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Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic condition that is 
characterized by unresolved fatigue, post-exertion symptom exacerbation (PESE), cognitive dysfunction, orthostatic 
intolerance, and other symptoms. ME/CFS lacks established clinical biomarkers and requires further elucidation 
of disease mechanisms. A growing number of studies demonstrate signs of hematological and cardiovascular 
pathology in ME/CFS cohorts, including hyperactivated platelets, endothelial dysfunction, vascular dysregulation, 
and anomalous clotting processes. To build on these findings, and to identify potential biomarkers that can be 
related to pathophysiology, we measured differences in protein expression in platelet-poor plasma (PPP) samples 
from 15 ME/CFS study participants and 10 controls not previously infected with SARS-CoV-2, using DIA LC-MS/
MS. We identified 24 proteins that are significantly increased in the ME/CFS group compared to the controls, 
and 21 proteins that are significantly downregulated. Proteins related to clotting processes – thrombospondin-1 
(important in platelet activation), platelet factor 4, and protein S – were differentially expressed in the ME/
CFS group, suggestive of a dysregulated coagulation system and abnormal endothelial function. Complement 
machinery was also significantly downregulated, including C9 which forms part of the membrane attack complex. 
Additionally, we identified a significant upregulation of lactotransferrin, protein S100-A9, and an immunoglobulin 
variant. The findings from this experiment further implicate the coagulation and immune system in ME/CFS, and 
bring to attention the pathology of or imposed on the endothelium. This study highlights potential systems and 
proteins that require further research with regards to their contribution to the pathogenesis of ME/CFS, symptom 
manifestation, and biomarker potential, and also gives insight into the hematological and cardiovascular risk for 
ME/CFS individuals affected by diabetes mellitus.
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Introduction
Myalgic encephalomyelitis/chronic fatigue syndrome 
(ME/CFS) is a debilitating chronic condition that mani-
fests in various physiological systems and is character-
ized by unresolved fatigue and post-exertional symptom 
exacerbation (PESE) [1, 2]. The onset of ME/CFS is often 
connected to viral/bacterial infection [3, 4], with the her-
pesviruses being most implicated [5–7]. However, there 
are no widely-established clinical biomarkers for the 
condition and much of the disease pathogenesis remains 
unknown.

We have previously shown that whole blood and plate-
let-poor plasma (PPP) from ME/CFS study participants 
showed hypercoagulability as measured via thromboelas-
tography and platelet visualization [8]. PPP from the ME/
CFS group also contained significant levels of amyloid 
fibrin(ogen) (some 10×  in area of that of the controls), 
albeit less and of smaller size than observed in Long 
COVID PPP samples [9, 10].

Along with our study, a growing body of research sug-
gests that cardiovascular and hematological abnormali-
ties, such as endothelial dysfunction [11–18], abnormal 
blood flow and hence vascular dysregulation [19–21], 
and hyperactivated platelets [8, 22, 23] may contribute 
to the ME/CFS disease process [24]. Furthermore, it has 
been demonstrated that plasma from ME/CFS individu-
als cause dysfunction of healthy endothelial cells [12], 
and prompts the assessment of the blood for potential 
diagnostic and mechanism-related biomarkers.

To expand on these findings, we randomly selected a 
subset of ME/CFS and healthy control PPP samples from 
our previous study cohort and used data-independent 
acquisition (DIA) mass spectrometry (MS) (DIA LC-MS/
MS) to identify differentially expressed proteins. DIA 
LC-MS/MS possesses the capabilities to capture nearly 
the entire proteome of a sample, enabling global and 
nominally unbiased detection and quantification of pep-
tides [25]. Using this untargeted approach, we identified 
statistically significant differences in the levels of 45 pro-
teins between ME/CFS and healthy controls. A select few 
came with both strong statistical significance and exhibit 
compelling fold changes, and, consistent with other data 
[8, 16, 18, 22, 23, 26], these pertain to the endothelium 
and coagulation system, and immune function.

