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Self-organization of individuals within large collectives
occurs throughout biology. Mathematical models can help
elucidate the individual-level mechanisms behind these
dynamics, but analytical tractability often comes at the
cost of biological intuition. Discrete models provide
straightforward interpretations by tracking each individual
yet can be computationally expensive. Alternatively,
continuous models supply a large-scale perspective by
representing the ‘effective’ dynamics of infinite agents, but
their results are often difficult to translate into experimentally
relevant insights. We address this challenge by quantitatively
linking spatio-temporal dynamics of continuous models and
individual-based data in settings with biologically realistic,
time-varying cell numbers. Specifically, we introduce and fit
scaling parameters in continuous models to account for
discrepancies that can arise from low cell numbers and
localized interactions. We illustrate our approach on an
example motivated by zebrafish-skin pattern formation, in
which we create a continuous framework describing the
movement and proliferation of a single cell population by
upscaling rules from a discrete model. Our resulting
continuous models accurately depict ensemble average agent-
based solutions when migration or proliferation act alone.
Interestingly, the same parameters are not optimal when both
processes act simultaneously, highlighting a rich difference in
how combining migration and proliferation affects discrete
and continuous dynamics.
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1. Introduction

Self-organization of individual agents is a key feature of life. It occurs ubiquitously throughout the
natural world, from the macroscopic example of bird flocking [1–4] to the microscopic phenomenon of
cell sorting during development [5–9]. The degree to which members of a group coordinate their
movement, proliferation and competition accounts for pattern diversity across biological scales.
Alongside experimental approaches, mathematical models can help identify the underlying
behaviours that give rise to specific collective dynamics. However, a trade-off often exists between
tractability and detail when building models of pattern formation, due in part to the multiscale nature
of biological systems. Consequently, better quantitative characterization of the relationship between
analytically tractable models and more biologically representative approaches will improve our
understanding of self-organization throughout nature.

Here, we help address this open challenge using pigment cell dynamics in zebrafish patterns as a
motivation. The zebrafish (Danio rerio) is a popular model organism for studying pattern formation, as
dark stripes and gold interstripes emerge in its skin during development [10–13]. As we show in figure 1,
these stripes result from the coordination of interactions among several types of cells, including black
melanophores and gold (dense) xanthophores [10,16–20]. Experiments that perturb stripes—e.g. by laser
ablation [16,21]—demonstrate how cell–cell signalling and external cues contribute to the creation of
alternative motifs such as spots or labyrinths. A rich diversity of mutant patterns, including widened or
curvy stripes, also emerge when cell interactions are altered due to genetic mutations [19,22].

Data-driven mathematical models can help uncover the drivers of zebrafish pattern formation and
other biological phenomena exhibiting self-organization by identifying important phase transitions,
isolating the effects of specific processes such as cell division, and providing hypotheses that can
guide the design of in vivo experiments [23–26]. Different modelling frameworks yield insight at the
population or individual level, depending on how they represent members of a group. One modelling
approach involves tracking how the position of each individual changes in time. These so-called
‘discrete’ systems include centre-based models [27,28], cellular automata [29,30], cellular Potts models
[31,32] and vertex models [33,34]. Within the setting of zebrafish patterning, agent-based models
(ABMs) have been developed that restrict cells to occupy certain locations ‘on-lattice’ [35–37] or allow
them to roam freely, ‘off-lattice’, in the domain [14,38–40]. Due to their ability to work on the same
length scales as empirical data, ABMs provide an intuitive connection to experiments and allow for
detailed predictions about how interactions between agents drive group behaviours. However,
ABMs can be prohibitive to simulate when the number of individuals is large, and understanding
their long-time behaviour under alternative rules and parameters relies on extensive computation [41].

A second modelling approach uses continuous functions to represent the ‘average’ density of agents in a
collective, with their dynamics governed by a partial differential equation (PDE) in space and time.
Continuous models, including reaction–diffusion equations, Boltzmann-like kinetic equations and integro-
differential equations (IDEs), typically cannot resolve individuals and, instead, track the ensemble
average (EA) behaviour of a population. However, these models are more amenable to mathematical
analysis and more readily provide insight into long-term behaviour than discrete frameworks do [42,43].
For example, changes in patterning may arise because of Turing-like instabilities [44–46] or due to
alterations in physically based interactions such as cell–cell adhesion [7,38,47–50]. In the case of zebrafish
patterns, researchers have applied a wide swath of continuous models—including reaction–diffusion
equations [16,21,35,51,52] and non-local PDEs [7,53–55]—to better understand cell dynamics.

