cated in blue. e A box plot reveals the top 10 genes with the most significant fold
change between Alzheimer’s (n = 44) and control groups (n = 46) (Boxplot is dis-
played with the center-line as median, the box limits as lower and upper quartiles,
and with whiskers covering the most extreme values within 1.5 x Interquartile-
Range). fWikiPathways enrichment results are visualized, with dot size correlating
to the gene count for each function and color intensity reflecting p-value sig-
nificance – darker hues indicate higher pathway enrichment (top10 of positive and
negative NES, padj < 0.05, padj calculated by GSEApy python package, For the
statistical analysis, we used the pvalue adjustment to control for multiple

comparisons. The enrichment scores were evaluated as two-sided, considering
bothpositive andnegative deviations from the expecteddistribution under the null
hypothesis).gGene set enrichment analysis (GSEA) is executed usingWikiPathways
gene sets, with enrichment scores and p-values derived from a weighted two-sided
Kolmogorov–Smirnov-like statistic and normalized for gene set size, producing the
Normalized Enrichment Score (NES). h The optimal soft threshold is determined,
where the horizontal axis represents the soft threshold gradient, the left vertical
axis corresponds to the scale-free fit index (with higher values preferred), and the
right vertical axis reflects the average node connectivity (with lower values pre-
ferred). i A gene clustering dendrogram illustrates dissimilarity based on topolo-
gical overlap, combined with module color assignments. Consequently, twelve co-
expression modules are identified, each displayed in a distinct color. An accom-
panying heatmap depicts the correlation among the 5000 genes within each
module. j Modules 4 and 5, which are scale-free networks, are shown where each
node represents a gene. The node size corresponds to gene connectivity, and color
denotes the module affiliation, with the five most central genes in each module
labeled.
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within the Python programming environment. OmicVerse allows
users to perform extensive transcriptome analysis using a single
programming language, tapping into the collective machine-
learning knowledge and models available within the Python

community. We anticipate that OmicVerse will continue to grow,
with updates introducing additional algorithms, features, and
models. Ultimately, OmicVerse aims to act as a driving force for the
bulk and single-seq community, encouraging the prototyping of
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import omicverse as ov
adata=ov.read('epi.h5ad')
#Autmatical annotation
scsa=ov.single.pySCSA(adata, foldchange=1.5, pvalue=0.05,
       celltype='cancer', target='cancersea', tissue='All')
scsa.cell_anno(clustertype='leiden', cluster='all')
scsa.cell_auto_anno(adata)
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pySCSA-Celltype Automatical Annotation

##Assest one genesets
ov.single.geneset_aucell(adata, geneset_name='Sox',
  geneset='Sox17', 'Sox4', 'Sox7', 'Sox18', 'Sox5')
##Assest all pathways
pathway_dict=ov.utils.geneset_prepare('KEGG_2021_Human.txt',
  organism='Human')
adata_aucs=ov.single.pathway_aucell_enrichment(adata,
 pathway_dict=pathway_dict, num_workers=8)
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pyAUCell-Pathway Enrichment Analysis

#Trajectory inference
v0=ov.single.pyVIA(adata=adata, adata_key='X_pca', basis='X_uamp',
 clusters='celltype', knn=30, oot_user=['Stemness'])
v0.run()
v0.get_pseudotime(adata)
#PAGA Graph
ov.utils.cal_paga(adata, use_time_prior='pt_via', vkey='paga', groups='celltype')
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pyVIA-Trajectory Inference

#cell-cell interaction
cpdb=ov.single.cpdb(cpdb_file_path, adata, cluster_key='celltype')
interaction=cpdb.network_cal(cluster_key='celltype')
cpdb.submeans_exacted(cell_names='Epithelial cell', cell_type='receptor')
cpdb.submeans_exacted(cell_names='Epithelial cell', cell_type='ligand')
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CellphoneDB-Cell Cell Interaction

