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Abstract

The past decade has seen enormous progress in cancer immunotherapy. Checkpoint inhibitors are
a class of immunotherapy that act to recruit endogenous T cells of a patient’s immune system
against cancer-associated peptide-MHC antigens. In this process, mutated antigenic peptides
referred to as neoantigens often serve as the target on cancer cells that are recognized by the T cell
receptor (TCR) on endogenous T cells. Another successful immunotherapy has involved adoptive
T cell therapy, where therapeutic doses of T cells expressing a gene for an anti-cancer receptor
are delivered to a patient. This approach has been used primarily against hematopoietic cancers
using synthetic receptors called chimeric antigen receptors (CARs). CARs typically contain an
antibody fragment (single-chain Fv, scFv) against a cancer cell surface antigen such as the B

cell molecule CD19. While therapeutic CARs (and full antibodies) target antigens expressed on
cell surfaces, TCRs can target a much larger array of intracellular proteins by binding to any
cellular peptide associated with an MHC product. These cancer targets include self-peptides from
aberrantly expressed/overexpressed proteins or neoantigens. In this review, we discuss the use of
TCRs in adoptive T cell therapy and their target antigens. We focus on two properties that impact
sensitivity, potency, and possible toxic cross-reactivity of TCR-mediated therapy: (1) the affinity
of the TCR for the target antigen, and (2) the density of the target antigen. Finally, we provide

a comprehensive listing of the current clinical trials that involve TCRs in adoptive T cell cancer
therapy.
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l. INTRODUCTION

Cancer immunotherapy offers the potential for greater efficacy with fewer side effects than
conventional chemotherapies. The hallmark of immunotherapies, in line with the era of
precision medicine, is the targeting of cancer-associated antigens that are not expressed

on normal cells. In some forms, ongoing immunotherapeutic approaches are extensions

of therapies with monoclonal antibodies in which a cancer-associated cell surface antigen
is targeted with an antibody (typically an 1gG), leading to either direct effects on the
cancer cell or recruitment of immune cells through Fc-mediated effects. For example, use
of antibody fragments (single-chain Fv, scFv) as components of synthetic chimeric antigen
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receptors (CARS) are used to directly mediate T cell activity against cancer cells.1=3 This
treatment requires personalized treatment: ex vivo expansion of peripheral blood T cells,
followed by gene transfer of the CAR, and reinfusion of the T cell product; this process is
termed adoptive T cell therapy (ACT) (Fig. 1).

The class of immunotherapies known as checkpoint inhibitors operate quite distinctly

by enhancing the activity of a patient’s own T cells against potentially many different
antigens (often mutated peptides, called neoantigens), presented as complexes of a cancer
peptide bound to a major histocompatibility complex (MHC) product, or pepMHC.# While
checkpoint inhibitors offer great promise in some cancer types, they have been less
successful in cancers with fewer mutations and in cases where the tumor microenvironment
is immunosuppressive (i.e., noninflamed, or “cold”).%> Ex vivo expansion of tumor-
infiltrating lymphocytes (TILs) provide yet another alternative immunotherapy that attempts
to harness the power of therapeutic doses of T cells and the potential for targeting multiple
cancer antigens as pepMHC products.®:” However, TILs are difficult to isolate from most
patients, and their expansion can be time consuming.

Combining the potency of T cells with the vast array of possible cancer antigens as
pepMHC complexes is a form of adoptive T cell therapy in which T cells are endowed
with cancer-antigen specific T cell receptors (TCRs) (Fig. 1). In this review, we focus

on ACT with such TCR-transduced T cells. By way of background, T cells express an
aB-TCR that recognizes peptides only when they are bound to a product of the MHC
complex.8 The recognition of self-peptide/MHC antigens by T cells plays an important role
during thymic development. TCRs mediate negative selection (deletion of the T cell) when
they bind to a self-peptide/MHC with too high an affinity. This process is termed central
tolerance and it is key to avoiding autoimmune reactivities.® However, TCRs also must
bind to self-peptide/MHC with some minimal affinity in order to drive positive selection,
whereby T cells and the TCR are required to recognize peptides only when they are

bound (“restricted™) by the MHC. This intricate process positions TCRs to drive T cell
activity when a foreign peptide, as an MHC complex, binds with even a small increase

in binding affinity. However, this narrow affinity window underlies the critical nature of
identifying TCRs that are optimally active against a cancer antigen but not cross-reactive
with self-peptides.