Despite the differences between discrete and continuous approaches, it is possible to establish a
mathematical link between these representations in the limit of infinite individuals. This procedure,
known as ‘coarse-graining’, derives differential equations from a given discrete model and yields
information about its EA behaviour [56–62]. For example, the authors in [63–65] derive logistic IDEs
from stochastic processes that describe the birth and death of individuals undergoing Darwinian
evolution in the limit of large numbers. Coarse-grained descriptions become inaccurate when
relatively few individuals are present, however, as is the case in many biological contexts such as
pattern formation in zebrafish. Many approaches also neglect potentially important spatial correlations
between cells—caused, for instance, by division or competition—that may play a critical role in
pattern dynamics [52,66–71]. While it is possible to go beyond this ‘mean-field’ setting by deriving
continuous models that respect higher-order correlations [72–76] and hard-core interactions [77], these
methods still rely on simplifying assumptions that introduce errors between the discrete and
continuous frameworks. Controlling these errors in a biological setting is an important objective.
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Figure 1. Motivating biological example and model. (a) Wild-type zebrafish feature stripe patterns in their skin. These patterns consist of
several types of brightly coloured pigment cells. (b) Over the course of a few months, these cells organize sequentially into stripes and
interstripes from the centre of the fish body outward [10]. (c) For the purposes of this paper, we focus on a single population of black
melanophores or gold dense xanthophores, using a simplified version of the model from [14]. The agent-based model (ABM) [14] that
motivates our work describes how patterns arise through cell differentiation, competition and movement. In our simplified version of the
ABM [14], we assume new cells appear at randomly selected locations based on short-range activation; this models cell differentiation
from uniformly distributed precursors (red position) [14], and we also refer to this as ‘proliferation’ or ‘birth’ in this paper. (We describe
the cell differentiation rules in the full model [14] in more detail in electronic supplementary material, figure S1.) In both our work and
the ABM from [14], cell movement is deterministic and governed by ordinary differential equations (ODEs). (d ) These ODEs account for
cell–cell repulsion through potential functions, which describe melanophore–melanophore (WMM) and xanthophore–xanthophore (WXX)
interactions as a function of their pairwise distance r. Red scale bar is 250 μm in (b). Image (a) adapted from Fadeev et al. [15] and
licensed under CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Image (b) adapted from Frohnhöfer et al. [10] and licensed
under CC-BY 3.0 (https://creativecommons.org/licenses/by/3.0/); published by The Company of Biologists Ltd.
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We help tackle this problem by developing a pipeline to minimize spatio-temporal discrepancies
between continuous models and individual-based data in settings with biologically relevant, dynamic
cell numbers. The method relies on fitting parameters that effectively dilate the time variable of
continuous-model solutions. Our approach can be used to describe biological self-organization in
systems whose macroscopic description can be derived or inferred. We apply our approach to a case
study motivated by stripe formation in zebrafish skin, as this allows us to illustrate its utility and
interpretablity for experimentally measurable quantities with biologically meaningful spatial and
temporal units. In §2, we describe the ABM that we simulate to generate synthetic individual-based
data associated with self-organizing phenomena. In its full form, the ABM motivating our work [14]
admits pattern formation via non-local rules for cell birth, death and movement that are inspired by
the underlying biology of zebrafish-skin patterns (figure 1) [14,40]. To focus on the presentation of our
pipeline, however, we simplify some biological complexity by reducing this model [14] to focus on a
single cell type—melanophores or dense xanthophores. (We plan to extend this pipeline to multiple
cell types in future work.) We then detail the corresponding continuous descriptions and our method
for matching their solutions to EA ABM data even in scenarios with finite and time-dynamic cell
numbers. We present our results for black melanophores in §3, and—as a means of demonstrating the
generality of our methodology—apply the same approach to dense xanthophores in electronic
supplementary material, S6.
2. Mathematical models and methods
In §2.1, we develop our ABM for cell migration and derive its continuous counterpart. Subsequently, in
§2.2, we introduce our discrete model for cell birth and develop a corresponding continuous IDE model.
We present our full models of migration and proliferation in §2.3. Lastly, we present our approach to
estimating scaling parameters in our continuous models from EA ABM data in §2.4. Following
previous ABMs [14,40] of pattern formation in zebrafish, we assume (i) migration is governed by
conservative forces between pigment cells and (ii) non-local interactions inform cell birth in a two-
dimensional (2D) plane [14,39,40]. Throughout this paper, we refer to:

V , R2 ¼ domain of the simulation with spatial units of millimetres (mm),

R2 ] MiðtÞ ¼ coordinates of the centre of the ith melanophore at tdays in our discrete models,

N ] NM(t) ¼ total number of melanophores present at time tdays and

R�0 ] M(x, t) ¼ density of melanophores at position x and time t in cellsmm�2,

https://creativecommons.org/licenses/by/4.0/
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with the exception of figure 7 where we consider a one-dimensional (1D) domain; there M(x, t) is the

number density of melanophores in cells mm−1. Because it appears several times, we define the
indicator function 1fconditiong here as

1fconditiongðxÞ ¼
1, if x satisfies the rule specified by ‘condition',
0, otherwise,

�
(2:1)

where ‘condition’ depends on the model rule and cell interaction, as we discuss next.
 g.org/journal/rsos
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2.1. Models of migration
Our ABM for cell movement tracks the position, Mi(t), of each cell, indexed by i∈ {1,…, NM(t)}, at time
t≥ 0. The movement of each melanophore depends on its interactions with surrounding melanophores,
following an overdamped version of Newton’s second law. The forces are assumed to be conservative,
i.e. they may be written as the gradient of a potential. This leads to the following system:

dMi

dt
� FðiÞint ¼ �

XNMðtÞ

j¼1,j=i

rWc
MMðMi �MjÞ: ð2:2Þ

Here, FðiÞint is the net force arising from all cell–cell interactions according to the potentialWMMðrÞ, where r
is the inter-particle displacement. The potential can encode cell–cell repulsion and adhesion, depending
on the sign of its gradient along the direction between two cell centres. Many choices for WMMðrÞ are
possible, including harmonic, power-law, Morse and Lennard-Jones potentials, among others. Here,
we use exponential potentials given by

WMMðrÞ ¼ RMM e�jrj=vMM � AMM e�jrj=aMM , ð2:3Þ

in accordance with prior ABMs of pattern formation in zebrafish [14,40]; see figure 1c and table 1
for parameter values and their biological interpretations. To model cells communicating through
cellular extensions or dendrites [19,20], secreted signals [80] or cell–cell contact [81], we assume forces
on cells are zero beyond some cut-off distance dmax. We represent this using the notation
rWc

MMðrÞ ¼ rWMMðrÞ 1fjrj,dmaxgðrÞ, and set NM(t) =NM when there is no cell birth. We remark that the
model given by equation (2.2) is deterministic in the sense that it does not include Brownian motion.

The associated continuous model describes the melanophore density, M(x, t). Integrating M(x, t) over
a bounded region yields the total number of melanophores within that area at time t. Following the
coarse-graining procedure in [60,82,83], an outline of which is found in electronic supplementary
material, §1.1, we obtain the PDE below:

@M
@t

¼ aMMr �
�
MrWc

MM w M
�
, ð2:4Þ

where the force rWc
MM is the same as in equation (2.2) and w is the convolution operator [14,40]. The

parameter aMM in equation (2.4) is not inherent to the coarse-graining procedure; rather, it accounts
for possible differences between the discrete and continuous models. Indeed, simulating equation (2.4)
with the parameter values listed in table 1 and aMM ¼ 1 (the value expected from the mean-field
approximation) does not always capture the ABM dynamics; see figure 2.

The individual and EA ABM results demonstrate that cells disperse until they are about 55–115 μm
apart at t = 150 days. The PDE with aMM ¼ 1, however, predicts that cells travel about 250 μm further
in the same time period. Additionally, the PDE cell density is lower than the EA ABM density near
the centre of the domain, implying that cells are more separated there. The continuous solution at
earlier times more closely resembles the EA ABM result at t = 150 days, however, which suggests that
PDE solutions evolve at a faster time scale than that of the discrete model. The parameter aMM

effectively dilates the time variable, such that solutions travel aMM times more quickly. Thus, a non-
unitary value of aMM is likely to produce a better match between the discrete and continuous
solutions. To our knowledge, the value of aMM cannot be derived a priori. Instead, we develop an
approach for estimating its value based on ABM data in §2.4, and will pursue an analytic derivation
for this parameter in future work.