#Metacells analysis
model=ov.single.SEAcells(adata_sea, build_kernel_on=build_kernel_on,
 n_SEACells=n_SEACells, n_waypoint_eigs=n_waypoint_eigs,
 convergence_epsilon=1e-5)
model.fit(min_iter=10, max_iter=100)
model.save('epi_meta.pkl')
model.load('epi_meta.pkl')
model.computer_celltype_purity()
model.summarize_by_soft_SEACell(celltype_label='major_celltype', 
    minimun_weight=0.05)
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SEAcells-Metacells Analysis

Fig. 5 | OmicVerse a comprehensive analytical platform for single-cell RNA-seq
analysis. a A graphical overview highlights crucial analysis modules: cell type
annotation (pySCSA), cellular interactions (CellPhoneDB), trajectory inference
(pyVIA), pathway analysis (AUCell), and drug response prediction (scDrug). b An
example code snippet illustrates the process for loading data and conducting
analyses using pySCSA, CellPhoneDB, pyVIA, AUCell, and SEACells, with the inclu-
sion of continuous covariates. c UMAP plot visualizes single-cell RNA sequencing
(scRNA-seq) data from colorectal cancer (CRC) patients. The plot contrasts manual
cell type annotations, shown in the left panel, with automatic annotations depicted
in the right panel. d The concordance between manual and pySCSA-generated
annotations is presented in a row-normalized confusion matrix. e Pathway

enrichment within CRC cells is elucidated in a UMAP visualization, with the left side
indicating B cell receptor signaling and the right side detailing T cell receptor
signaling, as analyzed by AUCell. fMetacell composition within the CRC dataset is
revealed in a UMAP plot. g Epithelial cell subpopulations in CRC are displayed in a
UMAP plot; automated annotations by pySCSA are demonstrated on the left,
complemented by a cell state transition directed graph derived from a Partition-
based Graph Abstraction (PAGA) trajectory on the right. h CellPhoneDB computes
an interaction network between CRC cell types, offering insights into intercellular
communication. i Scaled mean expression levels of genes that code for interacting
ligand-receptor proteins, identified by CellPhoneDB, are shown in dot plots to
underscore the supporting interactions between immune and epithelial cells.
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various models, establishing standards for RNA-omics analysis,
and expanding the potential for scientific exploration.

Methods
Methods for BulkTrajBlend
BulkTrajBlend is primarily designed to address the issue of “omitted”
cells in single-cell data, making the inference of developmental or
differentiation trajectories continuous. To achieve this goal, we
designedBulkTrajBlend to generate potential “missing” cells frombulk
RNA-seq data for inferring pseudo-time cell trajectories. This process
consists of the following four steps (where communities represent
cell types):

Cell proportion calculation. To estimate the proportion of cells in
Bulk RNA-seq, we first annotated the single-cell data with respective
cell types and aggregate the gene counts of single cells by cell type,
resulting in an N*M matrix, where M represents the number of cell
types and N represents the number of genes. We define this N ×M
matrix as the simulated Bulk RNA-seq cell type matrix, and then we
sum M columns of each row to get the simulated Bulk RNA-seq
Bsimulated , and we input the simulated Bulk RNA-seq into the self-
encoder of AE. In the self-encoder, we define the output of the
encoder as T , and we make T close to Number of the cell

Number of all cells, i.e., Cell

Proportion, by training AE. We then define the output of the gen-
erator as G and we make G and Bsimulated close to each other by MAE
as an evaluation. After training the optimal AE, we change the input
to real Bulk RNA-seq Bgroundtruth, at which time the output of the
encoder, T , is the Cell Proportion corresponding to real Bulk, which
we use as the range of the generator space for the subsequent
β-VAE.

