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Cancer development and progression are generally associated
with gene dysregulation, often resulting from changes in the
transcription factor (TF) sequence or expression. Identifying key
TFs involved in cancer gene regulation provides a framework for
potential new therapeutics. This study presents a large-scale
cancer gene TF-DNA interaction network, as well as an exten-
sive promoter clone resource for future studies. Highly connected
TFs bind to promoters of genes associated with either good or
poor cancer prognosis, suggesting that strategies aimed at
shifting gene expression balance between these two prognostic
groups may be inherently complex. However, we identified po-
tential for oncogene-targeted therapeutics, with half of the
tested oncogenes being potentially repressed by influencing
specific activators or bifunctional TFs. Finally, we investigate the
role of intrinsically disordered regions within the key cancer-
related TF ESR1 in DNA binding and transcriptional activity, and
found that these regions can have complex trade-offs in TF
function. Altogether, our study broadens our knowledge of the
TFs involved in cancer gene regulation and provides a valuable
resource for future studies and therapeutics.
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Introduction

Gene expression is often dysregulated in cancer because of
changes in copy number, mutation or epigenetic changes in pro-
moter and enhancer regions, or changes in the expression or ac-
tivity of transcription factors (TFs) and chromatin-modifying
enzymes (Djakiew, 2000; Vervoort et al, 2022). Among the affected
genes are those involved in cell differentiation, proliferation, ap-
optosis, DNA repair, immune regulation, and general biological
processes such as translation and RNA processing, ultimately
contributing to cancer development, progression, and metastasis
(Hanahan & Weinberg, 2011; Carrasco et al, 2023).

The higher expression of certain genes has been associated with
good or poor cancer prognosis (Sjostedt et al, 2020). Some of these
genes are associated with prognosis only in specific cancers,
whereas others have the same or opposing associations in different
cancer types. For instance, the elevated expression of GNAS has
been found to promote cell proliferation in breast cancer (Jin et al,
2019), whereas the reduced expression of CAMTA1 has been linked
to adverse outcomes in neuroblastoma patients (Henrich et al,
2006). Therefore, a promising potential cancer therapeutic strategy
could consist of shifting the balance in expression between poor
and good prognosis genes, which may eventually lead to increased
cancer survival. The rational design of this strategy involves
identifying TFs that preferentially regulate the expression of either
poor or good prognosis genes. This requires the delineation of
large-scale gene regulatory networks that evaluate the binding of
hundreds of TFs to the regulatory elements of cancer-related
genes.

Multiple experimental methods have been developed to identify
TF-DNA interactions. Chromatin immunoprecipitation followed by
sequencing (ChIP-seq) and CUT&RUN are widely used to identify
the genomic DNA regions that a TF binds in vivo. Although these
methods have provided extensive datasets, in particular by large
consortia such as the ENCODE Project, lowly expressed TFs and TFs
for which ChIP-grade antibodies are not available remain under-
studied (Luo et al, 2020). Enhanced yeast one-hybrid (eY1H) assays
provide a high-throughput complementary gene-centered method
to identify the repertoire TFs that bind to DNA regions of interest by
testing >1,000 TFs simultaneously (Reece-Hoyes et al, 2011b;
Fuxman Bass et al, 2015; Fuxman Bass et al, 2016a; Berenson &
Fuxman Bass, 2023). In eY1H assays, each TF is fused to the yeast
Gal4 activation domain and expressed in a separate yeast strain;
binding of the TF to a DNA region of interest induces the expression
of two reporter genes, HIS3 and LacZ, allowing yeast to grow and
turn blue on readout plates. Given that eY1H assays involve
expressing exogenous human TFs in yeast, they can detect inter-
actions involving TFs that have low endogenous expression or that
lack suitable antibodies. Although eY1H assays cannot test binding
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of heterodimeric TFs, we have recently addressed this limitation by
developing paired yeast one-hybrid (pY1H) assays. This method
evaluates pairs of TFs to detect cooperative binding and antago-
nism at DNA regions of interest (Berenson et al, 2023).

In this study, we generated a clone resource of 700 cancer-
related gene promoters and used both eY1H and pY1H platforms to
examine binding of monomeric/homodimeric and heterodimeric
TFs to the promoters of 136 cancer-related genes. We identified
1,350 interactions between 265 TFs and the promoters of 108 cancer
genes, and leveraged our promoter library to study disordered
regions in the breast cancer–related TF estrogen receptor ɑ (ESR1).
Overall, our work provides new insights into the study of the
regulation of cancer genes and provides a clone and data resource
for the scientific community.

Results

Generation of a comprehensive clone resource of cancer
gene promoters

Systematic studies of TF-DNA binding and transcriptional activity
often require large-scale clone resources of regulatory DNA ele-
ments—such as promoters and enhancers—that can be tested

across functional assays. Considering that promoters are the pri-
mary drivers of gene expression, whereas enhancers require more
specific spatiotemporal contexts to function effectively, we focused
on promoter regions of cancer-related genes to study their regu-
lation by TFs (Bergman et al, 2022). We initially selected 697 genes
from the Cancer Gene Census (Tate et al, 2019), as well as 114
additional genes whose expression is often dysregulated in cancer.
For 190 of these genes, we have also included alternative pro-
moters, in cases where H3K27ac or H3K4me3 marks were observed
in data from the ENCODE Project (ENCODE Project Consortium, 2012).
We successfully cloned 700 promoter sequences—each comprising
2 kb of sequence immediately upstream of a transcription start
site—corresponding to 556 cancer-related genes, generating a
Gateway-compatible resource for easy transfer into different
destination vectors that can be used in a variety of functional
assays (e.g., eY1H, pY1H, and luciferase assays) (Fig 1A, Table S1).

To perform TF-DNA binding studies using eY1H and pY1H assays,
we also transferred these clones into the appropriate destination
vectors upstream of two reporter genes (HIS3 and LacZ) and
successfully generated integrant yeast strains for 508 promoters
corresponding to 426 cancer-related genes. Among these, 358
genes were classified as oncogenes, tumor suppressor genes, or
genes involved in fusions, with a similar number of genes in each of
these classes (Fig 1B), whereas the remaining 68 genes are not
classified into these categories by the Cancer Gene Census. Our set