Methods
Ethical statement
Ethical clearance was issued by the Health Research Eth-
ics Committee (HREC) of Stellenbosch University (South 
Africa) (N19/03/043, project ID #9521). Strict compli-
ance to ethical guidelines were carried out, as guided by 
the Declaration of Helsinki, South African Guidelines for 
Good Clinical Practice, and Medical Research Council 
Ethical Guidelines for Research.

Blood collection and demographics
Stored PPP samples from 10 healthy individuals were 
used as controls for this study. The exclusion principles 
applied to the controls include smoking, pregnancy, con-
traceptives, cardiovascular disease, coagulopathy, and a 
previous SARS-CoV-2 infection. 15 stored ME/CFS PPP 
samples, which were a part of a larger sample group that 
was collected for a previous study [8], were included in 
this experiment. ME/CFS blood samples were recruited 
via the ME/CFS Foundation of South Africa. All ME/CFS 
participants in this study had not experienced a SARS-
CoV-2 infection prior to the date of sample collection. 
Sodium citrate tubes were used for blood collection, 
and centrifuged at 3000×g for 15 min at room tempera-
ture. The PPP was collected, and stored at –80  °C. ME/
CFS individuals were asked to complete the ICC Symp-
tom Questionnaire [27] to further describe the types and 
severity of symptoms experienced by this cohort.

Sample preparation for proteomics
10 control and 15 ME/CFS stored platelet-poor plasma 
(PPP) samples were used for the proteomics analysis. 
Protein determination was performed using a Jenway 
7415 Nano Micro-Volume Spectrophotometer. Samples 
were diluted 20×  with ammonium bicarbonate. 50  µg 
of protein was obtained from each sample and the vol-
ume was readjusted to 50 µL with Tris-Buffer (0.1  M; 
1% DS). Disulphide bridges were reduced using 5 mM 
TCEP (tris(2-carboxyethyl)phosphine) at room tem-
perature for 1  h. Cysteine residues were then blocked 
with 10mM MMTS (Methyl methanethiosulfonate) for 
30  min at room temperature. Interfering substances 
were removed prior to digestion by washing on bead 
using MagResyn HILIC (https://resynbio.com/wp-con-
tent/uploads/2019/12/IFU_HILIC.pdf). Samples were 
digested on MagResyn HILIC particles with 1  µg tryp-
sin (Pierce) at an enzyme: substrate of 1:50. Samples 
were left to incubate for 18 h at 37  °C. The supernatant 
was then collected, and the MagResyn HILIC particles 
were washed with 50 µL 1% TFA (trifluoroacetic acid) to 
remove any peptides bound to the particles. This super-
natant was then also collected. Supernatants were com-
bined, dried, and the peptides were resuspended in 50µL 
of 50% acetonitrile and then centrifuged at 10,000g for 
5  min to remove any particulate. 20 µL of supernatant 
was then removed and dried. The samples were resus-
pended in loading solvent (See Liquid Chromatography 
section below) containing Biognosys 11 iRTs (indexed 
retention time standards) at 0.05/µL in preparation for 
mass spectrometry.

Liquid chromatography (Dionex nano-RSLC)
Liquid chromatography experiments were conducted 
using the Thermo Scientific Ultimate 3000 RSLC 

https://resynbio.com/wp-content/uploads/2019/12/IFU_HILIC.pdf
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equipped with a 20  mm × 100  μm C18 trap column 
(Thermo Scientific) and a CSH 25  cm × 75  μm, 1.7  μm 
particle size C18 column (Waters) analytical column. 
The loading solvent was constituted by 2% acetonitrile: 
water and 0.1% formic acid; Solvent A: water and 0.1% 
formic acid; and Solvent B: 100% acetonitrile containing 
0.1% formic acid. Samples were transferred onto the trap 
column from an autosampler (set to 7  °C) at a flow rate 
of 2µL/min, for 5 min prior to the samples being eluted 
onto the analytical column. 300nL/min defined the flow 
rate, and the gradient occurred as follows: 5–30% B over 
60 min and 30–50% B from 60 to 80 min. The experiment 
was performed at 45 °C.