Generation of single-cell data. Given a dataset fX ,V ,W g, where the
vector x 2 RM in the gene expression matrix X represents gene
expressionvectorof a cell, the vectorv 2 RK in thematrixV represents
cell type proportion, satisfying logðp vjxð ÞÞ=Pk logðp vk jx

� �Þ, where v
is restricted by a loss function:

MAE=
X
v

v� v̂
�� �� ð1Þ

Here v̂ is the predicted proportions of certain cell type.
The vector w 2 RK in the matrix W represents conditionally

correlated generative factor. The factor w is obtained from the same
class of cells through the β-VAE Encoder. For each class of cells, the
average value after model training represents a class of cell-specificw,
and it is not restriected by adding a loss function. According toHiggins
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#Paired the Cell from two-omics
import omicverse as ov
rna=ov.read("chen_rna-emb.h5ad")
atac=ov.read("chen_atac-emb.h5ad")
pair_obj=ov.single.GLUE_pair(rna, atac)
pair_obj.correlation()
res_pair=pair_obj.find_neighbor_cell(depth=20)
rna, atac=pair_obj.pair_omic()
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pyMOFA-Paired the omics using GLUE

#MOFA calculated with omicverse
mofa_obj=ov.single.pyMOFA(omics=[rna1, atac1],
  omics name=['RNA', 'ATAC'])
mofa_obj.mofa_preprocess()
mofa_obj.mofa_run(outfile='models/chen_rna_atac.hdf5')
mofaart_obj=ov.single.pyMOFAART(
 model path='models/chen_rna_ atac.hdf5')
mofaart_obj.get_factors(rna1)
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pyMOFA-Multi omics factor analysis
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Fig. 6 | The integration of multi-omics data analysis by OmicVerse, utilizing
bothMOFAandGLUE.aThe representation includes a graphicalmodel of cell type
correlations using GLUE, alongside an illustration of cell variance captured by
MOFA, as indicated by the Evidence Lower Bound (ELBO).b A sample code snippet
is provided for the import and processing of data via pyMOFA tools. cAUMAP plot
shows the distribution of cell types identified in scRNA-seq data from patients with

Alzheimer’s Disease. d Integrated cell embeddings from various omics layers are
displayed in UMAP visualizations, with color-coding reflecting the respective omic
strata. e A heatmap illustrates the percentage of variance accounted for by each
factor (displayed as rows) across different omics layers. fAnother heatmapexhibits
the results of correlation analyses between cell types and theMOFA factors. Colors
represent tests of significance.
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et al.26, we hypothesize that gene expression vectors x are generated
by a probability model pθ xjv,wð Þ, where θ represents the generative
model parameters. Themodel learns the joint distributionof thedatax
and a set of latent variables z (z 2 RM , where M ≥K) for generating
observed data x, i.e., pθ xjzð Þ≈p xjv,wð Þ, and approximates the true
posterior distribution pθ zjxð Þ with an approximate posterior distribu-
tion qϕ zjxð Þ that is easier to compute. Our goal is to ensure that the
inferred latent variables z capture the generative factors w in a dis-
entangled manner. A disentangled representation implies that indivi-
dual latent unit is sensitive to variations in a single generative factor
while being relatively invariant to variations in other factors. In a dis-
entangled representation, knowledge of one factor can be generalized
to new configurations of other factors. The conditionally correlated
generative factorsw can remain entangled in a separate subset of z and
are not used to represent v.

To achieve this, we minimize the KL divergence between the
approximate posterior and the true posterior:

KLðqϕðzjxÞjjpθðzjxÞÞ= �
X
z

qϕðzjxÞ logðpθðxjzÞqϕðzjxÞÞ+ logðpθðxÞÞ

ð2Þ
Here, KLðqϕðzjxÞjjpθ zjxð ÞÞ is the variational lower bound and can

be written as:

Lðθ,ϕ,xÞ=
X
z

qϕðzjxÞ logðpθðxjzÞÞ �KLðqϕðzjxÞjjpθðzjxÞÞ ð3Þ

We introduce a constraint to shape the inferred posterior qϕ zjxð Þ
and match it with a prior pθ zð Þ that controls the capacity of the latent
information bottleneck. We set the prior as an isotropic unit Gaussian,
p zð Þ∼N 0,Ið Þ. The constrainedoptimization problem canbewritten as:

maxϕ,θEqϕ zjxð Þ log pθ xjzð Þ� �� �
s.t.KLðqϕ zjxð Þjjp zð ÞÞ< ϵ ð4Þ

Here, ϵ is the strength of the applied constraint. With this opti-
mization based on MLE, the latent variable z can reflect the character
of the ground truth data with lower error. According to β-VAEmodel31,
we can rewrite the problem in Lagrangian form:

F θ,ϕ,β,x,zð Þ=Eqϕ zjxð Þ log pθ xjzð Þ� �� �� β KLðqϕ qϕ zjxð Þjjp zð Þ
� �

� ϵ
� �

ð5Þ

where β is the regularization coefficient of the constraint, which limits
the capacity of z and imposes an implicit pressure for independence in
learning the posterior distribution due to the isotropic nature of the
Gaussian prior pθ zð Þ. In this model, different values of β can alter the
level of learning pressure imposed during training, encouraging the
learning of different representations. We assume a disentangled
representation of the conditional independent data generative factors
v and therefore set β> 1 to apply a stronger constraint on the latent
variable information bottleneck, exceeding the constraint of the ori-
ginal VAE. These constraints restrict the capacity of z and, combined
with the pressure tomaximize the log-likelihood of the training data x,
encourage the model to learn the most efficient representation of
the data.

Computation of single-cell neighborhood graph. Here, we used the
scanpy.pp.neighbors function from Scanpy to compute the cell
neighborhood graph. For detailed mathematical description, please
refer to the relevant papers and documentation of nearest neighbor
descent in Scanpy and PyNNDescent62.

Community detection and generation of overlapping cell commu-
nities. We performed community detection on the cell neighborhood
graph using a Graph Neural Network (GNN) model to find overlapping

cell communities33. GNN can learn relationships between nodes and
divide them into different communities based on their similarities.
Specifically, we used GCN, which is one of the basic models in GNN, to
generate an affinity matrix G, which represents the degree of asso-
ciation between cells. The computation is as follows:

G : =GNNθ A,Xð Þ ð6Þ
Here, A is the adjacency matrix of the cell neighborhood graph,

and X represents cell type as the node feature. To ensure non-
negativity of G, we applied element-wise ReLU non-linear activation
function to the output layer. For detailed information about the GNN
architecture,

G : =GCNθ A,Xð Þ=ReLU ÂReLU AÂXW 1ð Þ
� �

W 2ð Þ
� �

ð7Þ

Here, Â= D̂
�1

2eAD̂�1
2 is the normalized adjacencymatrix, eA=A+ IN is

the adjacency matrix with self-loops, and D̂ii =
P

j
eAij is the diagonal

degree matrix of the adjacency matrix with self-loops. We considered
other GNN architectures and deeper models but did not observe sig-
nificant improvements. Two main differences between our model and
the standard GCN are: (1) batch normalization applied after the first
graph convolutional layer, and (2) L2 regularization applied to all
weight matrices. We found that both modifications significantly
improved the performance.

We measured the fit between the generated affinity matrix F and
the neighborhood graph using the negative log-likelihood function of
the Bernoulli-Poisson model:

� logpðAjFÞ= �
X

ðu,vÞ2E
logð1� expð�FuF

T
v ÞÞ+

X
ðu,vÞ=2E

FuF
T
v ð8Þ

Here, E represents the set of edges in the graph. Since neighbor-
hood graphs of single-cell data are typically sparse, the second term in
the third sum contributes more to the loss. To balance these two
terms, we adopted a standard technique known as balanced
classification18, and defined the loss function as follows:

L Fð Þ= �E u,vð Þ∼PE
log 1� exp �FuF

T
v

� �� �h i
+E u,vð Þ∼ PN

FuF
T
v

h i
ð9Þ

Here, PE and PN represent uniform distributions over edges and
non-edges, respectively.

Insteadof directly optimizing the affinitymatrix F as in traditional
methods, we search for the optimal neural network parameters θ* to
minimize the (balanced) negative log-likelihood function:

θ* = argminθL GCNθ A,Xð Þ� � ð10Þ
Through these steps, the BulkTrajBlend model computes over-

lapping communities in single-cell data, which can be used to infer
“omission” cells in the original single-cell data. It can help reveal cell
type transitions and dynamics, and model and analyze cell develop-
mental trajectories.