Figure 1. Generation of clone and yeast resource for cancer gene promoters.
(A) Schematic of the Gateway-compatible cancer gene promoter resource. Cancer genes were selected from the Cancer Gene Census, as well as genes dysregulated in
cancer. An entry clone resource of 700 promoters (556 genes) was generated, as well as a yeast integrant resource corresponding to 508 promoters (426 genes). This yeast
resource was tested in eY1H and pY1H assays for TF-DNA interactions. (B) Venn diagram of the number of oncogenes (OG), tumor suppressor genes (TSG), and genes
involved in fusions for which yeast integrants were generated. The percentage of genes related to translocation in each group is marked in gray. (C) Violin plots
correspond to the distribution of the number of publications per gene included in the entry clone resource, the yeast integrant collection, and the yeast integrants tested
by eY1H/pY1H assays. (D) Number of genes associated with different cancer types among those in the set of entry clones, yeast integrants, and tested by eY1H assays.
(E) Number of genes associated with different biological functions for genes included in the entry clone resource, the yeast integrant collection, and the yeast
integrants tested by eY1H/pY1H assays.
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Figure 2. Large-scale cancer TF-DNA interaction network.
(A) Cancer TF-DNA interaction network determined using eY1H and pY1H assays. Circular nodes represent TFs, whereas squares represent cancer gene promoters.
Interactions are represented by edges colored based on whether there is evidence by ChIP-seq (pink), literature (green), both (orange), or neither (gray). TF nodes are
colored based on the prognostic score calculated as (#poor prognosis targets - #good prognosis targets)/(# total number of targets). The borders of TF nodes are colored
based on whether the TF is listed (red) in CGC. TF node size indicates the % of non-synonymousmutations across all cancers. Cancer gene promoters are colored based
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of genes included both highly studied genes, with >1,000 publi-
cations in PubMed, and lowly studied genes with <10 publications,
including genes with known associations with a variety of cancer
types (Fig 1C and D). Regarding biological functions, our clone
resource includes genes associated with transcription, immune
regulation, cell cycle, cell death, DNA damage, and other cancer-
related functions (Fig 1E). We did not observe any major bias
between genes for which entry clones or yeast strains were suc-
cessfully generated (Fig 1C–E).

A comprehensive cancer-associated TF-DNA network

The abnormal expression of cancer-related genes can lead to
oncogenesis, cancer progression, and metastasis (Li et al, 2020).
Dysregulation of these genes can be caused by increased or de-
creased binding of certain TFs as a result of changes in TF ex-
pression, by mutations in TFs or TF binding sites, or by alteration in
TF activity because of dysregulation of upstream signaling path-
ways (Gonda & Ramsay, 2015). To identify the TFs that bind to the
promoters of cancer-related genes, we used eY1H and pY1H assays,
which can identify the binding of hundreds of single or pairs of TFs
to DNA elements of interest in parallel. We prioritized 136 genes (152
promoter sequences), corresponding to 66 oncogenes and 70 tu-
mor suppressor genes, including genes that were highly studied in
the literature and promoters with high H3K27ac indicative of active
usage as a regulatory DNA region (Fig 1C). These genes had a similar
representation of biological process gene ontologies relative to the
rest of the gene promoter clone resource (P > 0.05 by a hyper-
geometric test) (Fig 1E), suggesting that our prioritized subset was
functionally unbiased. We tested these DNA sequences against
1,086 TFs using eY1H assays (147,696 TF-DNA pairs tested in qua-
druplicate). In addition, we tested 123 of these promoter sequences
(selected based on low levels of autoactivity seen in eY1H) against a
collection of 182 TF pairs and corresponding monomers using pY1H
assays (22,386 TF-TF-DNA sets tested in quadruplicate). In total, we
detected 1,350 TF-DNA interactions between 265 individual TFs
(including 30 heterodimeric TFs) and the promoters of 108 genes
(Fig 2A, Table S2). Of these TFs, 84 are classified as transcriptional
activators, 33 as repressors, and 42 as bifunctional TFs based on
their annotated effector domains (Soto et al, 2022).

Among the interactions detected by eY1H and pY1H assays, we
found 543 interactions that were previously identified in ChIP-seq
experiments, 21 interactions that were reported in the literature,
and 61 interactions that were reported in both (Fig 2A). Furthermore,
consistent with previous studies, we found that TFs whose inter-
actions did not present evidence by ChIP-seq were assayed less
frequently than TFs for which ChIP-seq evidence was found
(Fuxman Bass et al, 2015) (Fig S1A). This suggests that further ChIP-

seq datasets are likely to add evidence for the interactions de-
tected by eY1H and pY1H assays, and illustrates the high quality of
our cancer TF-DNA network. Importantly, we found 725 novel in-
teractions, showing that our network also expands from previously
reported interactions. This includes novel interactions involving TFs
already known to bind to the promoters of some of the cancer
genes tested. For example, GRHL3, a TF known to stimulate mi-
gration of endothelial cells and previously linked to different types
of cancers (Wang et al, 2017), had 19 ChIP-seq and two literature
interactions with our set of 152 promoters. Here, we found 15 ad-
ditional interactions using eY1H assays (Fig 2B). This set of 36 genes
displayed significant enrichment in the cell differentiation gene
ontology term, which is consistent with previous studies showing
that GRHL3 is crucial for inducing genes within the epidermal
differentiation complex, which supports terminal differentiation,
suppressing hyperproliferation (Lin et al, 2020; Huang et al, 2022).
We also found interactions involving TFs that were previously not
known to regulate any of the genes in our network. For example,
ESRRG and CEBPE interact with 15 and 5 cancer gene promoters,
respectively, but interactions with our set of promoters were not
reported in the literature nor in ChIP-seq experiments. Both TFs are
known to have roles in different cancers such as myeloid leukemia
(CEBPE) and gastric cancer and retinoblastoma (ESRRG) (Heckler
et al, 2014; Kang et al, 2018; Li et al, 2019).

Although these “newly associated” TFs had overall lower ex-
pression levels across cancers than TFs known to regulate this set
of cancer genes (Fig 2C), there is a significant overlap between both
distributions, with 35% of newly associated TFs being expressed at
more than 100 CPM in at least one cancer type. More importantly,
the set of newly associated TFs has a similar mutation rate in cancer
and a similar likelihood of having a significantly poor or good
association with prognosis than TFs already known to regulate this
set of cancer genes (Fig 2D and E). Altogether, this shows that the
eY1H and pY1H interaction data capture TFs relevant to cancer and
provides direct binding evidence supporting existing literature and
ChIP-seq data, while identifying many novel interactions to de-
lineate a more comprehensive cancer-related TF-DNA interaction
network.

TF family representation in the cancer-associated TF-DNA
network

We observed interactions involving all major TF families including
homeodomains, Cys2His2 zinc fingers (ZF-C2H2), nuclear hormone
receptors (NHRs), basic helix–loop–helix (bHLH), and basic leucine
zippers (bZIP). Compared with the proportion of TF families in the
array, we found an over-representation of interactions involving
the EBF1, grainyhead, NHR, and AP-2 families (Fig 2F), which are

on whether their expression is associated with poor (blue), good (red), or cancer-dependent prognosis (white). (B) Interaction network involving GRHL3. (C) Expression
levels across cancer types for TFs known to bind/regulate our set of cancer genes (purple), and newly associated TFs (blue). Statistical significance was determined by two-
tailed Mann–Whitney’s U test. (D) Violin plot depicting the mutation frequency across cancers for TFs known to bind/regulate our set of cancer genes (purple), and newly
associated TFs (blue). Statistical significance was determined by two-tailed Mann–Whitney’s U test. (E) Fraction of TFs whose expression levels are associated with poor
or good cancer prognosis for TFs known to bind/regulate our set of cancer genes, and newly associated TFs. (F) Fraction of TFs and TF-DNA interactions corresponding to
different TF families in the TF array and the cancer promoter, cytokine promoter, and developmental enhancer networks. *P < 0.05 by a proportion comparison test. Blue
and red asterisks represent enrichment and depletion relative to the TF array, respectively. (G) Prognosis scores for TFs with different numbers of targets (degree) in the
cancer TF-DNA interaction network. (H) Median expression levels in each cancer type for TFs absent from the network and TFs with different degrees.
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known to play important roles in tumor growth and progression via
diverse mechanisms (Tsigelny et al, 2014; Zhang et al, 2020; Hu et al,
2021; Carrasco et al, 2023). Interestingly, we found that AP-2, in
particular TFAP2B, is also enriched compared with previous screens
against developmental enhancers and cytokine gene promoters
(Figs 2F and S1B and C), suggesting that this TF family may be more
actively involved in cancer regulation. Indeed, AP-2 family members
such as TFAP2A, TFAP2B, and TFAP2C have been shown to be in-
volved in different cancer types such as glioblastoma, melanoma,
acute myeloid leukemia, pancreatic cancer, and colorectal cancer
(Kolat et al, 2019; Raap et al, 2021).