Library building: data-dependent acquisition (DDA)
Samples were pooled for the construction of the library, 
to obtain a complete (as possible) protein database from 
our samples. Samples were reduced and cysteine resi-
dues blocked as described above, and the MagResyn 
HILIC protocol (https://resynbio.com/wp-content/
uploads/2019/12/IFU_HILIC.pdf) was again used for 
protein clean-up. Protein digest was performed on 
MagResyn HILIC particles with 1  µg trypsin as previ-
ously described. A peptide clean-up was performed 
using HILIC Clean-Up of Peptides Post Protein Diges-
tion (https://resynbio.com/wp-content/uploads/2021/12/
HILIC_PEPCLU.pdf). Samples were then cleaned and 
further fractionated using Pierce™ C18 Spin Tips & Col-
umns (catalogue number: 89,870) with acetonitrile (50%, 
20%, 17.5%, 15%, 12.5%, 10%, 7.5%, and 5%). LC experi-
ments were carried out as described previously. The mass 
spectrometry analysis was performed using a Thermo 
Scientifc Fusion mass spectrometer equipped with a 
Nanospray Flex ionization source. Positive mode was 
chosen with spray voltage set to 2 kV and the ion transfer 
capillary set to 290 °C. Internal calibration of spectra was 
conducted using polysiloxane ions at m/z = 445.12003. 
MS1 scans were performed using the Orbitrap detector 
set at 60,000 resolution over the scan range 375–1500 
with AGC target at 4E5, and maximum injection time of 
50 ms. Data was acquired in profile mode. MS2 acquisi-
tions were carried out using monoisotopic precursor 
selection for ion with charges + 2 to +7 with error toler-
ance set to ± 10 ppm. Precursor ions were excluded from 
fragmentation once for a period of 60  s. Precursor ions 
were selected for fragmentation in HCD mode using the 
quadrupole mass analyser with HCD energy set to 30%. 
Fragment ions were detected in the Orbitrap mass ana-
lyzer set to 30,000 resolution. The AGC target was set to 
5E4 and the maximum injection time to 60 ms. The data 
was acquired in centroid mode.

Mass spectrometry: data independent acquisition (DIA)/
SWATH
A Thermo Scientifc Fusion mass spectrometer equipped 
with a Nanospray Flex ionization source was used in 
this study, as previously mentioned. Samples entered 
via a stainless-steel nano-bore emitter. Positive mode 
was used for data collection with the spray voltage set to 
2 kV and ion transfer capillary set at 290  °C. Alignment 
of chromatograms were done with the aid of the iRTs kit 
(Biognosys). MS1 scans were performed using the Orbi-
trap detector set at 60,000 resolution over a m/z range of 
375–1500. The automatic gain control (AGC) target was 
set to standard and maximum injection time at 100 ms. 
Data were acquired in profile mode. Precursor ions were 
selected for fragmentation in higher-energy C-trap dis-
sociation (HCD) mode using the quadrupole mass ana-
lyzer with HCD energy set to 30%. Precursor ions were 
scanned in three windows, 355–555, 555–755, and 755–
955  m/z (which were saved as three separate raw files), 
with an isolation window of 10  m/z and an overlap of 
1 m/z. Ions were detected in the Orbitrap mass analyzer 
set to 30,000 resolution. The AGC target was set to cus-
tom and the maximum injection time mode set to cus-
tom. The data were acquired in centroid mode.