Table 1. Model and simulation parameters used throughout the paper. We note that Nbir [ f10, 25, 50, 100, 150, 200, 250g
realizations for 2D simulations and Nbir∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} realizations for 1D simulations. As we discuss in the
electronic supplementary material, S2, Nsim = 5 × 103 realizations for most EA ABM solutions of the cell movement model and
Nsim = 103 for all EA ABM results of the cell birth and combined models. We set Nhist = 30 voxels for EA ABM solutions of the cell
birth and combined models, and Nhist = Nbin for the cell movement model. (See figure captions for our Nbin values.) The values of
RMM (and RXX, see electronic supplementary material, S1.3) were reported as repulsion strengths (i.e. RMM=vMM) in [39].

parameter value description and motivation

RMM 0.00124 mm2 day−1 strength of melanophore repulsion potential in equation (2.3); based on [14,39]

AMM 0 mm2 day−1 strength of melanophore adhesion potential in equation (2.3); based on [14,39]

vMM 0.02 mm melanophore repulsion interaction range in equation (2.3); based on [14,39]

aMM 0.012 mm melanophore adhesion interaction range in equation (2.3); based on [14,39]

dmax 0.2 mm maximum cell interaction distance in equation (2.2); based on [14,39]

dloc 0.075 mm maximum interaction range for cell birth in equation (2.6); based on [14] and

chosen slightly larger than measurements of cell–cell distances [78,79]

Nbir varies number of positions selected uniformly at random per day for possible cell

proliferation (e.g. differentiation from precursors) in equations (2.5) and (2.7)

c− 1 cell lower bound for the number of cells in a short-range neighbourhood for cell

proliferation in equations (2.5) and (2.7)

c+ 6 cells upper bound for the number of cells in a short-range neighbourhood for birth in

equations (2.5) and (2.7); based on estimations of data [16,78] in [14]

tfinal 150 or 2000 days simulation end time (150 days in 2D and 2000 days in 1D)

Δtmove 0.01 or 0.1 days time step for numerical implementation of equation (2.2) and electronic

supplementary material, equation (S3)

Δtbir 1 day time step for numerical implementation of cell birth in equations (2.5) and (2.7)

ΔtPDE 0.05 days time step for numerical implementation of equations (2.4), (2.8) and electronic

supplementary material, equation (S6)

Δtrecord 1 day time step for recording data from model simulations

Nsim varies number of ABM realizations for computing EA cell densities

Nbin varies spatial discretization step for solving our continuous models

Nhist Nbin or 30 voxels spatial discretization step for binning simulation results for comparison
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2.2. Models of cell birth
Our ABM for cell birth consists of stochastic, discrete-time rules which we adapt and simplify from [14]
(motivation for these rules may be found in electronic supplementary material, S1.2). Specifically, at each
time step (i.e. day) in a simulation, we select Nbir [ N locations uniformly at random from Ω and
evaluate them synchronously for possible cell birth. Each selected location, z, represents the position
of a precursor cell that may differentiate into a melanophore based on the signals that it receives. The
conditions for melanophore birth in the ABM [14] depend on both neighbouring melanophores and
dense xanthophores, as we show in electronic supplementary material, figure S1. Since we restrict to
one population in this paper, we simplify the rules from [14]; see electronic supplementary material,
S1.2, for details. In particular, a new melanophore emerges at position z according to the rule

XNM

i¼1

1fMi[Vz
locgðMiÞ � 1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
short-range activation

and

XNM

i¼1

1fMi[Vz
locgðMiÞ , cþABM|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

overcrowding prevention

�! melanophore appears at z,

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð2:5Þ
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Figure 2. The PDE for cell migration does not accurately describe the EA ABM result when its scaling parameter, aMM, is set
to unity. (a) To compute our EA ABM result, we solve equation (2.2) using an initial condition of 400 melanophores placed
uniformly at random in a 1 × 1 mm2 square, group cell positions in a 240 × 240 histogram, and average such data over 104

ABM realizations. (b) We compute the corresponding PDE solution by simulating equation (2.4) with aMM ¼ 1 from a uniform
density of 400 cells mm−2 in the same square region. The ABM and PDE solutions use the same potential (given by
equation (2.3) with parameters in table 1). We overlay an example ABM realization for comparison; the results demonstrate
that the support of the PDE is larger than that of the ABM by about 200–250 μm. Because melanophore–melanophore
distances have been measured to be roughly 50 μm in vivo [78] and stripes are only about 7–12 cells wide [16], this is a
large difference. (c) The distribution of nearest-neighbour distances across 100 ABM realizations demonstrates that cell–cell
separation ranges from roughly 60 to 100 μm. Based on visual inspection of the graphs, nearest-neighbour distances appear
inversely proportional to the EA cell density. In (a–c), we show results at t = 150 days.
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where cþABM [ N, and

Vz
loc ¼ disc centred at z with radius dloc: (2:6)

According to equation (2.5), new cells appear near existing melanophores until the maximum number of
cells—namely, cþABM—in Vz

loc, the interaction region between cells, is reached; see table 1 for parameter
values. While equation (2.5) is deterministic, stochasticity enters our ABM through our Nbir randomly
selected positions {z}. Similar stochastic rules can also be used to model cell death, as in [14,40],
although we do not consider them here.