Conversely, we observed depletion of interactions involving
homeodomain TFs, which were previously found to be enriched in
the developmental enhancer network. This is consistent with their
roles in the development of anatomical features during early
embryogenesis (Banerjee-Basu & Baxevanis, 2001), but less so in
cancer. This illustrates that although cancer is inherently a
developmental/differentiation process, the underlying gene reg-
ulatory networks use different sets of TFs compared to develop-
mental networks.

Highly connected TFs bind to the promoters of good or poor
prognosis genes

TFs in the cancer network are generally more highly expressed
across cancers than TFs for which we did not detect any interac-
tions (Fig 2H). Furthermore, TFs in the network also tend to be more
often differentially expressed in tumor samples versus matched
normal controls (Fig S2). Together, this suggests that TFs in the
cancer TF-DNA network are cancer-relevant.

TFs in the network bind to a widely different number of pro-
moters, ranging from 1 to 54 promoters. Half (117/265) of TFs bind to
just one promoter, whereas 13.58% (36/265) bind to 10 or more (Fig
2A). This is consistent with a power-law distribution, which is fre-
quently observed in gene regulatory networks (Fig S1D) (Lima-
Mendez & van Helden, 2009). TFs absent from the network and
those with 1 or few interactions have overall lower expression levels
across cancer types than highly connected TFs (TF hubs) (Fig 2H).
This suggests that TF hubs may have a substantial impact on gene
regulatory networks and represent potentially valuable drug tar-
gets as they coordinate the expression of multiple genes. However,
we found that none of the TFs with 10 or more interactions in our
network display any significant bias toward binding to the pro-
moters of genes associated with either good or poor prognosis (Figs
2G and S3). For example, EGR1, a TF that binds to 27 genes in our
network, 7 known to be associated with poor and 4 associated with
good cancer prognosis, has a complex role in cancer with both
tumor-suppressing and tumor-promoting activities (Adamson &
Mercola, 2002; Wang et al, 2021). Similarly, RUNX2, another TF hub
that has a dual transcriptional role (i.e., can act as an activator or a
repressor), bound both to the promoters of genes associated with
poor and good cancer prognosis. This complex and diverse set of
binding targets associated with TF hubs suggests that targeting
them could be challenging as the overall rewiring of the cancer
gene regulatory network may be hard to anticipate. Indeed, TF hubs
in our network do not have a higher mutation rate in cancer

compared with moderately connected TFs, consistent with the lack
of bias in binding to good or poor prognosis genes (Fig 2A).

Identification of TFs as potential targets to reduced
oncogene expression

During cancer development and progression, oncogenes may
undergo mutations, amplifications, or structural changes, leading
to poor patient outcomes. After decades of efforts, drugs such as
AMG510 (sotorasib) that targets KRAS have been developed to in-
hibit oncogene activity (Huang et al, 2021); however, numerous
oncogenes still resist direct targeting. A potential alternative
therapeutic approach involves reducing the expression of the
oncogene using knockdowns or by modulating gene transcription
by targeting TF activity. A barrier to this latter approach is the
potential for concomitant up-regulation of poor prognosis genes or
the down-regulation of good prognosis genes. To nominate TF can-
didates that could be targeted (e.g., by down-regulation, targeted
degradation, or small molecule inhibition) to decrease the expression
of each oncogene tested, we established the following criteria: (1) the
TF is an activator (or bifunctional), and (2) it preferentially binds to the
promoters of poor prognosis genes (prognosis score > 0.33). For 25 of
the 51 oncogenes tested, we foundat least one TF thatmeets the above
criteria (Fig 3). This includes druggable TFs such as PPARG and RARA, as
well as TFs for which drugs have not yet been developed. For instance,
in our network, six TFs with an activation domain bound to the pro-
moter of NUTM1, which are frequently rearranged or fused with other
genes and whose overexpression is associated with poor prognosis in
patients with NUT carcinoma (French 2018), B-cell precursor acute
lymphoblastic leukemia (Hormann et al, 2019), oral squamous cell
carcinoma (OSCC) (Riaz & Khan 2023 Preprint), and thyroid carcinoma
(Allison et al, 2022). Treatments, especially for NUT carcinoma, have
been undergoing development during the last decades; however,
these drugsmostly target genes fused toNUTM1 in cancer; for example,
BET inhibitors target BRD4 in the BRD4-NUTM1 fusion protein. Our
findings suggest that we could potentially target TF activators such as
ARNTL and SRF to tune down the expression of NUTM1.

Cooperative and antagonistic TF binding interactions with cancer
gene promoters

In addition to the regulation by monomeric and homodimeric TFs,
the expression of cancer-associated genes can also be modulated
by higher order functional relationships between TFs at promoter
sequences, including cooperativity and antagonism between TF
pairs (Jolma et al, 2015; Morgunova & Taipale, 2017; Ibarra et al, 2020;
Hu et al, 2022). TFs from a variety of families are known to bind DNA
cooperatively as heterodimers, including NF-κB (Oeckinghaus &
Ghosh, 2009), AP-1 (Karin et al, 1997), STATs (Lim & Cao, 2006;
Delgoffe & Vignali, 2013), nuclear receptors, and other bZIP
(Rodriguez-Martinez et al, 2017) and bHLH TFs (de Martin et al, 2021).
However, the extent to which cooperativity between TFs is involved
in cancer gene targeting has not been systematically explored.
Furthermore, DNA binding antagonism between TFs, in which di-
merization prevents binding of a TF to certain DNA targets, has not
typically been considered as a widespread transcriptional regu-
latory mechanism.
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To obtain a deeper understanding of how these relationships
can contribute to specificity of cancer gene regulation, we used
pY1H assays, which test the binding of pairs of TFs to DNA regions of
interest (Berenson et al, 2023). We evaluated the binding of 182 TF
pairs to 123 cancer gene promoters and detected 90 cooperative
and 136 antagonistic interactions, involving a total of 66 promoters
and 67 TF pairs (Fig 4A, Table S3). We found 25 TFs to exclusively
participate in cooperative binding events, 27 TFs exclusively par-
ticipated in antagonistic binding events, and 21 TFs were observed
to be involved in both cooperative and antagonistic interactions,
depending on the TF partner or the gene promoter (Fig 4B). Of the 67
TF pairs that showed at least one type of pY1H interactions, 23
exclusively participated in cooperativity (e.g., RXRG-NR1H3, SPDEF-
ATF2, and TCF21-TCF4) and 37 of them exclusively participated in
antagonism (e.g., MAX-MNT, DLX2-MLXIP, and HIF1A-RUNX2) (Fig 4A
and C). Interestingly, 7 TF pairs participated in both kinds of in-
teractions (e.g., MAX-MYC and DLX2-ZNF281). Altogether, this sug-
gests that individual TFs may regulate different target genes
depending on their interacting TF partners.