Data analysis
The raw files generated by the mass spectrometer were 
imported into Skyline (version 22.2.0.312) using the 
DIA wizard. Precursor and ion charges were set to 2, 3 
4 and 1, 2, 3, respectively, and shuffle sequence chosen 
as the decoy generation method. Semi-tryptic cleavage 
with 1 missed cleavage was allowed for. Precursor mass 
tolerance was set to 10 ppm and fragment mass toler-
ance set to 0.02 Da. Deamidation (NQ), oxidation (M), 
and methylthio (C) were allowed as dynamic modifica-
tions. Equalize medians was chosen as the normalization 
method with a 95% confidence interval. mProphet, which 
automatically adapts the error model for each data set 
and assigns a confidence measure to each peak group for 
quality control, was included in the analysis to score pep-
tide identifications using its linear model [28]. A Q value 
of 0.05 was chosen. A database was constructed from 
UniProt using the keywords ‘plasma’, ‘immune system’, 
and ‘herpesviruses’. We also ran the analysis against the 
spectral library created from patient samples.

Quality control plots for all proteins (to assess sys-
tem performance) were obtained using MSstatsShiny, 
whereby the Skyline output and annotation files, after 
rearranging the layout, were used as MSstatsShiny input 
files. Proteins with only 1 feature were not removed from 
the analysis, and a Q value of 0.05 was selected. For nor-
malization, equalize medians were chosen. Missing val-
ues were censored and model-based imputation utilized. 
Runs with over 50% missing values were also removed.

https://resynbio.com/wp-content/uploads/2019/12/IFU_HILIC.pdf
https://resynbio.com/wp-content/uploads/2019/12/IFU_HILIC.pdf
https://resynbio.com/wp-content/uploads/2021/12/HILIC_PEPCLU.pdf
https://resynbio.com/wp-content/uploads/2021/12/HILIC_PEPCLU.pdf
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Results
The demographics of the participant groups are con-
tained within Table  1, along with the symptom severity 
score averages [27] of the ME/CFS population. A por-
tion of the ME/CFS cohort presents with symptoms 
and comorbidities that are intimately associated with 
ME/CFS, specifically gastrointestinal issues (6/15 par-
ticipants) [29], orthostatic symptoms (5/15 participants) 
[30–32], and fibromyalgia (3/15 participants) [33]. Pro-
teomics data from the analysis of control (n = 10) and 
ME/CFS (n = 15) PPP using Skyline is represented in 
Table 2 and the total ion chromatogram (TIC) is depicted 
in Fig. 1. Figure 2 is a representation of the quality plots 
for all proteins/peptides across the three m/z ranges, 
which was obtained from MSstatsShiny. Our experiment 
indicates that 24 proteins are significantly increased in 
the ME/CFS group compared to the controls, and that 21 
proteins are significantly downregulated. However, only a 
select few hold strong statistical significance. These will 
be presented and discussed, while the other identified 
protein data can be perused in Supplementary Material 
1. In some cases, only a limited number of peptides from 
a protein are significant, which may reflect regulated 
peptides or be related to the number of ions entering the 
mass spectrometer at a given time point. The transitions 
for proteins detected by a single peptide are contained 
within Supplementary Material 2.

Table 1  Demographics of the ME/CFS cohort and symptom 
score averages for the ICC questionnaire
Age
 Age of control population (n=10; 7 females) 59.3 ± 7.5
 Age of ME/CFS population (n=15; 11 females) 48.9 ± 14.9
 P Value (parametric) 0.054
Comorbidities of ME/CFS Population (%)
 Gastrointestinal Symptoms 40
 POTS 33
 Gingivitis/Periodontitis 20
 Hypercholesterolemia  20
 Fibromyalgia 20
 Psoriasis 13
 Rheumatoid Arthritis 13
 Hypertension 13
 Mast Cell Activation Syndrome 7
 Rosacea  7
ICC Questionnaire Results of ME/CFS Population (mean SD)
 Post-Exertional Neuroimmune exhaustion 7.7 ± 1.9
 Neurological Impairments 6.5 ± 2.8
 Immuno, Gastrointestinal, and Genitourinary impairments 5.9 ± 2.8
 Energy Production/Transportation Impairments 6.5 ± 2.8
The ICC questionnaire and the comorbidities are both self-reported by the 
patients