We do not know of existing methods for rigorously deriving continuous models of cell birth from
off-lattice ABMs with this noise structure. We therefore adopt a phenomenological modelling approach, in
which we create a continuous model whose governing equations mimic the stochastic interaction rules.
We reason that the number density of cells in this setting must increase at a constant rate (proportional to
Nbir) when continuous versions of the overcrowding and short-range activation restrictions are met, since
this occurs at the individual level in the ABM. Furthermore, we represent the density restrictions with an
indicator function using the integral of the number density over Ωloc as an argument, since the latter
quantity yields the total number of cells within that region. This leads to the following model:

@M
@t

ðx, tÞ ¼ gNbir1
1�
Ð
Vx
loc

Mðy,tÞdy,cþ

� �ðx, tÞ, ð2:7Þ

where c+ is the continuous equivalent of the density-limiting parameter cþABM in equation (2.5); Nbir has the
same value as in our correspondingABM; and g [ Rþ is a parameter that effectively dilates the time variable
in a similar way asaMM in the cell movementmodel. The units of γmust be inversely proportional to those of
the domain size in order tomake the dimensions of equation (2.7) consistent. Its value is unknown; however,
we can employ a phenomenological argument to determine an expected value by integrating equation (2.7)
over the whole domain. This yields an upper bound on the number of cells born per unit time of γNbir|Ω|,
hence one expects γ≈ |Ω|−1 to maintain a maximum rate ofNbir cells born per day as in our ABM.We note,
however, that this argument does not take into account possible clustering or other spatial correlations that
can occur in the discrete setting, which may change the values of γ and c+ from their expected values. While
we could address this by allowing both parameters to depend on the proportion of the domain in which the
birth conditions are fulfilled, we leave this extension for a future study and simply estimate uniform values
for γ and c+ by fitting to EA ABM data, as we do for aMM in the movement-only model. We overview our
approach for estimating the values of c+ and γ in §2.4.
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Figure 3. Our modular pipeline for matching the solutions of continuous and discrete models and identifying how cell movement
and birth interact in both settings. We first isolate the discrete-model terms from [14] corresponding to movement (left column) and
birth (right column) and simplify them to consider only one cell type. We then produce multiple realizations of our ABMs, sorting
the cell locations into a grid of Nhist × Nhist voxels to yield the EA discrete-model results. We simulate our continuous model for cell
movement (respectively, cell birth) and compare it on the same spatial mesh, with values of aMM (respectively, c+ and γ) obtained
from a least-squares optimization approach; see electronic supplementary material, S2, for details. Finally, we combine the fitted
movement and birth models to produce our full continuous model. While an extension of this pipeline to fit all three parameters
simultaneously is straightforward, fitting separately allows us to better understand the effects of cell movement and birth in discrete
and continuous frameworks.
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2.3. Full models of cell movement and birth
We combine our descriptions of cell movement and proliferation to form our full discrete and continuous
models. For our full ABM, we move cells according to equation (2.2) and then introduce new agents
based on equation (2.5) at each simulated day; see electronic supplementary material, S2, for details.
For our continuous model, we combine the terms related to movement and birth, such that the cell
density evolves according to

@M
@t

ðx, tÞ ¼ aMMr �
�
MrWc

MM w M
�
þ gNbir1

1�
Ð x

Vloc
Mðy,tÞdy,cþ

n oðx, tÞ, ð2:8Þ

where the parameters aMM, γ, Nbir and c+ have the same interpretations as in §§2.1 and 2.2. Importantly,
by assuming that these parameters have the same interpretations, we are assuming that migration and
proliferation are additive, so that combining them has no extra influence. Our fitting approach for
these parameters, discussed below, allows us to evaluate this choice and better understand the
interplay of these two mechanisms in discrete and continuous settings.
2.4. Parameter estimation procedure
We identify the values of the parameters—aMM in equation (2.4) and {γ, c+} in equation (2.7)—by
minimizing the sum of squared differences (hereafter referred to as the ‘L2 error’) between the
continuous and EA discrete solutions over time and space. Because we are able to model the isolated
processes of cell birth and movement separately, or consider them acting simultaneously, there are two
ways of estimating parameters: by fitting all three parameters simultaneously to data from the
combined model, or by fitting them in a modular fashion by considering cell movement and birth in
isolation from each other. For the remainder of this paper, we adopt a modular approach because it
allows us to probe the particular effects of cell movement and birth in detail (see figure 3 for an
overview), and we present a study of simultaneous estimation in electronic supplementary material,
S3. In particular, by using our modular parameter values in the combined PDE model, we can
investigate their interplay and better understand the additive effects of individual-level mechanisms
on the accuracy of continuous models. As we discuss in electronic supplementary material, S3, our
modular approach may also supply additional information that can improve parameter estimation.
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Figure 4. The optimal PDE scaling parameter for movement depends on the mesh resolution but appears to converge. (a) A scatter
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this scaling parameter is correlated with the mesh resolution, but appears to converge at sufficiently high (i.e. Nbin � 240) detail.
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times the voxel width in a grid with Nbin ¼ 240. See §2.4 and electronic supplementary material, S2, for numerical details.
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For example, we show in electronic supplementary material, S3, that aMM and γ are not uniquely
identifiable if they are fit only to the combined EA ABM data, whereas figure 4b and figure 7f
suggest we can uniquely identify them with a modular approach. We overview our method for
parameter estimation below; for parameter values, see table 1. We refer to electronic supplementary
material, S2–S3, for further details about our implementation of the pipeline in addition to alternative
choices that could be taken in parameter estimation (such as fitting to earlier times, less refined spatial
data etc.).

We consider biologically meaningful time scales (i.e. days), length scales (i.e. mm), and cell densities
and stress empirical units throughout our results. This choice supports future studies that may treat
pattern formation with multiple cell types. Throughout our simulations, we consider a domain of size
3 × 3 mm2 (with one 1D exception in figure 7). We implement four initial conditions to extract
common features of cell interactions from different geometric scenarios. The first involves a square
region of melanophores in the centre of the domain (Box), which mimics the symmetry of the domain.
For the second initial condition, we place a single stripe of melanophores (Stripe), which is motivated
by the typical patterning observed in wild-type zebrafish. For the third initial condition, we consider
two rectangular regions of melanophores (Offset rectangles), which take into account non-standard
geometries and the meeting of two disjoint melanophore populations. Finally, the last initial condition
we consider involves two melanophore stripes (Two stripes), which explores the interactions between
two disjoint melanophore populations with biologically realistic sharp fronts. (See electronic
supplementary material, figure S6, for a summary of these initial conditions.) We initialize individual
ABM simulations by sampling cell positions uniformly in these regions for each respective initial
condition, and initialize our continuous models by setting the cell density uniformly equal to the
estimated biological density of 400 cells mm−2 [14].