We observed that TF pairs from various families, including both
intra- and inter-family pairs, exhibited cooperative and antago-
nistic binding (Fig 4A). We also noted that TFs from different
families tend to show a preference for specific types of functional
interactions (Fig 4D). For instance, NHRs predominantly engage in
cooperative interactions, consistent with the well-known heter-
odimeric partnership in this TF family. For example, we observed
that ESR1 and NR2F2, two TFs that are highly mutated in various
types of cancer, cooperatively bind to 10 different promoters in
our network. bHLHs are often involved in antagonistic relation-
ships. This is mostly driven by the cancer-related TF MAX whose
binding is antagonized by many other bHLH TFs such as MNT,
MXD1, and MXD4.

For 21 TFs, we observed different functional interactions
depending on the TF partner. For example, DLX2, a TF known to be up-
regulated during epithelial–mesenchymal transition and to promote

cell survival (Tiwari et al, 2012), exhibited diverse binding relation-
ships across TF partners at various DNA sequences. In our screen,
DLX2 independently bound to the promoters of 11 genes, and at 5 of
them, it showed no functional interactionwith any partner TF (Fig 4E).
However, at 5 promoter sequences, DLX was antagonized by other TFs
such as MLXIP, MSX1, and MXD1. Interestingly, DLX2 showed coop-
erativity or was antagonized by ZNF281 and MLX depending on the
promoter sequence (Fig 4E). We had a similar observation for MYC, an
essential regulator of cell growth overexpressed in many tumors,
known to heterodimerize with MAX and cooperatively bind to DNA.
We observed this cooperation between MYC and MAX at three
promoters; however, we also noted thatMYC was antagonized byMAX
at the PDGFB promoter, known to be targeted by MYC (Winkler et al,
2021). This aligns with a previous report indicating that MAX could
antagonize MYC in a dose-dependent manner through the compe-
tition of MAX-MAX and MYC-MAX dimers for their common target DNA
sites (Amati et al, 1993; Amati & Land, 1994). Altogether, this highlights
the complexity of higher order TF binding, which can be heavily
influenced not only by the partners of a TF but also by the target
sequences involved, as we have previously observed for a small set
of cytokine genes (Berenson et al, 2023).

Intrinsically disordered regions affect ESR1 binding to DNA

In addition to broadening our knowledge of which TFs participate in
the cancer gene regulatory network, we were also interested in
conducting a more in-depth study of key cancer-related TFs. Estrogen
receptor ɑ (ESR1) is a TF that is frequently mutated or up-regulated in
breast cancer, and is therefore an important candidate for further
functional study. ESR1 contains two structured domains—the DNA
binding and the ligand binding domains—flanked by three intrinsically
disordered regions (IDRs): the N-terminal region (amino acids 1–180)
containing the transactivation function-1 (AF-1) domain, the hinge
region (amino acids 254–305) connecting the DNA binding and ligand
binding domains, and the C-terminal region (amino acids 553–595)

Figure 3. Heatmap of potentially targetable TFs to reduce oncogene expression.
Heatmap of prognostic scores for TFs that bind to oncogene promoters. TFs are classified as potential activators, bifunctional, or repressors based on annotated
effector domains in TFRegDB. Oncogenes that contribute to cancer development through amplifications (A), fusions (F), or mutations (M) are indicated next to the gene
name. Oncogenes indicated in magenta have at least one TF that is activator/bifunctional with a prognosis score > 0.33.
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(Fig 5A). IDRs in TFs have long been associated with roles in tran-
scriptional activity, including most reported activation and repression
domains (Soto et al, 2022). Recently, ChIP-seq studies have shown that
IDRs can also modulate DNA binding across the genome, likely by
affecting protein–protein interactions with other TFs and cofactors or
by mediating condensate formation (Brodsky et al, 2021). We hy-
pothesized that IDRs may also modulate DNA binding in a heterolo-
gous context, in the absence of other TFs and cofactors of the same
species. We therefore set out to identify the contributions of ESR1 IDRs
to both DNA binding and transcriptional activity and to identify how
known mutations in ESR1 IDRs might disrupt these functions.

To determine whether these IDRs affect DNA binding, we per-
formed eY1H screens using wild-type ESR1, three truncations of the
N-terminal IDR (ΔN59, ΔN119, and ΔN179), two truncations of the
C-terminal IDR (ΔC23 and ΔC43), a replacement of the hinge region
with 23 tandem copies of Gly-Ser (Hinge[GS]23) tomaintain flexibility
of the linker region while removing the endogenous sequence, and
11 cancer-associated mutations in these IDRs reported in COSMIC
(Fig 5A, Table S4). Our entire collection of cancer promoters was
tested against each ESR1 construct in the presence or absence of
100 nM estradiol. We found that estradiol was generally needed for
DNA binding activity, consistent with the need for estradiol-

mediated dimerization for ESR1 binding to estrogen response el-
ements (Yasar et al, 2017) (Fig 5B). Each interaction tested was
manually scored on a scale from 0 (no reporter signal) to 5 (very
strong reporter signal). We observed that progressive N-terminal
truncations led to increased reporter signal for gene promoters
that already bound the full-length wild-type ESR1 (type 1 pro-
moters) and even led to novel DNA binding events (type 2 pro-
moters) (Fig 5C, Table S5). This suggests that the N-terminal IDR, in
particular amino acids 1–119, suppresses ESR1 binding to DNA.
Truncations of the C-terminal region had a less clear effect, with a
23 amino acid truncation mildly increasing or decreasing DNA
binding depending on the promoter sequence, while the 43 amino
acid truncation mildly reducing DNA binding strength. Interestingly,
we found that replacing the hinge region for a (GS)23 flexible linker
led to a strong reduction in DNA binding strength and the number
of promoter sequences bound, suggesting that the hinge region is
necessary for proper DNA binding. We confirmed the reduced
binding of the Hinge(GS)23 ESR1 construct to the AFF2 and NBL1
promoters using reporter-based protein–DNA interaction assays in
HEK293T cells treated with 100 nM estradiol (Fig 5D and E).