Statistical significance was determined at p < 0.05

Data are represented as mean ± SD

Table 2  Selected significant protein and peptide data from the Skyline analysis (all data can be found in Supplementary Material 1)
Protein name Peptide sequence Fold Change 

(ME/CFS raised)
p value UniProt acces-

sion number
No. of 
peptides

m/z range

 Thrombospondin-1 GPDPSSPAFR 3.55 0.00009 P07996 2 355–555 m/z
TIVTTLQDSIR 3.48 0.0002 P07996 2 555–755 m/z
IEDANLIPPVPDDKFQDLVDAVR 3.75 0.00009 P07996 3 755–955 m/z

 Platelet factor 4 HITSLEVIK 3.11 0.00009 P02776 1 355–555 m/z
 Vitamin K-dependent 
protein S

QSTNAYPDLR 0.48 0.0006 P07225 2 555–755 m/z

 Complement C1s 
subcomponent

MLTPEHVFIHPGWK 0.7 0.0069 P09871 7 555–755 m/z
MLTPEHVFIHPGWK 0.53 0.0013 P09871 5 755–955 m/z

 Complement component 
C9

ISEGLPALEFPNEK 0.17 0.0001 P02748 6 755–955 m/z

 Ficolin-3 YGIDWASGR 0.65 0.0006 O75636 5 355–555 m/z
QDGSVDFFR 0.45 0.0086 O75636 5 355–555 m/z
LLGEVDHYQLALGK 0.49 0.0348 O75636 5 355–555 m/z
LLGEVDHYQLALGK 0.53 0.0084 O75636 1 755–955 m/z

 Lactotransferrin LRPVAAEVYGTER 7.05 0.00009 P02788 5 355–555 m/z
FQLFGSPSGQK 8.38 0.00009 P02788 3 555–755 m/z
IDSGLYLGSGYFTAIQNLR 4.52 0.0118 P02788 3 555–755 m/z

 Protein S100-A9 NIETIINTFHQYSVK 2.08 0.0159 P06702 1 555–755 m/z
NIETIINTFHQYSVK 2.89 0.0046 P06702 1 755–955 m/z

 Immunoglobulin heavy 
constant gamma 1

DTLMISR 1.51 0.0094 P01857 6 355–555 m/z
GFYPSDIAVEWESNGQPENNYK 5.64 0.0031 P01857 20 755–955 m/z

Fold change is expressed with reference to the ME/CFS group

Significance was determined at p < 0.05
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Discussion
In the present study, we employed DIA LC-MS/MS 
to search for any significant differences in protein lev-
els between control and ME/CFS blood (PPP) samples. 
Albeit a small sample size, we offer insight into the dif-
ferential protein levels between ME/CFS and control 
cohorts, and provide direction for future studies with 
larger cohorts. We identified 45 proteins whose dif-
ferences in expression level are statistically significant 
(p < 0.05), but only a select few – the ones with strong sta-
tistical significance and a notable fold change – are dis-
cussed here.

Proteins related to the coagulation system
We identified three significant proteins related to the 
coagulation system that deserves discussion: thrombo-
spondin-1; platelet factor 4; and vitamin K-dependent 

protein S. When interpreting these findings, there are a 
number of recently published articles implicating plate-
lets and other components of and processes related to the 
coagulation system in ME/CFS cohorts [8, 22–24, 34, 35], 
as well as endothelial dysfunction [11–14, 16–18, 36]. 
The links between platelets, coagulation, and endothelial 
cells, and dysfunction thereof are discussed elsewhere 
[37–39]. Further work is now required to elucidate the 
impact of clotting and endothelial dysfunction on ME/
CFS pathology and symptom presentation, and deter-
mine if any treatment can result from these findings.