In Step 2 of our pipeline in figure 3, we solve our discrete models with an explicit approach.
Specifically, we solve equation (2.2) with an explicit forward Euler scheme. To model differentiation
from uniformly distributed precursor cells [14], we solve the birth-only ABM by selecting Nbir sites in
the domain uniformly at random at a fixed time step (here, 1 day) and placing a new cell at each
position that meets the conditions given by equation (2.5). (Following the approach in [14,39,40], we
evaluate all Nbir locations for potential cell proliferation at the same time. This synchronous evaluation
means that it is possible, though uncommon, for more than cþABM cells to be present in a local
neighbourhood, and the choice of parameters in our model, based on the ABMs [14,39,40], accounts
for this possibility.) We solve our ABM combining migration and birth by simulating equation (2.2)
and then implementing cell birth as above, with migration evaluated using a shorter time step than
the time step for birth events.

To compare ABM results directly with the cell density from our continuous models, we obtain an EA
distribution by simulating many ABM realizations (here, between 103 and 104 simulations), sorting all the
cell locations into a histogram of Nhist ×Nhist voxels (or Nhist × 1 voxels in 1D), and normalizing by the
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number of simulations and the voxel area for each day simulated; see Step 3 of our pipeline in figure 3.

Other ways of relating ABM and PDE results are also possible, for example by introducing Gaussian
kernels at each cell location [84]. However, as far as the construction of the histogram is concerned, we
expect comparable results for particles and localized Gaussian kernels. Furthermore, we show in
electronic supplementary material, S3, that histogram voxel size used to bin EA ABM data and the
final time used to fit the continuous equations only play a minor role in affecting the parameter
values we obtain, at least for the cell movement model.

As part of Step 4 of our pipeline in figure 3, we need to solve our continuous models, and we do so
with explicit approaches. Specifically, we apply a first-order finite volume scheme for the migration
model (equation (2.4)), a forward Euler method for the continuous cell birth model (equation (2.7)),
and a combined finite volume/forward Euler scheme for the full continuous framework (equation
(2.8)). (More details about the particular time steps used to simulate the discrete and continuous
models are in electronic supplementary material, §2.) We simulate the continuous models on an
Nbin �Nbin mesh and, to match with EA ABM solutions, record the average cell density at each day
on a (possibly coarser) grid of Nhist × Nhist voxels.

We compute continuous model parameters by minimizing the L2 error between the continuous and
EA ABM results across time. Notably, this nonlinear least-squares problem is equivalent to maximum
likelihood parameter estimation when the densities produced from the ABM simulations are
independent, identically distributed normal random variables with constant variance and mean equal
to the continuous solution. The L2 error that we minimize is given by

e2L2 ¼ kMcts �MABMk2L2 ¼
ðt¼tfinal

t¼0

ð
V

�
Mctsðx, tÞ �MABMðx, tÞ

�2 dxdt
� DtrecordDxDy

XNT

n¼0

XNhist

i¼1

XNhist

j¼1

ðMðnÞ
cts,i,j �MðnÞ

ABM,i,jÞ2, ð2:9Þ

where Δtrecord denotes the time steps at which data are collected; Δx and Δy are the spatial step sizes
of the histogram used to compare the EA ABM and PDE data; MðnÞ

cts,i,j is the continuous-model solution
at time tn and position (xi, yj); and MðnÞ

ABM,i,j is the corresponding EA ABM result. For the birth-only
model, we consider fitting to either the L2 error as above or simply the difference in the total cell
count of the two datasets (we verify in electronic supplementary material, S2, table S4, that fitting
to the L2 error produces similar parameter estimates). When we consider cell birth, we simulate
our models with different values of Nbir and estimate parameters by minimizing the sum of the
errors across these Nbir values. We fit parameters related to cell proliferation sequentially—that is,
we determine the optimal value for c+ before γ. We verify in 1D that sequential and simultaneous
estimation does not lead to significant difference in parameter values; see electronic supplementary
material, S3.
3. Results
We now present our results linking discrete and continuous models of cell migration (§2.1), birth (§2.2),
and migration and birth (§2.3). We first isolate each interaction process, separately identifying the values
of aMM in equation (2.4) and {γ, c+} in equation (2.7). As we note in §2.4, this choice allows us to extract
the distinct effects of each mechanism. We then determine how this simplification affects the ability of the
full continuous framework, given by equation (2.8), to approximate EA ABM solutions. By considering
different initial conditions (we discuss the details and motivations for these in electronic supplementary
material, S4), we demonstrate the robustness of our fitting procedure. Our results show how the time
scales of proliferation and movement in our continuous model may depend on numerical
implementation and the frequency of stochastic cell birth controlled by Nbir. Moreover, our modular
fitting approach highlights important considerations to account for in more general systems where
agents are moving and changing in number.
3.1. Cell migration
We estimate aMM, the scaling parameter that controls the dynamics of melanophore movement. Figure 4a
presents the values of aMM that minimize the L2 error between the continuous solution of equation (2.4)
and EA ABM results for our four initial conditions (see §2.4 and electronic supplementary material, S2–
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resolution. We find that the average pointwise errors (over voxels where at least one of the EA ABM or PDE solutions is non-
zero) are about 28 cells mm−2, 17 cells mm−2, 17 cells mm−2 and 17 cells mm−2 at t = 0, 50, 100 and 150 days, respectively
(these values correspond, respectively, to roughly 7%, 4%, 4% and 4% of the maximum cell density of 400 cells mm−2).
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S4). In each case, the optimal value of aMM is positively correlated with our PDE mesh resolution, i.e.
greater values of aMM are associated with larger Nbin ¼ Nhist values. This unitless parameter appears to
converge to around 0.60–0.66 as the mesh resolution increases. There is at most a 2.5% relative
difference between the values of aMM that we find when Nbin ¼ 240 versus when Nbin ¼ 480 for our Box
initial condition. These results suggest that aMM is independent of the mesh resolution when the latter
contains at least 240 × 240 voxels, corresponding to a mesh spacing of 12.5 μm. As we show in figure 2c,
melanophores tend to separate by between 60 and 100mm in our ABM results, so this mesh spacing is
less than one quarter of the typical distance between agents.

At eachmesh resolution in figure 4a, the estimated optimal value ofaMM does not appear to dependgreatly
on the initial condition. For example, in the case of a mesh with Nbin ¼ Nhist ¼ 240, the maximum relative
difference between the four parameter values is at most 6.5%. This similarity suggests that there is an
inherent time scale at which migratory melanophore–melanophore interactions occur. Figure 4b, which
presents the log L2 error for Nbin ¼ 240 as a function of aMM, further supports this conclusion. Although the
errors associated with different initial conditions can vary by an order of magnitude, the minimum value of
each (roughly convex) curve appears nearly identical and is located near the values shown in figure 4a.