Nevertheless, because TCRs can recognize potentially any peptide antigen bound to MHC,
they can target virtually any peptide arising from protein degradation inside the cancer cell.
These antigens include peptides arising from viral proteins, mutated proteins, or aberrantly
expressed self-proteins that are associated with cancer. Over 400 cancer-associated peptide
antigens have been described in the cancer antigenic peptide database.1% Hence, TCR-
mediated adoptive T cell therapy remains an attractive area but so far has not had significant
success compared to its counterpart, CAR-mediated therapy. However, given their exquisite
potency, a number of pharmaceutical companies and academic labs have TCR campaigns to
determine the appropriate parameters for effective use of TCRs in therapeutic settings.

Although many cancer-associated antigens have been identified over the past several
decades, selection of an antigen that is truly cancer-specific and that is not expressed
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on normal tissue remains a challenge in the field of TCR-mediated ACT.11.12 Although
there is excitement in targeting cancer neoantigens as pepMHC because of their cancer
specificity, these antigens typically differ from patient to patient, requiring personalized
treatment strategies.5-13 On the other hand, cancer-associated self-antigens that are either
aberrantly expressed or highly overexpressed in cancerous (compared to normal) tissue offer
an advantage, as these are shared among patient populations. These include differentiation
antigens (e.g., melanoma antigens: MART-1, gp100, tyrosinase), overexpressed antigens
[e.g., Wilms’ tumor antigen (WT1)], and cancer testis antigens (e.g., NY-ESO-1, the MAGE
family of antigens) that can be overexpressed in cancer, but are expressed normally in
restricted and sometimes dispensable tissues. Antigens from these categories have been
studied in TCR ACT clinical trials over the past 15 years (Table 1), and modest responses
have been obtained with low-affinity TCRs (high micromolar affinities) used to target
shared or overexpressed antigens. On the other hand, targeting antigens like NY-ESO-1
with an engineered, higher-affinity TCR (affinity in the low micromolar to high nanomolar
range) appears to show more promise. However, targeting overexpressed antigens with
higher-affinity TCRs has been challenging because of recognition of lower-density antigens
on normal tissue or because of recognition of structure-related antigen(s). Overall, studies
with TCRs have shown significant potential in cancer immunotherapy, but they have also
taught important lessons about harnessing their power in an “optimal therapeutic window.”
Here, we discuss the potential targets for TCRs in ACT and two parameters that must

be considered in identifying this optimal window for ACT with TCRs: the density of the
pepMHC antigen complex on cancer cells and the affinity of the TCR for the pepMHC
antigen. We end with a review of ACT clinical trials to date that involve TCR transfer.