Thrombospondin-1 (TSP-1) is a glycoprotein, part of 
a family of 5 thrombospondins [40], that is involved in 
platelet activation [41, 42], clot formation [43–45], hae-
mostasis [46], vascular control [47, 48], inflammation 
[49, 50], and tissue repair [51]. TSP-1 is found within 
the extracellular matrix [52], α-granules of platelets [53], 

Fig. 2  Quality control plots of protein levels of all samples across the three m/z ranges. Data were processed on MSstatsShiny. Normalization was per-
formed using equalize medians

 

Fig. 1  Total Ion Chromatogram (TIC)
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endothelial cells and macrophages [51, 54], and plasma 
[55]. Elevations in TSP-1 induce endothelial dysfunc-
tion and interfere with vascular control via a number of 
mechanisms, including modulation of nitric oxide [47, 
48, 56–58]. The potential of TSP-1 to influence vascu-
lar control might have relevance to impaired blood flow 
observed in ME/CFS [19, 59]. In the context of platelets, 
TSP-1 leads to platelet activation via signalling of inhibi-
tory cyclic adenosine monophosphate (cAMP) [46]. Fur-
thermore, TSP-1-deficient mice exhibit signs of excessive 
bleeding and impaired coagulation [46]. The researchers 
also discovered that transfusion of wild-type platelets 
into TSP-1−/− mice improved clot formation and stability. 
Hence, TSP-1 plays an important role in platelet function 
and clot formation.

The exact cellular source of TSP-1 in our ME/CFS pop-
ulation is uncertain, as immune cells [60] and endothelial 
cells [54] are capable of increasing plasma levels of this 
protein. The increase in TSP-1 in our ME/CFS cohort 
might be related to the active states of platelets observed 
in a subset of these individuals [8, 22, 23], and might help 
explain endothelial dysregulation and impaired vascular 
control in this disease population. Interestingly, TSP-1 
levels increase and originate from activated platelets dur-
ing SARS-CoV-2 infection [61].

Platelet factor 4 (PF4) is a CXC chemokine that, much 
like TSP-1 (and P-selectin), is released from α-granules of 
activated platelets [62, 63]. Although we only detected a 
single peptide for PF4 (transition depicted in Supplemen-
tary Material 2), its presence in excess is expected when 
one reviews the evidence of platelet hyperactivity in ME/
CFS [8, 22, 23, 35] and related chronic, inflammatory dis-
eases [64]. Its primary function is to facilitate coagula-
tion by neutralizing glycosaminoglycans on endothelial 
and platelet membranes, prompting platelet aggregation 
and monocyte recruitment [65–67]. In addition to clot-
ting-specific functions, PF4 also seems to be involved in 
immune functioning, with its secretion and serum levels 
increasing during infection – which is expected as plate-
let activation increases in response to infection [68–70]. 
PF4 is protective against numerous microorganisms and 
exerts notable antiviral effects [70–73].

PF4 has been implicated in cardiovascular disease 
[74–76] and gastrointestinal conditions [77, 78], and 
has the potential to promote oxidative and nitrosative 
stress, and subsequent inflammatory sequelae [79–81], 
although some studies argue otherwise [82]. PF4 modu-
lates endothelial and vascular smooth muscle cells in a 
proinflammatory manner [66, 83] and is likely an ongoing 
consequence of platelet hyperactivity in ME/CFS (along 
with elevations in TSP-1), potentially accounting for 
signs of endothelial damage observed in patients [12, 16, 
18]. In Long COVID, plasma PF4 levels are significantly 
increased compared to controls [84].