Community trajectory inference. Here, we inserted the overlapping
communities of target cells into the original single-cell data and used
PyVIA to infer pseudo-temporal trajectories of cell differentiation. For
detailed inference methods, please refer to the mathematical
description of PyVIA. Additionally, researchers can also use CellRank
for community trajectory re-inference.

CGAN and ACGAN model description
CGAN (Conditional Generative Adversarial Nets) is a GAN (Generative
Adversarial Nets) based model that generates data by training the
generator and discriminator with the data and corresponding labels.
The training process can be split into 2 parts. In the first part, latent
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variables z 2 RM M = 100ð Þ are generated by standardized normal
distribution and its generated class labels lg are input into the gen-
erator to get the generated data. Here the generator can be summar-
ized as a function gθ, where θ are the parameters of theMLP and there
are6 layers in that each layer is normalized. The thehiddendimensions
are 128*256*512*1024 and the activation function is LeakyRelu. After
getting the generateddatag = gθðz,lg Þ, therewill be adiscriminatordϕ,
whereϕ are the parameters of the MLP and there are 4 layers in each
layer the hidden dimension is 512, dropout rate is 0.4 and the activa-
tion function is LeakyRelu, judging whether g accords with its label lg .
Therefore, in the second part, dϕ will be trained by the real data r and
its label lr with Adam optimizer to improve the judgement level ofdϕ.
Then the loss of gθ judged by dϕ will be employed to enhance the
generation ability of gθ with the same optimizer. The loss functions for
gθ and dϕ are both MSEloss and the weights of the loss of the gen-
erative data and the real data are both 0.5.

In addition, ACGAN (Auxiliary Classifier GAN), which makes the
generative data more authentic, keeps the same structure of the gen-
erator as the one in the CGAN, but it adds the classifier that offers the
label of the input data on the output of the discriminator. In the
training process, the loss function for the added classifier is
CrossEntropy.

Data pre-processing
All single-cell data used for BulkTrajBlend training underwent the same
quality control steps: Cells with low sequencing counts (<1000) and a
high mitochondrial fraction (>0.2) were excluded in further analysis.
The filtered count matrix was normalized by dividing the counts of
each cell by total molecule counts detected in that particular cell and
logarithmised with Python library scanpy63. All Bulk RNA-seq were
normalized using DEseq2 and “numpy.log1p” logarithmised using
Python’sNumpy64 package. It isworthnoting thatbothBulk and single-
cell data use raw counts during AE estimation of the cell fraction state
space, whereas both Bulk and single-cell data use normalized and
logarithmised data during training of β-VAE.

Performance evaluation
To evaluated the generated and interpolation performance of our
model, a comprehensive analysis was conducted, encompassing the
examination of five critical dimensions:

(1) The count of interpolated cells, we counted the number of cells
that were eventually used to interpolate into the raw single-cell profile.

(2) The correlation in marker gene expression between inter-
polated and authentic cells, we first use scanpy’s “scanpy.tl.rank_gen-
es_groups” function to calculate themarker genes for each type of cell
subpopulation in the raw single-cell profile (taking the top 200marker
genes). Then, we use the Pearson coefficient to calculate the percen-
tage of these 200marker genes in the expression correlation between
the generated single-cell profile and the raw single-cell profile.

(3) Marker gene similarity, we first used scanpy’s “scanpy.tl.-
rank_genes_groups” function to calculate the marker genes for each
type of cell subpopulation (taking the first 200 marker genes) in the
raw single-cell profile versus the generated single-cell profile, respec-
tively. Then, we treated marker genes as words and all the marker
genes of each cell class as sentences, and used cosine similarity to
calculate the similarity of marker genes of each cell subpopulation.