. CANCER-ASSOCIATED ANTIGENS AS TARGETS FOR TCR-MEDIATED
ADOPTIVE T CELL THERAPY

Just over ten years ago, the National Cancer Institute (NCI) sponsored a workshop of experts
who generated a prioritization list of 75 cancer-associated peptides that could potentially
serve as targets for vaccines or T cell therapies.1# That report described the properties of
peptides that could be considered in their “targetability” as complexes with MHC products.
Here, rather than focusing on specific peptides, we discuss the advantages and disadvantages
of targeting such self-antigens in comparison with targeting neoantigens, a rapidly emerging
class of interest with significant potential. A recent study discussed some aspects of this
topic.1> From a mechanistic standpoint, self-peptides and neoantigenic peptides share some
features. Peptides from upregulated proteins are expressed at higher levels as a pepMHC
complex than at the normal levels that operate during tolerance induction. Similarly, a
mutation in a neoantigen that increases the binding of the peptide to MHC is also present at
higher levels than the normal (wild-type) pepMHC. So long as the mutation does not also
alter the structure of the peptide “seen” by the TCR, this scenario yields the same outcome
for the upregulated pepMHC and the mutated pepMHC: a higher level of specific pepMHC
on the tumor than on normal cells. Accordingly, what really matters from a quantitative
perspective in this comparison is the extent of upregulation (e.g., 10-fold), or the increase

in affinity of the neoantigenic peptide for the MHC. Because some mutations can yield a
100-fold or greater increase in MHC binding (e.g., determined as stability or affinity),16 it
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can be difficult to achieve a comparable increase in upregulation of protein levels. Despite
this argument, upregulated proteins have the distinct advantage that they are often shared
among cancers of many different patients, whereas individual neoantigens are typically
unique and thus require personalized TCR identification for each patient. However, there
are recent examples of several shared neoantigens which may provide opportunities.17=20 In
addition, it could be argued that with new and more rapid TCR discovery platforms, it will
ultimately be possible to deploy neoantigen-specific TCRs on a personalized basis.13:21-24

Another scenario for neoantigens is mutations that could impact binding to the TCR, either
because they are in exposed residues or they alter the conformation of the peptide or MHC
in regions that contact the TCR.2° Here, the neoantigen peptide might be viewed as an
advantage over self-peptides as there could be neoantigen-reactive T cells that have not
undergone tolerance against the wild-type peptide. However, it is also possible that T cells
against self-peptide/MHC expressed at higher levels, as on cancer cells, have not been
deleted through negative selection.26-28 At issue in all of these scenarios is identifying TCRs
that mediate activity with the level of the pepMHC on the cancer cell but not with the level
of the self-peptide MHC on normal cells.

The window that exists to achieve therapeutic effects without side effects due to reaction
with normal tissue is key to the success of a TCR. This window must consider the density of
the cancer pepMHC complex on the cancer cell versus normal cells, and it must consider the
affinity of the TCR and the thresholds for mediating CD4 and CD8 activity.

[ll. DENSITY OF ANTIGENIC pepMHC COMPLEXES

The density of antigenic pepMHC complexes refers to the number of antigenic pepMHC
complexes expressed on a target cell surface. Immune responses to a pepMHC cancer
antigen depends on the surface density of the antigen,2? and a minimum threshold is
required for T cell activation. As described below, the coreceptors CD4 and CD8 act

to synergize with the TCR, lowering the number of required pepMHC complexes to

one or just a few.39-33 The affinity of the TCR also impacts this density threshold.34
Accordingly, pepMHC complexes from upregulated self-antigens could activate T cells if
their overexpression exceeded the threshold at which TCRs are “tolerized” during selection
in the thymus. As described above, neoantigens with mutations that yield enhanced binding
to MHC could activate T cells because the density of the pepMHC may greatly exceed this
threshold.

The density of a specific pepMHC complex is dependent on various factors, including

the level of the intracellular protein, the efficiency with which the peptide is processed
from the protein, and the binding affinity of the peptide for the MHC product.3® The
antigen-processing and presentation pathway has several steps, and hence each participant
of the pathway can potentially impact peptide loading and hence pepMHC density on the
cell surface. It is hence not surprising that cancer cells can hijack the cellular machinery
to downregulate pepMHC expression to “hide” from naturally existing low-affinity T
cells.36:37 For example, genes encoding the MHC heavy-chain or beta-2 microglobulin can
be downregulated. Similarly, proteins involved in generation of peptides (i.e., components
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of the immunoproteasome), peptide loading, and folding and transport of MHC molecules
(e.g., TAP, calnexin, calreticulin, tapasin) can be downregulated by cancer cells to directly
impact pepMHC density. In such scenarios, T cells transduced with affinity-enhanced TCRs
can enable recognition of the low-density cancer antigen but often require an optimal affinity
window to ensure a cancer-specific response without reactivity to self-antigens (explained
below).