Most (10/11) cancer mutations tested did not affect ESR1
binding to the cancer promoters tested, suggesting that these

Figure 4. TF binding cooperativity and antagonism at cancer gene promoters.
(A) Network of cooperative (blue) and antagonistic (red) relationships between TFs at the cancer gene promoters screened. Node size indicates the number of binding
events for that TF. Edge width represents the number of cooperative or antagonistic events involving a specific TF pair. (B) Number of cooperative and antagonistic events
observed for individual TFs. (C) Number of cooperative and antagonistic events observed for TF pairs. (D) Fraction of events where a TF binds cooperatively, is antagonized
by another TF, or antagonizes the binding of another TF for each TF family. *P < 0.05 by Fisher’s exact test. Blue and red asterisks represent enrichment and depletion,
respectively. The number of binding events for that TF family is listed on the right. (E) Heatmap of interactions involving DLX2, either on its own or together with other TF
partners at 13 cancer gene promoters. Dark blue—cooperative binding; light blue—DLX2 binding not influenced by partner TF; white—no DLX2 binding; and red—DLX2
binding antagonized by TF partner.
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mutations, if functional, likely affect other ESR1 molecular
functions such as interactions with other TFs and cofactors. A
notable exception was the K252N mutation, located at the
N-terminal boundary of the hinge region, which reduced binding
to promoters with weak/moderate wild-type ESR1 binding but
did not affect binding to promoters with strong ESR1 binding (Fig
5C). For example, the K252N mutation disrupted binding of ESR1
to the AFF2 promoter in both eY1H and reporter assays (Fig 5B
and D), whereas this mutation had no effect on ESR1 binding to
the NBL1 promoter (Fig 5B and E). Altogether, these results
suggest that although the IDRs, in particular the N-terminal
and hinge regions, have a strong effect on DNA binding, point
mutations in these regions generally have no or only mild
effects.

ESR1 IDRs affect transcriptional activity

To evaluate whether the ESR1 mutations in the IDRs, and ESR1 IDRs
in general, affect transcriptional activity, we performed mammalian
one-hybrid assays in HEK293T cells. In these assays, cells were
transfected with the different ESR1 constructs fused to the Gal4 DNA
binding domain and a luciferase reporter vector driven by a
minimal promoter and four copies of the Gal4 DNA binding site.
Cells were then stimulated with 100 nM estradiol for 18 h followed
by measurement of luciferase activity. Progressive truncations of
the N-terminal and C-terminal IDRs resulted in reduced tran-
scriptional activity, consistent with these regions harboring the AF-1
and AF-2 activation domains (Fig 5F). Interestingly, the Hinge(GS)23
replacement led to a sevenfold increase in transcriptional activity.

Figure 5. Role of ESR1 intrinsically disordered regions in DNA binding and transcriptional activity.
(A) Schematic of ESR1 constructs used. IDRs are indicated in green, DNA binding domain in purple, and ligand binding domain in yellow. (B) Examples of eY1H screens for
binding of 18 different ESR1 constructs to the promoters of BRCA1, AFF2, and NBL1 in the presence or absence of 100 nM estradiol. (C) eY1H binding activity scored from 0
(no binding) to 5 (very strong binding) for different ESR1 constructs. Connected lines correspond to the same cancer gene promoter. Circle sizes indicate the number of
bound cancer promoters, whereas color intensity indicates the average eY1H activity across bound promoters. Type 1 promoters (blue) are those that wild-type ESR1
binds; type 2 promoters (red) are those that wild-type ESR1 does not bind. (D, E) Luciferase assays in HEK293T cells where the promoters of AFF2 (D) orNBL1 (E) were cloned
upstream of firefly luciferase. ESR1 constructs were fused to 10 copies of the VP16 activator domain. Experiments were conducted in biological triplicates. *P < 0.05.
Statistical significance was determined by a two-tailed t test. (F, G) Mammalian one-hybrid assays measuring the transcriptional activity of different ESR1 constructs.
ESR1 fusions with the Gal4 DNA binding domain (DB) are recruited to four copies of the Gal4 binding site (UAS) cloned upstream of firefly luciferase. Experiments were
conducted in biological sextuplicates. *P < 0.05. Statistical significance was determined by a two-tailed t test.
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These results show that there may be a trade-off, at least for the
N-terminal IDR and hinge region, between the effects of ESR1 IDRs
on DNA binding and transcriptional activity. Although the N-ter-
minal IDR suppresses DNA binding, it contributes to transcriptional
activation. Conversely, although the hinge region enhances DNA
binding, it reduces transcriptional activation.

Next, we tested the effect of cancer-associated mutations in the
IDRs on transcriptional activity using mammalian one-hybrid as-
says. Contrary to what we observed for DNA binding, multiple
mutations (7/11) significantly reduced transactivation (Fig 5G).
These mutations resided in the N-terminal (3/5) and C-terminal
IDRs (3/3), as well as a mutation in the hinge region (1/3). Inter-
estingly, the K252N mutation that affected DNA binding did not
affect transcriptional activity. These results show that mutations in
the IDRs mostly affected the transactivation function of ESR1, which
is consistent with the direct involvement of IDRs in precise
protein–protein interactions. The relative conservation of DNA
binding function after the IDR point mutations tested suggests that
larger changes in IDRs may be needed to affect DNA binding.

Discussion

In this study, we have delineated a large-scale cancer network
involving 1,350 TF-DNA interactions between 265 TFs and the pro-
moters of 108 genes. About half of the interactions detected were
previously identified in ChIP-seq experiments or were reported in
the literature, illustrating the high quality of our network, while also
identifying novel interactions. In particular, our network expands
our knowledge of cancer gene regulation by identifying interactions
involving TFs not previously known to regulate cancer-related
genes. These newly associated TFs have a similar mutation rate
in cancer to TFs known to regulate cancer genes, illustrating how
our network can also nominate novel TFs involved in cancer.
Furthermore, for many of these TFs, such as TFEC, IRF5, and ERF, we
found a significant association between TF expression and cancer
prognosis using TCGA data (Table S6), suggesting that the dysre-
gulation of these TFs can also impact cancer outcomes.

Using the cancer TF-DNA interaction network, we identified TF
hubs that bind to the promoters of multiple cancer-related genes.
These hubs had a similar likelihood than non-hub TFs to be highly
mutated in cancer, consistent with previous observations in
protein–protein interaction networks that hubs are not enriched in
disease-associated genes, but rather in essential genes (Goh et al,
2007; Barabasi et al, 2011). We also found that TF hubs generally bind
to the promoters of both poor and good prognosis genes. Alto-
gether, our findings suggest that TF hubs in the cancer network are
unlikely to be suitable drug targets for cancer therapeutics both
because of pleiotropy and because of an unclear effect on prognosis.
It also further suggests that drugs used to target someof these TFs (e.g.,
agonists and antagonists of NHRs) in autoimmune and inflammatory
conditions may also affect tumor cells in cancer patients receiving
these treatments (Patalano et al, 2023). However, targeting TFs could be
a suitable strategywhen the goal is to reduce the expression of a single
(or few)mutated oncogene(s). Thiswill require that targeting the TFhas
limited side effects and that it does not lead to an unfavorable

expression balance between genes associated with good and poor
prognosis. In this study, we identified 25 oncogenes whose expression
could potentially be targeted by inhibiting an activator/bifunctional TF
that has a positive prognosis score, and is therefore also likely to
reduce the expression of poor prognosis genes. Whether this ulti-
mately leads to the expected changes in expression and results in
reduced proliferation, reduced migration, or increased cell death
remains to be determined.