Vitamin K-dependent protein S (PROS) is an endog-
enous anticoagulant which exists both free in plasma and 
as a complex where it is non-covalently bound to comple-
ment C4-B [85, 86], which, interestingly, is significantly 
downregulated in the ME/CFS group. PROS functions as 
a cofactor to another endogenous anticoagulant, protein 
C, and is required for the inactivation of activated clot-
ting factor VIII [87]. Deficiencies of PROS leads to over-
zealous clot formation which confers an increased risk 
for venous thrombosis and, in severe cases, death [86]. 
Apart from its role in coagulation, PROS is also involved 
in bone metabolism [88, 89]. Within the hematological 
system, endothelial cells – a cell-type intimately involved 
in the regulation of hemostasis – are known to secrete 
PROS [90]. The downregulation of PROS in the ME/CFS 
group, along with increases in TSP-1 and PF4, further 
emphasize a procoagulant phenotype in this ME/CFS 
population, as well as dysregulated endothelial function.

Besides the decreased anticoagulant capacity conferred 
by decreased levels of PROS, fibrinolysis may also be hin-
dered as PROS facilitates clot degradation via a protein 
C-dependent mechanism [91]. Relevant to this finding of 
decreased PROS in the ME/CFS group, individuals suf-
fering from acute COVID-19 and presenting with respi-
ratory distress exhibit decreased serum levels of PROS 
[92], which likely contribute to the procoagulant pathol-
ogy associated with SARS-CoV-2 infection [93, 94]. Fur-
thermore, a proteomics analysis of extracellular vesicles 
obtained from ME/CFS plasma samples identified high 
levels of SERPINA5, which is involved in hemostasis, 
particularly by inhibiting protein C [95]. This finding is 
also indicative of a prothrombotic tendency that occurs 
by regulating the activity of protein C. A summary of 
these coagulation-related findings is given within Fig. 3.

Proteins related to the Immune System and inflammation
Leukocyte dysfunction [96–99] and dysregulated inflam-
matory processes [100–106] are documented characteris-
tics of ME/CFS. While we did not identify any significant 
differences between the two groups with regards to noto-
rious proinflammatory cytokines, such as TNF-α, NF-κB, 
and IL-1β, we did identify a dysregulation of complement 
factors and other inflammation-related proteins, includ-
ing lactotransferrin, protein S100-A9, and an immuno-
globulin variant.

The complement system is a well-established element 
of the innate immune system, with more recent studies 
revealing its participation in adaptive immunity [107]. 
There are three different pathways, namely the classical, 
lecithin, and alternative pathway, which are discussed 
elsewhere [108]. Dysregulation of the complement sys-
tem has been documented in both COVID-19 [109] and 
ME/CFS [110–113].
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A previous study showed that a subgroup of ME/CFS 
individuals (107/250) expressed significantly higher levels 
of complement factor C1q [110], which, in our study, is 
not significantly different between groups. Rather, a sub-
unit of the C1 complex, C1s, is downregulated in the ME/
CFS group. C9 forms part of the membrane attack com-
plex (or C5b-9) that is used to lyse targeted cells [114, 
115], and C9 also contributes to inflammasome activation 
during infection [116]. In the ME/CFS group this com-
plement protein is significantly downregulated, exhibit-
ing a fold change of 0.17. Impaired complement function 
characterized by a reduced capacity to form membrane 
attack complexes and aid in inflammasome activation 
will certainly result in shortcomings in immune defence.

Ficolin-3 is a pattern recognition receptor which func-
tions within the lectin complement pathway and exerts 
antibacterial and antiviral effects [117]. Importantly, 
deficiency of ficolin-3 results in immunodeficiency [118] 
and is associated with an higher risk (8-fold) of develop-
ing a disease and autoimmunity [119]. What may be of 
relevance is that ficolin dysfunction or under-expression 
is associated with viral infection and disease [117], and 
hence may have a major role to play in the ME/CFS dis-
ease process [3, 5], related to herpesviruses and other 
microorganisms. In contrast to our finding of decreased 
ficolin-3 levels, a previous study found an increase in 
ficolin-3 expression in leukocytes from ME/CFS patients 
[120].