(4) Transition probabilities post-interpolation We first wrapped
“omicverse.pp.scale” and “omicverse.pp.pca” in omicverse, “omic-
verse.utils.cal_paga”, and computed the principal component PCA of
the single-cell profile. We took the first 50 principal components and
used the scanpy’s “scanpy.pp.neighbour” to compute the neighbor-
hood map of the single-cell profile. Immediately after that, we calcu-
lated the developmental trajectory of single-cell profile with
pseudotime using pyVIA, and we calculated the state transfer con-
fidence for each type of cell subpopulation by taking pseudotime as

the priority time with the neighborhood graph as the input of
“omicverse.utils.cal_paga”.

(5) The number of noise clusters, we used “scanpy.tl.leiden” in
scanpy to perform unsupervised clustering on the generated single-
cell profiles, with the resolution set to 1.0, and we identified the cate-
gories with less than 25 cells after clustering as noisy clusters and
counted the number of noisy clusters as an assessment of the gen-
eration quality.

(6) Density assessment of pseudotime, after we obtained the
pseudotime of single-cell profiles using pyVIA as the default para-
meters, specifically setting K to 15 in the neighborhood graph of the
KNN and configuring use_rep to X_pca.We assessed the variance of the
pseudotime of target interpolated cells as one of the metrics for the
assessment of developmental trajectory reconstruction.

Datasets
Dentate Gyrus. Single-cell RNA-seq: Data from Hochgerner et al.65.
Dentate gyrus (DG) is part of the hippocampus involved in learning,
episodic memory formation and spatial coding. The experiment from
the developing DG comprises two time points (P12 and P35) measured
using droplet-based scRNA-seq (10x Genomics Chromium). The
dominating structure is the granule cell lineage, in which neuroblasts
develop into granule cells. Simultaneously, the remaining population
forms distinct cell types that are fully differentiated (e.g., Cajal-Retzius
cells) or cell types that form a sub-lineage (e.g., GABA cells) (Accession
ID GSE95753).

Bulk RNA-seq: Data from Cembrowski et al.66. Dentate gyrus (DG)
is measured by RNA sequencing (RNA-seq) to produce a quantitative,
whole genome atlas of gene expression for every excitatory neuronal
class in the hippocampus; namely, granule cells and mossy cells of the
dentate gyrus, and pyramidal cells of areas CA3, CA2, and CA1
(Accession ID GSE74985).

Pancreatic endocrinogenesis. Single-cell RNA-seq: Data from
Bastidas-Ponce et al.67. Pancreatic epithelial and Ngn3-Venus fusion
(NVF) cells during secondary transition with transcriptome profiles
sampled from embryonic day 15.5. Endocrine cells are derived from
endocrine progenitors located in the pancreatic epithelium. Endocrine
commitment terminates in four major fates: glucagon- producing α-
cells, insulin-producing β-cells, somatostatin-producing δ-cells and
ghrelin-producing ε-cells (Accession ID GSE132188).

Bulk RNA-seq: Data from Bosch et al.68. RNA-sequencing was
performed of pancreatic islets (islets of Langerhans) from mice on
PLX5622 or control diet for 5.5 or 8.5 months (Accession ID
GSE189434).

Humanbonemarrow. Single-cell RNA-seq:Data fromSetty et al.69. The
bone marrow is the primary site of new blood cell production or
haematopoiesis. It is composed of hematopoietic cells, marrow adi-
pose tissue, and supportive stromal cells. This dataset served to detect
important landmarks of hematopoietic differentiation, to identify key
transcription factors that drive lineage fate choice and to closely track
when cells lose plasticity (https://data.humancellatlas.org/explore/
projects/091cf39b-01bc-42e5-9437-f419a66c8a45).

Bulk RNA-seq: Data from Myers et al (2018). RNA-Seq of CD34+
Bone Marrow Progenitors from Healthy Donors (Accession ID
GSE118944).