Our study reveals that cooperativity and antagonism between TFs
may play an extensive role in the regulation of cancer-related genes.
This could limit the efficacy of therapeutics involving the activation or
overexpression of individual TFs, as the activation of one TF in a
cooperative pair may not be sufficient to induce promoter targeting,
whereas an antagonized TF could still be prevented from binding
despite activation. Alternative approaches may involve combinatorial
treatments targeting both TFs in key cooperative pairs andantagonistic
TFs rather than TFs that directly bind the promoters of interest.

An intriguing aspect of our study is the evaluation of the role of TF
IDRs, particularly focusing on ESR1, in DNA binding and transcriptional
activity. Ourfindings show that IDRs, even the ones that are not in close
proximity to a DNA binding domain, canmodulate DNA binding by both
increasing or decreasing the number and strength of interactions with
target gene promoters, consistent with previous studies (Brodsky et al,
2021). Our ESR1 results are also consistent with amore general pattern
showing that isoforms of different TFs, such as MAX, STAT1, and RXRG,
with intact DNA binding domains can have different DNA targets and
different functional relationships with interacting TF partners
(Berenson et al, 2023). Interestingly, IDRs that do not overlap with
mapped effector domains can also impact transcriptional activity. In
particular, replacing the hinge region of ESR1 for a flexible (GS)23 linker
increased activation by sevenfold while significantly reducing DNA
binding. This suggests not only that IDRs modulate TF functions, but
also that some IDRsmay contribute to trade-offs between DNAbinding
and activity.

The use of yeast-based systems for analyzing TF-DNA interactions,
while powerful, may not fully recapitulate the contexts in which they
occur in cancer cells, but rather provides a repertoire of possible
interactions for future study. In addition, although our resource of 700
promoter clones is of great utility to the community studying cancer
gene regulation, other distal elements such as enhancers and si-
lencers may significantly contribute to the regulation of these cancer
genes. Future studies could expand our resources and extend these
analyses to encompass a wider range of regulatory elements. Overall,
our work provides an experimental and informational resource that
can facilitate and motivate future investigations of the role of TFs in
cancer gene dysregulation. Such studies will open the door to explore
the targeting of TFs as an avenue for cancer treatment.

Materials and Methods

Generation of entry clones and integrant yeast strains for cancer-
related gene promoters

Entry clones and yeast strains for promoters of cancer-related
genes were generated following the established procedures
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(Fuxman Bass et al, 2016a, 2016b). We selected 697 genes from the
Cancer Gene Census (Tate et al, 2019), as well as 114 additional genes
whose expression is often dysregulated in cancer. For 190 of these
genes, we included alternative promoters in cases where H3K27ac or
H3K4me3 marks were observed in data from the ENCODE Project
(ENCODE Project Consortium, 2012). Promoters encompassing ap-
proximately 2 kb upstreamof the transcription start sitewere amplified
from human genomic DNA (Clontech) using primers flanked with
Gateway tails (Tables S1 and S7). After two rounds of cloning attempts,
we successfully cloned 700 promoter sequences corresponding to 556
cancer-related genes into the pDONR-P4P1R vector using BP Clonase
(#11789100; Thermo Fisher Scientific), resulting in a collection of
Gateway entry clones whose sequences were verified through Sanger
sequencing (Sequegen). Subsequently, each promoter was transferred
to the pMW#2 (#13349; Addgene) and pMW#3 (#13350; Addgene) des-
tination vectors using LR Clonase (#11791100; Thermo Fisher Scientific),
positioning them upstream of the HIS3 and LacZ reporter genes, re-
spectively. Destination vectors were linearized using single-cutter
restriction enzymes (R0520L, R0146L, R3127S, R0581S, R0193L, R0114S,
R0187S, R0519L; New England Biolabs).

The pWM#2 and pWM#3 plasmids for each cancer promoter were
integrated simultaneously into the Y1Has2 yeast genome, as pre-
viously outlined (Reece-Hoyes et al, 2011b; Fuxman Bass et al,
2016b) and as described below. Yeast were cultured in 1 liter liq-
uid YAPD media at 30°C with shaking at 200 rpm until reaching
OD600 = 0.5, followed by washing with sterile water and 1X TE + 0.1 M
lithium acetate (TE/LiAc). Yeast were resuspended in TE/LiAc with
salmon sperm DNA (15632011; Thermo Fisher Scientific) at a dilution
of 1:10, and 2 μg of each digested plasmid (pWM#2 and pWM#3) was
added. Six volumes of TE/LiAc + 40% polyethylene glycol were
added and gently mixed 10 times, followed by a first incubation at
30°C for 30 min and a second incubation at 42°C for 20 min. The
yeast were then resuspended in sterile water and plated on se-
lective media lacking histidine and uracil to select for double
integrants.

Sequence confirmation of cancer gene promoter yeast strains

Cancer gene promoter yeast strains were sequence-confirmed
using the SWIM-seq protocol (Luck et al, 2020). In brief, yeast
were treated with zymolyase (0.2 KU/ml) (Z1004; United States
Biological) for 30 min at 37°C followed by 10 min at 95°C to disrupt
cell walls and release DNA. Promoter sequences were PCR-
amplified in a 96-well format using forward primers with well-
specific barcodes. The primer design is shown as follows:

Forward primer (pMW#2):
59-AGACGTGTGCTCTTCCGATCT[barcode]GGCCGCCGACTAGTGATA-39
Reverse primer (pMW#2):
59-GGGACCACCCTTTAAAGAGA-39
Forward primer (pMW#3):
59-AGACGTGTGCTCTTCCGATCT[barcode]GCCAGTGTGCTGGAATTCG-39
Reverse primer (pMW#3):
59-ATCTGCCAGTTTGAGGGGAC-39
PCRs were conducted using DreamTaq Polymerase (EP0705;

Thermo Fisher Scientific) under the following conditions: 95°C for
3min; 35 cycles of 95°C for 30 s, 56°C for 30 s, and 72°C for 4min; and
final extension at 72°C for 7 min. Amplicons from each 96-well plate

were pooled and purified using PCR Purification Kit (K310002;
Thermo Fisher Scientific). Each pooled sample was prepared as a
single sequencing library by the Molecular Biology Core Facilities at
the Dana-Farber Cancer Institute; DNA was sheared using an
ultrasonicator (Covaris) before tagmentation. Libraries were se-
quenced using NovaSeq with ~10 million reads (paired-end, 150 bp)
per library. For a promoter yeast strain to be confirmed, we required
at least 25% of sequencing reads for the pMW#3 vector to align with
the expected promoter sequence. Sequencing data can be found at
the NCBI Sequence Read Archive at the accession number
PRJNA1015222.