In addition to the antigen presentation pathway, the intrinsic ability of a peptide to bind

to the peptide-binding groove of the MHC also directly impacts the number of pepMHC
complexes exported to the cell surface. Therefore, peptides with optimal anchor residues
are expected to be present at higher densities as pepMHC complexes compared to those
with suboptimal anchors.38 Accordingly, neoantigens that arise because of mutations in
anchor residues leading to improved MHC binding are expressed at higher levels, similar to
aberrantly upregulated cancer-associated self-antigens.32 On the other hand, mutations that
destabilize peptide—MHC interaction limit stable expression of such pepMHC complexes on
the cell surface and result in reduced T cell responses.“? In a neoantigen trial for melanoma,
peptides were prioritized for vaccination based on mutations that resulted in anchor-residue
changes (among other criteria that resulted in class | MHC binding epitopes), indicating

the importance of pepMHC stability and density in initiating immune response.*! This
approach led to the induction of T cell responses in all patients, with 4/6 patients showing
no recurrence of disease after 25 months. Other studies have also indicated that the presence
of neoantigens that have higher binding affinity for class | MHC (compared to wild-type
antigens) correlate with survival in certain cancer types.*2

While TCR-mediated recognition of neoantigens results in cancer-specific responses,
targeting upregulated cancer-associated antigens with TCRs is more challenging because of
their normal levels of expression on non-cancerous tissues. In several clinical trials, targeting
an upregulated (i.e., higher-density) cancer-associated self-antigen resulted in activity
against their normal (i.e., lower-density) expression on normal tissues.*344 Accordingly,
such “shared” cancer-associated antigens need to be carefully targeted with TCRs, especially
when using higher-affinity receptors because of their lower threshold requirements (see
below). Recent observations from clinical trials have suggested thorough examination not
only of target antigen expression profiles in normal and cancer tissues but also of TCR
reactivity to panels of normal human cell lines and tissues prior to adoptive T cell therapy in
humans.

IV. TCR AFFINITY REQUIRED FOR CD4 AND CD8 T CELL RESPONSES

TCR affinity for pepMHC is known to determine the sensitivity of the T cell. In the

context used here, sensitivity refers to how many specific pepMHC complexes per target

cell are required to induce T cell signaling. Remarkably, while the affinity of many TCRs
for “foreign” peptides in complex with an MHC molecule is low (micromolar), especially
compared to most antibodies (nanomolar), these TCRs are able to mediate activity, as noted
above, when induced by only a few pepMHC molecules per target cell.30-33 This exquisite
sensitivity comes in part from the TCR/CD3 machinery itself and in part from synergy with
the coreceptors CD4 and CD8.4% 46 The coreceptors facilitate T cell activity through binding
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of the ligands as the TCR and class | and class Il MHC (although binding of class | by CD8
appears to be more effective than class |1 binding by CD4).32:34 Sensitivity is also enhanced
by signaling mechanisms achieved through recruitment of the coreceptor-associated kinase
Lck.4

While CD8-dependent signaling through the TCR enables such sensitivity, it also impacts
potential cross-reactivity with noncognate self-peptides because of the low-affinity threshold
required. TCR affinities against cancer self-peptides are generally lower than TCR affinities
against foreign pepMHC,*8 probably because of negative selection. However, it is possible
to use various screening or engineering approaches to raise the affinity of these TCRs.4°
This strategy can yield greater TCR sensitivity (i.e., recognition of lower levels of the
specific pepMHC) and can even obviate the requirement for CD8.3450 TCRs with higher
affinity (e.g., Kp values of < 1 uM) can thus drive activity of CD4 T cells,>! a feature that is
especially valuable in elimination of cancers through direct lytic action of CD4 T cells and
through recruitment of other immune cells through CD4 T cell polyfunctional activities.52:53