Figure 5 presents snapshots of the EA ABM results across 104 realizations of equation (2.2) and the
optimized PDE solution associated with the Box initial condition. The first row shows the expansion
in time of the EA ABM support, i.e. the area occupied by the cells, due to melanophore–melanophore
repulsion. For more intuition, we superimpose the cell positions from one ABM realization on our
number-density results in this figure and throughout the paper. In all cases, we crop out
approximately the upper half of cell positions. Visual inspection of cell positions in figure 5 suggests
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that melanophore–melanophore distances increase near the edge of the collective. Similarly, the speed at
which the support expands appears to slow down for the EA ABM result, consistent with melanophores
experiencing weaker forces from comparatively distant cells in this region.

We also observe in figure 5a–d that a band of high cell density emerges around the edge of the
support which surrounds a ring-like region of low density. These bands may result from the
combined effects of cell–cell repulsion and the fine mesh resolution that we use to sort agent positions
in the EA solution. Repulsion causes cells at the edge of the collective to travel towards empty
regions, while more centrally located agents move more slowly due to the balance of forces from their
neighbours. When repulsion separates cells by distances greater than the mesh resolution, we expect
regions of low density within the solution support to appear. These oscillatory bands should become
less evident when the repulsive potentials in figure 1d exhibit shallower gradients, as this permits cells
to cluster more closely, or when coarser histograms with fewer bins are used to visualize the EA ABM
data. As we discuss in electronic supplementary material, S6, the forces acting on xanthophores are
about an order of magnitude smaller than those for melanophores, and we indeed observe less
pronounced bands there. Notably, fitting to EA ABM data on coarser histograms leads to similar
parameter estimates; see electronic supplementary material, S3, for details.

Wepresent snapshotsof the continuousmodel, equation (2.4), underourestimatedvalueofaMM in figure5e–
h. This PDE solution captures the dynamics of our example ABM realization significantly better than the case in
figure 2b, when aMM ¼ 1. However, unlike the EAABM result, the PDE does not exhibit bands of high and low
cell density. Thisdiscrepancy canbe furtherappreciated in figure 5i–k,whichpresents snapshots of thepointwise
difference between the PDE and EA ABM solutions. Here, positive values indicate that the discrete solution is
larger than the continuous one. The lack of bands in the PDE setting is likely because the mean-field
assumption used to derive the continuous system is invalid where density is low. We do not expect this
discrepancy to be as pronounced in models that include cell birth, as this mechanism increases density; see
§3.3. Moreover, the PDE support expands more quickly than that of the ABM. This result is likely due to our
choice of error function to fit aMM. Specifically, this parameter is biased towards values that produce accurate
approximations in the bulk as these regions have a larger contribution to the L2 norm. Since we have already
determined that the assumptions underlying the continuous model break down in low density regions,
however, we choose to fit to the bulk of the cell density and focus on the L2 difference.

To demonstrate that our observations for the Box case are consistent across initial conditions, we compare
the EA ABM and PDE dynamics for the Stripe and Two stripes initial conditions in figure 6; electronic
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supplementary material, figure S7, presents results for theOffset rectangles initial condition. In figure 6a–d, the

column-averaged PDE solution, i.e. the solution average over the x variable, has a larger support than that of
the EA ABM and does not exhibit oscillatory bands. (Comparing column averages is justified because both
results are nearly uniform along the x-axis.) Nevertheless, the continuous solution closely approximates the
EA ABM density, particularly in regions where the latter is high. For example, we find that the average
pointwise error (over voxels where at least one of the EA ABM or PDE solution is non-zero) is equal to
about 40 cells mm−2 at t = 0 days, 24 cells mm−2 at t = 50 days, 23 cells mm−2 at t = 100 days and
23 cells mm−2 at t = 150 days (these correspond to roughly 10%, 6%, 6% and 6% of the maximum cell
density of 400 cells mm−2, respectively). Both solutions invade empty space in time, and the speed of this
travelling wavefront appears to slow as cells become more diffuse. For the Two stripes initial condition in
figure 6e–h, the ABM and PDE predict that cells move into the initially empty space between stripes to
approach a characteristic profile also observed in the one-stripe case. The EA ABM model does not appear
to form oscillatory bands in the interstripe region, corroborating our hypothesis that these bands are more
likely to arise near the edge of the solution support. In this case, the average pointwise error between the
continuous and discrete data is roughly 18%, 11%, 11% and 11% of the maximum cell density at t = 0, 50,
100 and 150 days, respectively.

3.2. Cell birth
We identify the density-limiting parameter c+ and growth rate γ in our IDE model, equation (2.7), by
comparing with agent-based data from equation (2.5). Importantly, the dynamics of discrete-model
proliferation, unlike cell migration, involve stochasticity beyond the initial condition. To gain intuition,
we thus start with 1D simulations: for each value of Nbir∈ {1, 2,…, 10}, we compute the EA of 103

ABM realizations from an initial condition in which a single melanophore is placed at the origin in a
1D domain. In figure 7a, we show the EA result for Nbir = 1 and the corresponding IDE model
solution with the optimal values of γ and c+ in figure 7b. The continuous solution appears to have a
smaller radius of support than the EA ABM result at every time point; see figure 7c. This result holds
across all Nbir values in figure 7d. While the IDE predicts a piecewise linear growth of the total
number of cells, the corresponding EA ABM result increases linearly before slowly saturating as the
domain fills, as we depict in figure 7e. This behaviour likely arises from our overcrowding condition
that prevents cell densities from exceeding c+. As the domain fills with cells, it becomes less likely to
select a location z that satisfies the overcrowding condition in the ABM. This reduces the population
growth rate at later times. By contrast, the IDE model specifies that the support increases by the same
amount at each time step until it reaches the domain boundaries. As we discuss in §4, capturing
discrete model behaviour more accurately at higher cell numbers may require replacing γ in our IDE
with a density-dependent function.