eY1H screening

We performed eY1H assays using a human TF yeast array (Reece-
Hoyes et al, 2011a) as previously described and as follows using a
high-density array ROTOR robot (Singer Instruments). The three-
plate human TF yeast array and promoter yeast strains were mated
pairwise on permissive medium agar plates and incubated at 30°C
for 1 d. Mated yeast were then transferred to selective medium agar
plates lacking uracil and tryptophan to select for successfully
mated yeast and incubated at 30°C for 2 d. Diploid yeast were finally
transferred to selective medium agar plates lacking uracil, tryp-
tophan, and histidine, with 5 mM 3AT and 320 mg/liter X-gal.
Readout plates were imaged 2, 3, 4, and 7 d after final plating. Each
interaction was tested in adjacent quadruplicate colonies. Inter-
actions were considered positive if at least three colonies displayed
reporter activity. Results are reported in Table S2.

pY1H screening

We performed pY1H assays using a previously generated TF-pair
array (Berenson et al, 2023). Screening of TF pairs and cancer gene
promoters was performed similar to eY1H screens as previously
described and as follows using a high-density array ROTOR robot
(Singer Instruments). The five-plate TF-pair yeast array and pro-
moter yeast strains were mated pairwise on permissive medium
agar plates and incubated at 30°C for 1 d. Mated yeast were then
transferred to selective medium agar plates lacking uracil, leucine,
and tryptophan to select for successfully mated yeast and incu-
bated at 30°C for 2 d. These selection plates were imaged and
analyzed to identify array locations with failed yeast growth, which
were then removed from further analysis. Diploid yeast were finally
transferred to selective medium agar plates lacking uracil, leucine,
tryptophan, and histidine, with 5 mM 3AT and 320 mg/liter X-gal.
Readout plates were imaged 2, 3, 4, and 7 d after final plating. Each
interaction was tested in adjacent quadruplicate colonies. For each
TF-pair strain, corresponding TF1 and TF2 single-TF strains are
included in the same plate. Results are reported in Tables S2 and S3.

Identifying cooperative and antagonistic interactions

Yeast plate images were processed and visualized using DISHA
(Detection of Interactions Software for High-throughput Analyses)
software as previously described (Berenson et al, 2023). TF-pair
strains were sorted based on each index (cooperativity, antagonism
index 1, and antagonism index 2) separately. Images were then
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manually analyzed to identify cooperative and antagonistic in-
teractions. To call an interaction, we required the following criteria:

1. TF-pair, TF1, and TF2 yeast strains all showed growth in the
mating selection plates before transfer to readout plates.

2. On readout plates, ≥3 out of 4 quadruplicate colonies were
uniform for TF-pair, TF1, and TF2 yeast strains.

3. For cooperative interactions, TF-pair yeast showed a strong or
moderate reporter activity relative to the empty–empty strain. TF1
and TF2 yeast showed no or only weak reporter activity.

4. For antagonistic interactions, TF1 and/or TF2 yeast showed a
strong or moderate reporter activity relative to the empty–empty
strain. TF-pair yeast showed no or only weak reporter activity.

Literature and ChIP-seq evidence for interactions detected by
eY1H and pY1H assays

Literature evidence for eY1H- and pY1H-derived interactions was
determined by performing searches in the PubMed database. If
there was at least one piece of experimental evidence indicating
the binding or regulation of the TF to the cancer promoter or
regulation of the cancer gene, then the TF–gene interaction was
considered to be previously reported. Results are reported in Table
S2.

ChIP-seq data were downloaded from the GTRD (Yevshin et al,
2019) in MACS2 (Zhang et al, 2008) peak calling result format. If a
peak was called in ChIP-seq data for a given TF and the center of the
peak was within the corresponding promoter region, the TF was
considered to bind the promoter. Results are reported in Table S2.
The code for this analysis is available in Lu et al (2024).

TF and cancer gene survival analysis

RNA-seq data associated with clinical data from 33 tumor types
were downloaded from TCGA and organized using TCGAbiolinks
(Colaprico et al, 2016). Expression data were then normalized using
the CPM method and log2-transformed. To determine whether the
expression levels of cancer-related genes and TFs in our eY1H-
derived network were associated with good or poor prognosis,
survival analyses were conducted using the normalized RNA-seq
data for each tumor type. First, the Cox proportional-hazards model
was used to test whether the high/low expression level of the gene
or TF will impact survival significantly (adjusted P < 0.05); the hazard
ratio from the Cox proportional-hazards model indicates whether
the high or low expression of the gene leads to good or poor
prognosis. An ANOVA was then used to regress out the confounding
factors of age, gender, race, tumor size, tumor metastasis, and
tumor stage. All the survival analyses were performed using the
survival package (Therneau et al, 2000). Results are reported in
Table S6. The code for this analysis is available in Lu et al (2024).

Determining mutation incidence of TFs

The COSMIC database (Sondka et al, 2018) was used to determine
the number of cancer cases in which mutations have been ob-
served for each TF. The mutation frequency was calculated as the
total number of cases with mutations minus the number of

synonymous mutations, divided by the total number of all cases.
Information can be found in Table S8.

Permutation analysis

The prognosis labels of the genes were randomly shuffled 1,000
times, and then, the prognostic score for each TF was calculated in
the randomized networks. The values for TFs of each degree in the
real network were compared with those in the randomized network
for the same degree.

Cancer expression analysis

The transcriptome datasets of primary tumors were obtained from
TCGA using TCGAbiolinks package in R (Colaprico et al, 2016). To
determine the expression levels of each TF in each cancer type, the
transcriptome dataset was normalized using the CPM method
(Robinson et al, 2010). Then, the median CPM for each TF was
determined across samples belonging to a cancer type. Information
can be found in Table S9.

To determine differential TF expression in primary tumors,
DESeq2 (Love et al, 2014) was used for differential expression
analysis between primary tumor samples and normal tissue
samples from TCGA datasets. Analyses were conducted only if there
were more than 10 normal tissue samples available. To minimize
false positives because of sparse data, TFs were tested only if they
had more than 1 CPM in more than 10% of the primary tumor
samples. Information can be found in Table S10.

ESR1 DNA constructs

The COSMIC database (Sondka et al, 2018) was used to identify mu-
tations in the ESR1 IDRs occurring in breast cancer patients and across
cancers. Mutations occurring in at least two patients were selected to
be tested by eY1H and mammalian one-hybrid (M1H) assays. Deletion
constructs were selected to cover portions of the N- and C-terminal
IDRs to better identify regions that affect DNA binding and tran-
scriptional activity. The hinge region was replaced by a flexible linker
consisting of 23 glycine–serine repeats to maintain the length and
flexibility of this region. All ESR1 constructs were ordered from Gen-
Script in pUC57 vectors. The ESR1 sequences were flanked by attB1 and
attB2 sequences for Gateway cloning into the pDONR221 entry vector,
as well as destination vectors for eY1H and M1H assays. Information
and sequences for ESR1 constructs can be found in Tables S11 and S12.