The risk of using higher-affinity TCRs against cancer-associated pepMHC antigens is that
they have not been through a stringent negative selection process and so they may cross-
react with structurally similar self-peptides.>* This has in fact led to two different clinical
trials with lethal toxicities.>>:°6 The use of non-natural TCRs can be mitigated to some
extent by careful screening of normal tissues and by /n silico screens of possible MHC-
binding structurally similar self-peptides.>’-%9 It is possible to use natural TCRs isolated
against neoantigen pepMHC complexes in autologous T cell transfers, but this process
requires personalized workup of the antigens and the TCRs for each individual.13.15.22,60,61
Regardless of the preclinical workup and safety screens done for human TCR gene
therapies, clinical trials are required to fully ascertain possible detrimental cross-reactivity
and safety issues.

V. CLINICAL TRIALS WITH TCR GENE TRANSFER

TCRs used clinically in an ACT format have been identified by isolation of a T cell clone
that recognizes a specific cancer-associated pepMHC complex. These TCRs are subjected to
thorough /n vitro analysis to understand sensitivity and specificity prior to use in autologous
T cells isolated from patients (Fig. 1). In 2004, Rosenberg and colleagues at the NCI
enrolled metastatic melanoma patients for treatment by adoptive transfer of autologous
lymphocytes that were genetically modified to express the TCR called DMF4 against

the melanoma antigen MART-1/HLA-A2 complex (Table 1). The results of their “first in
human” trial demonstrated the therapeutic potential of using TCRs to genetically engineer
cells for cancer.52 While they noted objective regression of melanoma lesions in only 2 out
of 15 patients, their study provided the groundwork for further efforts on the optimization
of TCRs and other parameters. Since then the number of TCR trials initiated worldwide for
cancer treatment has been increasing (Fig. 2).

As DMF4 had a lower affinity to MART-1 (Kp = 170 uM), the efficacy of an affinity-
enhanced TCR, DMF5 (Kp = 40 uM),%3 was subsequently examined in melanoma patients
to determine if higher-affinity TCRs could mediate higher antitumor reactivity owing to
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recognition of lower amounts of antigen.#3 While the objective responses increased to 30%
in this trial, patients also experienced uveitis and hearing loss due to recognition of normal
cells expressing MART-1 in the eye and ear. Similarly, targeting carcinoembryonic antigen
(CEA) in metastatic colorectal cancer patients with an affinity-enhanced TCR resulted in
33% objective response but also in development of colitis in all patients due to recognition
of normal levels of CEA on the colon mucosa.** Results from these trials demonstrate

that, while higher-affinity TCRs can yield improved efficacy, the enhanced sensitivity may
also elicit on-target reactivity with normal tissues that are normally nonreactive with lower-
affinity TCRs. These results also prompted pursuit of alternative targets such as cancer testis
antigens that can be more exclusively associated with expression in cancerous tissue (e.g.,
NY-ESO-1, LAGE-1, MAGE family of antigens).

Results from NY-ESO-1 clinical trials have been promising, with objective responses
ranging from 45 to 70% (Table 1).64-66 It is therefore not surprising that TCR trials

for a variety of cancers are targeting this antigen with an affinity-enhanced TCR, NY-
ESO-1°2%9 (K = 730 nM).56 In contrast, two TCRs that each targeted a different MAGE
antigen resulted in patient fatalities due to unexpected off-target cross-reactivities. In

one case, targeting MAGE-A3/HLA-A2 antigen with an affinity-enhanced TCR resulted