Our 1D simulations provide a baseline case to test our estimation process. As we note in §2.4, we
employ a sequential procedure, first fitting c+ with γ = |Ω|−1 and then estimating γ with c+ fixed. In
the 1D case, this leads to optimal values c+ = 7.592 cells and γ = 0.2822. If we instead estimate both
parameters simultaneously, we find c+ = 7.430 cells and γ = 0.2902. This is a difference of about 2.1% in
c+ and 2.8% in γ, suggesting that sequential estimation reduces computational complexity without
strongly affecting parameter values. To understand if a coarser discrepancy measure based only on
cell numbers at each time is sufficient, we also fit c+ and γ by minimizing the squared difference in
the total cell numbers over time; see electronic supplementary material, S2 and table S4, for the
resulting parameter values. The corresponding parameter estimates differ from the density-based case
by approximately 1.2% for and c+ and γ, suggesting both error measures are reasonable. Both
approaches also appear to exhibit similar sensitivity as parameters are varied (compare figure 7;
electronic supplementary material, figure S2).

Figure 8 and electronic supplementary material, figure S8, respectively, show that proliferation in 2D
broadens the solution support from the Box and Offset rectangles initial conditions over time, and the IDE
model accurately captures the total cell mass of the ABM system for all Nbir values considered. Our
estimated optimal values of c+ and γ for these two initial conditions differ by about 2.5% and 0.31%,
respectively, suggesting that our estimation procedure is robust to the initial condition. We also
highlight that a region of higher density forms at the edge of the initial condition’s support for both
the ABM and IDE in figure 8a–h. Indeed, if z is near the support boundary, Vz

loc covers only a fraction
of the occupied domain, thereby meeting both conditions for birth. Conversely, the cell density at the
centre of the domain is comparatively low throughout time because the total number of cells
contained within discs of size jVloc is already close to the threshold c+. Interestingly, as in the 1D case
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time, we find the most distant melanophore from y = 0 for each simulation and average across these values. (e) Cell mass
grows linearly in both models at first, but stochastic effects coupled with our overcrowding condition drive down the growth
rate of the ABM as the domain fills with cells. ( f ) Plotting the squared L2 space–time difference between the discrete and
continuous densities, summed over all Nbir values considered (namely Nbir = 1,…, 10), as a function of the density-limiting
parameter c+ and birth-rate scaling parameter γ highlights its convex shape in c+ and lesser sensitivity to γ. We compute
this L2 difference using a time step of 10 days here, and our results are based on 103 simulations for each Nbir value; see
electronic supplementary material, S3, for parameter values under alternative choices in our estimation process.
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with only proliferation, the ABM EA support is larger than that of the IDE solution, the reverse of the
behaviour that we observed for cell migration in figure 5.
3.3. Cell movement and proliferation
To obtain a full continuous model, we may substitute our estimated values of the migration scaling
parameter aMM, density-limiting parameter c+ and birth-rate scaling parameter γ into equation (2.8).
However, comparing this model to the dynamics of our full ABM shows that migration and
proliferation have interwoven effects. To illustrate this phenomenon, we present a PDE solution with
our optimal values of aMM, c+ and γ from §§3.1 and 3.2 at t = 70 days in figure 9a. We observe that
this PDE model produces a significantly higher cell density than its discrete counterpart in figure 9b.
This discrepancy occurs regardless of the value of Nbir, which influences the speed of cell birth.
Related to this, we note that the long-time cell density in our ABM results is much lower when both
mechanisms operate simultaneously than it is when only birth occurs; compare figure 8d and
figure 9b. On the other hand, the inclusion of movement does not influence the long-time density of
the continuous model solution; see the colourbar in figure 8h in comparison to the one in figure 9.
Although we do not furnish these observations with an analytical explanation here, they demonstrate
an interesting difference in how ‘adding’ mechanisms or terms impact PDE and ABM dynamics.

One approach to addressing these discrepancies is to refit all three scaling parameters (aMM, γ and c+)
simultaneously, and we present the results of this approach in electronic supplementary material, S3.
(Indeed, we show there that the errors produced with a simultaneous estimation approach can be
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captures the support of the ABM EA result, but not its density. (b) In comparison, the density for the full discrete model is roughly
400 cells mm−2. (c) By integrating this density, which is based on empirical estimates of melanophore–melanophore distances
[14,78], over an Ωloc-region, we find that c+≈ 7.0686 cells. With this value of c+, alongside the values of aMM and γ that
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150 positions day−1. We (a–d ) compute the EA ABM result using 103 simulations, and (e–h) generate the PDE solution of
equation (2.8) with c+ = 7.0686 cells and the values of aMM and γ that we estimated in §§3.1 and 3.2, respectively. (i) The
time evolution of the PDE cell mass agrees well with the mean number of cells for the ABM under different Nbir values. ( j )
Depending on the time scales of migration and birth, the approximate PDE radius of support overtakes or trails the
corresponding EA ABM result. We compute the radius of support for each ABM realization by finding the most distant cell
from the origin at each time step; we then average these values across our simulations. In the PDE case, we find the furthest
voxel with non-zero density from the origin based on the L∞ distance, after setting the density to zero if it is below single-
digit precision of 10−7. (k,l ) We show the difference between the PDE and EA ABM solutions from (a–h) at two sample
times. We overlay cell positions from one ABM simulation to illustrate how the continuous and discrete solutions are related. In
(i,j ), shaded regions denote plus or minus one standard deviation of the EA ABM solution.
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relatively small, although the model parameters may not all be identifiable.) Because we are interested in
understanding the interplay of individual-based mechanisms of proliferation and movement in
continuous models, however, we instead take a simpler theoretical approach. Namely, we note that
the parameter c+ is largely responsible for controlling the maximum cell density over long time
periods. (We determine this by integrating equation (2.8) over space and identifying the steady-state
dynamics; this analysis reveals that equilibrium is reached when the density within any
neighbourhood Vx

loc is below c+.) In order to limit the maximum density to our estimated empirical
value of 400 cells mm−2 [14,78], we let c+ = 400|Ωloc|≈ 7.0686 cells. As we show in figure 9c, using
this value of c+, alongside our previously fitted values of aMM and γ, produces PDE densities that are
much closer to the corresponding ABM results. We thus fix c+ = 7.0686 cells for the remainder of this
paper, which allows us to highlight the time dynamics of our full PDE model in comparison to the
EA ABM result with Box and Offset rectangles initial conditions in figures 10 and 11, respectively.