Generation of DB-pEZY3 and 4xUAS-pGL4.23 vectors for
M1H assays

The DB-pEZY3 and 4xUAS-pGL4.23 vectors were generated for M1H
assays. To generate the DB-pEZY3 vector, the coding sequence for
the yeast Gal4 DNA binding domain (DBD) was cloned into the pEZY3
mammalian expression vector upstream of the insert region.
Proteins cloned into the insert region are therefore expressed with
the Gal4 DBD fused to the N-terminus. To generate the 4xUAS-
pGL4.23 vector, four copies of the yeast upstream activating se-
quence (UAS) site were cloned into the pGL4.23 vector upstream of
the minimal promoter and firefly luciferase reporter gene. The UAS
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site is recognized by the Gal4 DBD and therefore recruits any
protein expressed as a fusion with the Gal4 DBD.

Cloning of ESR1 constructs

ESR1 constructs were cloned into the pDONR221 entry vector using BP
Clonase (#11789100; Thermo Fisher Scientific) and verified by whole
plasmid sequencing (Plasmidsaurus) and Sanger sequencing (Gene-
wiz) to confirm the proper mutant insertion and discard clones with
additional unwanted mutations. Confirmed entry vectors were cloned
into the pAD2μ (Walhout Lab), pEZY3-VP160, and DB-pEZY3 destination
vectors using LR Clonase (#11791100; Thermo Fisher Scientific). Plasmid
samples were prepared using Endotoxin-Free Miniprep Kit (#W210650;
101 BIO) following the supplier’s protocol.

Generation of yeast strains expressing ESR1 constructs

Each pAD2μ vector carrying a cloned ESR1 construct was transformed
into Yα1867 yeast as previously outlined (Reece-Hoyes et al, 2011a;
Fuxman Bass et al, 2016b) and as described below. Yeast were
cultured in 1 liter liquid YAPD media at 30°C with shaking at 200 rpm
until reaching OD600 = 0.5, followed by washing with sterile water
and 1X TE + 0.1 M lithium acetate (TE/LiAc). Yeast were resuspended
in TE/LiAc with salmon sperm DNA (15632011; Thermo Fisher Sci-
entific) at a dilution of 1:10, and ~250 ng of pAD2μ plasmidwas added.
Six volumes of TE/LiAc + 40% polyethylene glycol were added and
gently mixed 10 times, followed by a first incubation at 30°C for
30 min and a second incubation at 42°C for 20 min. The yeast were
then resuspended in sterile water and plated on selective media
lacking tryptophan to select for transformants.

eY1H screening of ESR1 constructs

We performed eY1H assays as follows using a high-density array
ROTOR robot (Singer Instruments). Yα1867 yeast strains trans-
formed with ESR1 construct clones were arrayed such that all 18
ESR1 constructs and two empty control yeast strains were tested
against 10 different promoters in each 1,536-colony agar plate. ESR1
construct yeast strains and all 508 cancer gene promoter yeast
strains were mated pairwise on permissive medium agar plates and
incubated at 30°C for 1 d. Mated yeast were then transferred to
selective medium agar plates lacking uracil and tryptophan to
select for successfully mated yeast and incubated at 30°C for 2 d.
Diploid yeast were finally transferred to selective medium agar
plates lacking uracil, tryptophan, and histidine, with 5 mM 3AT and
320 mg/liter X-gal. Readout plates were imaged 2, 3, 4, and 7 d after
final plating. Each interaction was tested in adjacent quadruplicate
colonies and scored manually on a scale from 0 (no reporter signal)
to 5 (very strong binding signal). Results are reported in Table S5.

Confirmation of eY1H interactions using mammalian
luciferase assays

Cancer gene promoter sequences were cloned from the pDONR-
P4P1R entry vector into the pGL4.23 vector upstream of a minimal
promoter and luciferase reporter gene using LR Clonase (#11791100;
Thermo Fisher Scientific). ESR1 constructs were cloned from the

pDONR221 entry vector into the pEZY3-VP160 expression vector
using LR Clonase (#11791100; Thermo Fisher Scientific) to express
each ESR1 construct as a fusion with 10 copies of the VP16 activation
domain.

Luciferase assays were conducted in HEK293T cells (#CRL-
11268; ATCC) to identify interactions between each ESR1 construct
and a subset of cancer gene promoters. Cells were cultured in DMEM
(#11965118; Gibco) with 10% fetal bovine serum (#S12450H; Bio-
Techne) and 1% antibiotic–antimycotic (#15240062; Gibco) at 37°C
with 5%CO2. Cells were plated at a density of ~10,000 cells/well in 96-
well white opaque sterile plates (#25382-208; Falcon) with growth
media and incubated for 24 h. Cells were transfected with Lip-
ofectamine 3000 (#L3000001; Invitrogen) following the manufac-
turer’s protocol using an 80ngpEZY3-VP160 vector with a cloned ESR1
construct, a 60 ng pGL4.23 vector with a cloned cancer genepromoter,
and a 10 ng Renilla-pGL4.74 vector. Three biological replicates were
performed for each construct, and an empty pEZY3-VP160 vector with
no cloned ESR1 construct was used as a negative control. Cells were
incubated for 6 h, treated with 100 nM estradiol, and incubated for an
additional 18 h.

Luciferase assays were performed using Dual-Glo Luciferase
Assay System (#E2940; Promega) following the manufacturer’s
protocol. Luminescence was measured on a Victor3 multilabel
reader (#1420; PerkinElmer) using Renilla and firefly filters.
Background signal from untransfected cells was subtracted
from each Renilla and firefly measurement. Firefly/Renilla ra-
tios for each sample were normalized to the average ratio for
negative control samples transfected with the empty pEZY3-
VP160 vector.

Mammalian one-hybrid (M1H) assays of ESR1 constructs

M1H assays were conducted in HEK293T cells (#CRL-11268; ATCC) to
identify transcription-activating or transcription-repressing func-
tions of our ESR1 constructs. Cells were cultured in DMEM
(#11965118; Gibco) with 10% fetal bovine serum (#S12450H; Bio-
Techne) and 1% antibiotic–antimycotic (#15240062; Gibco) at 37°C
with 5% CO2. Cells were plated at a density of ~10,000 cells/well in
96-well white opaque sterile plates (#25382-208; Falcon) with
growth media and incubated for 24 h. Cells were transfected with
Lipofectamine 3000 (#L3000001; Invitrogen) following the manu-
facturer’s protocol using an 80 ng DB-pEZY3 vector with a cloned
ESR1 construct, a 60 ng 4xUAS-pGL4.23 vector, and a 10 ng Renilla-
pGL4.74 vector. Three biological replicates were performed for each
construct, and an empty DB-pEZY3 vector with no cloned ESR1
construct was used as a negative control. Cells were incubated for
6 h, treated with 100 nM estradiol, and incubated for an additional
18 h.

Luciferase assays were performed using Dual-Glo Luciferase
Assay System (#E2940; Promega) following the manufacturer’s
protocol. Luminescence was measured on a Victor3 multilabel
reader (#1420; PerkinElmer) using Renilla and firefly filters. Back-
ground signal from untransfected cells was subtracted from each
Renilla and firefly measurement. Firefly/Renilla ratios for each
sample were normalized to the average ratio for negative control
samples transfected with the empty DB-pEZY3 vector.
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All data generated in this study are available within the article and
its supplementary information.
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Supplementary Information is available at https://doi.org/10.26508/lsa.
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