Maturation of murine liver. Single-cell RNA-seq: Data from Liang
et al.70. A total of 52,834 single cell transcriptomes, collected from the
newborn to adult livers, were analyzed.Weobserveddramatic changes
in cellular compositions during liver postnatal development. We
characterized the process of hepatocytes and sinusoidal endothelial
cell zonation establishment at single cell resolution.We selected Pro-B,
Large Pre-B, SmallPre-B, B, HPC, GMP, iNP, imNP, mNP, Basophil,
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Monocyte, cDC1, cDC2, pDC, aDC, Kupffer, Proerythroblast, Erythro-
blast, erythrocyte (Annotation could be found in metadata of Data
from Liang et al.) to performedHPCdifferentiation analysis (Accession
ID GSE171993).

Bulk RNA-seq: Data from Renaud et al.71. We analyze gene
expression patterns in the developingmouse liver over 12 distinct time
points from late embryonic stage (2 days before birth) to maturity
(60 days after birth). Three replicates per time point (Accession ID
GSE58827).

Construction of Simulated “omission” single-cell profile
To simulate the cell “omission” in single-cell sequencing, we con-
ducted cell dropout experiments across diverse datasets. In the Pan-
creas dataset, we employed Leiden clustering and manually excluded
specific clusters of Ngn3 high EP, resulting in a reduction of confidence
in the transition from Ngn3 high EP to Pre-endocrine to 0. In the
Dentategyrus dataset, we applied Leiden clustering and manually
removed specific clusters of Granule Immature, leading to a con-
fidence reduction in the transition from Granule Immature to Granule
Mature to 0. Furthermore, in the BoneMarrow dataset, we randomly
eliminated 80% of the cells from HSC-2, causing a confidence drop in
the transition from HSC-2 to Monocyte-2 to 0.

To employ BulkTrajBlend for generating “omission” cells across
various datasets, we generated single-cell data from the bulk RNA-seq
data using BulkTrajBlend and filtered out noisy cells using the size of
the Leiden as a constraint. In configuring the model for different
datasets, we set the hyperparameter “cell_target_num” to be 1.5 times, 1
time, and 6 times the number of dropped-out cell types, aligning with
Pancreas, Dentategyrus, and BoneMarrow, respectively. Subsequently,
BulkTrajBlend calculated the overlapping cell types in the generated
single-cell data, and we annotated the overlapping cell communities.
Specifically, we selected the single-cell data in which dropped-out cell
types were associated with adjacent cell types.

Methods of OmicVerse integration
We unified the downstream analyses of Bulk RNA-seq, single cell RNA-
seq in OmicVerse. Since the downstream analyses are independent of
the parameter evaluationof BulkTrajBlend and the analysismodules of
each part are independent of each other, we have placed the datasets
and methods used in each part in Supplementary, an index of which is
provided here.
(1) Bulk RNA-seq: All datasets selected, parameter setting, and

methods could be found in Supplementary Note 4.
(2) scRNA-seq: All datasets selected, parameter setting, and methods

could be found in Supplementary Note 5.
(3) Multi-omics: All datasets selected, parameter setting, and meth-

ods could be found in Supplementary Note 6.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Dentate Gyrus data used in this study have been deposited in the
Gene Expression Omnibus (GEO) database under accession code
GSE95753 and GSE74985, Data related to pancreatic endocrinogenesis
are accessible via accession codes GSE132188 and GSE189434, the
maturation of murine liver data can be found under accession code
GSE171993 and GSE58827, Human bone marrow data are available in
the Human Cell Atlas (HCA) database at https://data.humancellatlas.
org/explore/projects/091cf39b-01bc-42e5-9437-f419a66c8a45 and in
the GEO database under accession code GSE118944. The Alzheimer’s
Disease snRNA-seq and snATAC-seq used in this study are available
from GSE174367. The colorectal cancer scRNA-seq data is available

from GSE178318. All processed data in this manuscript are available at
https://github.com/Starlitnightly/omicverse-reproducibility.

Code availability
The code to reproduce the experiments of this manuscript is available
at https://github.com/Starlitnightly/omicverse-reproducibility. The
OmicVerse package can be found on GitHub at https://github.com/
Starlitnightly/omicverse Documentation and tutorials can be found at
https://omicverse.readthedocs.io.
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