Figure 10j, which depicts the time evolution of the estimated radius of support for the PDE andEAABM
results, shows that a reasonably accurate continuous description of the combinedmodel can be obtained by
using the scaling parameters obtained from a modular approach. The supports of the ABM and PDE
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solutions both increase at roughly the same rate, although the degree to which the solutions agree can be
affected by Nbir: when this parameter is small, the PDE solution travels at a faster rate than the ABM
solution, whereas the opposite occurs when this value is large (greater than Nbir = 50 positions day−1). At
intermediate values of Nbir (i.e. Nbir = 50 positions day−1), however, the ABM and PDE solution curves
are almost identical. Figure 10i, which presents the number of cells over time, yields similar observations:
the ABM and PDE solutions exhibit similar dynamics over the time period investigated here and there
are certain values of Nbir for which the solution curves are nearly identical. Figure 11 further
demonstrates that these observations do not depend on the specific choice of initial condition. Figures 10
and 11 demonstrate that combining movement with proliferation also dissipates the oscillatory bands
that we observed for movement alone in figure 5. This is likely because the stochastic addition of cells in
the birth model disrupts the regular cell spacing created by the movement model. Furthermore, the EA
ABM and PDE solutions exhibit similar characteristic profiles without regions of high cell density around
the edge of the initial condition support, in contrast to the birth-only model (figure 8).
4. Discussion
We presented a procedure for constructing experimentally interpretable continuous models of cell
migration and birth in biologically relevant settings of low numbers of individuals and localized
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interactions which may lie outside the validity of the mean-field regime. Specifically, we introduced and

estimated scaling parameters in continuous models to account for realistic—i.e. relatively small and
changing—numbers of cells with localized interactions. We applied this methodology to an
illustrative, simplified example inspired by zebrafish pattern formation, in which we used a reduced
ABM to generate individual-level data with biologically meaningful spatial and temporal units. Non-
local rules for cell birth and migration, based on the ABM [14], informed our discrete and continuous
descriptions and allowed us to transfer biological length scales and units to the macroscopic setting.
Throughout our work, we stressed matching the spatio-temporal behaviour of our continuous and
discrete models. We adopted a modular approach by estimating parameters in cases with either
movement or birth before considering both mechanisms simultaneously. This allowed us to examine
the specific contributions of each mechanism to self-organization and provided insight into their
interplay in discrete and continuous settings.

We observed that the solutions of our continuous models expand at a different rate than EA ABM
results and feature smoother profiles. Indeed, inaccuracies in mean-field descriptions for ‘intermediate’
numbers of individuals appear to be common in other biological phenomena described by simpler
dynamics such as Fisher-KPP-type equations, cf. [85,86]. In fact, both references analytically derive
corrections to the wave speed, a procedure we cannot adopt due to our use of off-lattice models.
However, this substantiates our introduction of scaling parameters to handle the discrepancy. By
introducing and estimating parameters that rescale the time variable, we produced more accurate
descriptions of agent-based movement or birth. However, when we used the same parameter values
in a continuous model of both cell migration and birth in §3.3, the PDE did not produce close
estimates of the full ABM. Specifically, our full continuous model yielded larger long-time densities
than the EA ABM results, motivating us to re-estimate the threshold value c+ with a theoretical
approach. This generated a more faithful continuous description and highlighted that the effects of
movement and proliferation are not simply additive. We thus stress that parameters must be fitted to
data in which all mechanisms of interest act simultaneously, in order to capture their interplay. This is
particularly crucial for contexts such as cancer biology, where cell migration, proliferation and death
are known to play critical roles in tumour progression and immune response [87].

Our results highlight how choices in numerical implementation affect parameter estimates and
suggest several directions for future work that may improve our approach. For example, the optimal
value of our parameter controlling the time scale of cell migration (aMM) appears to be independent of
the initial condition and the mesh resolution that we used to construct PDE solutions, provided the
latter is sufficiently refined. One drawback of our current approach, however, is that we may need to
estimate aMM and γ for each new choice of discrete rules governing migration and cell birth,
respectively, because these rules perturb the short-range interactions between relatively small numbers
of cells. This naturally leads to the question of whether an analytic expression can be derived for these
parameters. Several coarse-graining techniques that take into account higher-order correlations
between cells in on- or off-lattice models may produce scaling factors similar to those introduced in
this paper, but these may only apply to certain classes of ABMs [88]. Alternatively, it may be possible
to estimate scaling parameters of continuous models by investigating the convergence of EA ABM
results to features of their solutions such as the speed of solution propagation, as in [85,86] for on-
lattice models; by accounting for the dynamics of the two-particle distribution, as in [73,74]; or by
exploring scaling relationships as in [89]. Adapting these approaches to our setting is an interesting
avenue for future work.

Additionally, our continuous models more accurately represent ABM results within the bulk of the
solution support because the L2 norm more strongly penalizes discrepancies there. In the future, other
norms, such as the L∞ error, could be used to match the solution supports given by our discrete and
continuous models. Replacing our birth-rate scaling parameter γ with a density-dependent function—
through either rigorous derivation or an equation-learning approach [90]—is another exciting future
direction. In particular, because cell proliferation in the ABM involves selecting positions uniformly at
random from the domain each day, the chance that we select a location z that permits birth appears to
depend in a nonlinear way on the solution support. More generally, our computational study does not
provide theoretical explanations for our parameter values, and we plan to build on the intuition that
we established here to develop these arguments in the future.

To simplify our initial study, we considered the dynamics of one cell population (i.e. melanophores in
the main text and xanthophores in electronic supplementary material, S6), but pattern formation in
zebrafish skin involves multiple cell types and longer-range interactions, as we highlight in electronic
supplementary material, figure S1. Future work may extend our pipeline to construct more realistic
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continuous models with multiple cell types and interaction neighbourhoods. Related to this, the initial

conditions that we designed allowed us to make one-to-one comparisons between discrete- and
continuous-model densities, but this may not always be possible. More realistic zebrafish models (i.e.
[14,37,39,40]) produce patterns that are more complicated than our box and stripe motifs. This means
that ensemble-averaging stochastic ABM realizations may not retain information about the length
scales inherent in patterns. For such cases, fitting parameters based on summary statistics (e.g. pair-
correlation functions [91], pattern-simplicity scores [92] or persistent-homology approaches [93]) may
be more useful, and we plan to address this in future work. These and other directions move us
toward constructing interpretable, analytically tractable continuous models of self-organization,
increasing our understanding of biological pattern formation more broadly.
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