in neurotoxicity due to unexpected expression of a related antigen, MAGE-A12, in the
brain.5® In the second case, targeting the MAGE-A3 antigen (HLA-A1l-restricted) with an
affinity-enhanced TCR (a3a, Kp = 2.3 uM) resulted in cardiotoxicity due to unexpected
cross-reactivity with the cardiac peptide from the titin protein that shared 5 out of 9 residues
with the targeted antigen.56:57 Following these reports of lethal off-target cross-reactivity,
safety screens with TCRs now include reactivity with (1) all variants of the targeted peptide,
(2) structurally similar self-peptides identified by /n silico screens of the proteome,>® and (3)
panels of normal human cell lines and tissues in preclinical assays.6” With these key lessons,
the use of TCRs in ACT is expanding to safely pursue additional cancer-associated antigens.

Trials are now underway for targeting MAGE-A4, A6, A10, WT-1, Tyrosinase, PRAME,
AFP, and KRAS antigens among many others (Table 1). Based on our analysis, there are
currently 74 clinical trials that involve either affinity-enhanced TCRs or wild-type TCRs in
ACT. For example, Adaptimmmune’s panel of engineered TCRs for ACT have enhanced
affinity [these are termed specific peptide-enhanced affinity receptor (SPEAR) T cells] and
have been assessed for optimal affinity and cross-reactivity. In contrast, Immatics conducts
high-throughput screening of natural human T cell repertoires to isolate therapeutic TCRs
with optimal affinity.

Although not addressed in detail here, mispairing of exogenous TCRs with endogenous
TCRs can present a challenge in ACT by impacting TCR transduction efficiencies or
possibly creating unknown specificities. The addition of cysteines in the constant domains®®
or the use of murine constant domains®® has allowed preferential assembly of exogenous
TCRs. With the advent of CRISPR/Cas9, engineered T cells can have their endogenous TCR
a and B loci disrupted.’®"1 TCRs against the NY-ESO-1 antigen with CRISPR-disrupted
endogenous TCR chains (NYCE) and/or PD-1 are now in clinical trials for multiple
indications (NCT03399448).
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Since tumor microenvironment is often immunosuppressive,® 2 combination treatments
with checkpoint inhibitors are being assessed in clinical trials—for example, to prevent
engineered T cells from inhibitory interactions with PD-L-1 on cancer cells among other
cell types (e.g., NCT03709706, NCT03168438, NCT02070406). In addition, in order to
achieve durable responses in patients, there is also significant interest in TCR engineering
of memory subsets of T cells to achieve durable anticancer response (e.g., NCT02408016,
NCT0277082073).

VI. CONCLUDING REMARKS

TCR gene transfer into T cells has tremendous potential as an effective cancer therapeutic
because of the potency of T cells and the opportunities to identify novel targets (pepMHC).
Continued understanding of T cell and cancer biology, in addition to the discovery of unique
targets matched with specific T cell receptors, will allow safer targeting of diverse types

of cancers. The field has realized the importance of affinity thresholds of TCRs, in both
CD4 and CD8 T cells, when treating patients with genetically modified T cells. In addition,
the basic principles of dependence of T cell activation not only on TCR affinity but also

on ligand density, coreceptors, CD3 subunits, costimulatory or inhibitory molecules, and
downstream signaling mechanisms have guided the expanding array of clinical studies in
progress.
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ABBREVIATIONS:
ACT adoptive T cell therapy
CAR chimeric antigen receptor
HLA human leukocyte antigen (refers to human MHC alleles)
Kb dissociation constant
MHC major histocompatibility complex
pepMHC peptide-major histocompatibility complex antigen
TCR T cell receptor
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FIG. 1.
Schematic of ACT using genetically modified (CAR- or TCR-) transduced T cells.
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Number of cancer clinical trials in the ClinicalTrials.gov database that use TCR-transduced
T cells for ACT. The database was searched for TCR trials on January 9, 2019. The search
was delimited by “T cell receptors” and “Cancer” as key words.
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