The downregulation of these complement proteins cor-
roborates the notion of immune dysfunction in ME/CFS 
and may confer a susceptibility to infections, and perhaps 
contribute to the symptoms of malaise and fatigue [1]. 

Furthermore, viruses are known to have evolved strate-
gies to bypass host defences, and the complement system 
is a target of such evasive processes [108]. It is specula-
tive, but plausible to propose that these results are a 
consequence of such viral infection and subsequent mal-
adaptation of the immune system. Further investigation 
of complement function in ME/CFS is required.

Lactotransferrin (LF) is a non-hematic iron-binding, 
pleiotropic glycoprotein that is found in mammalian 
milk, and is produced by a variety of cells, including 
immune cells [121, 122]. LF, apart from its ability to bind 
Fe3+ ions and prevent Fe3+-induced oxidative stress and 
inflammation [123–125], is well known for its antimi-
crobial, antioxidant, anti-inflammatory, prebiotic, and 
probiotic effects, and, hence, therapeutic potential [122, 
126–129].

The physiological protection offered by LF extends into 
multiple organ systems, especially the immune system. 
It acts as a mediator of immune function, whereby, apart 
from enhancing certain aspects inflammation, serves to 
prevent an exaggerated inflammatory response and sub-
sequent tissue damage [130–132]. It exerts chemotac-
tic effects on leukocytes [133] and prevents the release 
of proinflammatory cytokines [134], likely by inhibit-
ing TLR4 activity [135]. Due to its antimicrobial and 
immunomodulatory effects, LF forms part of the innate 
defence, and even bridges components of the innate 
branch to the acquired branch of the immune system 
[130, 133, 136].

As a biomarker, LF is useful at monitoring inflam-
mation [137–139]. In our ME/CFS population, the 
increase in serum LF might be an indicator of ongoing 

Fig. 3  Representation of the dysregulated coagulation system in the ME/CFS group as inferred from the results of this study (Table 2). The ME/CFS group 
exhibits an increased propensity for clotting due to decreased levels of vitamin K-dependent protein S (an endogenous anticoagulant). Increased levels 
of thrombospondin-1 (originating from endothelial cells and platelets) activate platelets, as well as contribute to endothelial dysfunction via proinflam-
matory and oxidative/nitrosative mechanisms – as does increased levels of platelet factor 4 and P-selectin [8]. The end result is a prothrombotic state, 
potentially resulting from and contributing to endothelial dysfunction
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inflammation, and even an attempt to counter proinflam-
matory processes associated with pathology. With specu-
lation aside, the large fold change in this protein might be 
suggestive of reason for further investigation.

Protein S100-A9 – not to be confused with the endog-
enous anticoagulant, protein S – is a member of the S100 
protein family and is known for its role in inflammation 
[140]. S100-A9 is predominantly expressed by immune 
cells, such as monocytes, macrophages, and neutrophils 
[141, 142], and is recognised as a damage-associated 
molecular pattern molecule and antimicrobial involved 
in the innate response [143–145]. Additionally, it acts as 
a chemotactic agent for phagocytes [146, 147] and is also 
essential for the translocation of leukocytes across the 
endothelium, due to its role in microtubule reorganisa-
tion [148].

S100-A9 is upregulated during infection, inflammation, 
and disease, and is highly expressed at sites of inflam-
mation and injury [149–155]. Studies have shown that 
S100-A9 is proinflammatory, disrupts endocrine signal-
ling, activates NF-κB, and interacts with TLR4 and the 
receptor for advanced glycation end products [146, 156–
160]. Overexpression of S100-A9 can be more damaging 
than beneficial, as it can result in overzealous immune 
activity and subsequent inflammatory and oxidative 
damage, and even toxic shock [157].

S100-A9 promotes a proinflammatory and prothrom-
botic phenotype in endothelial cells, impairs cell-adhe-
sion processes of the endothelium (thereby increasing 
vascular permeability, which coincides with the function 
of leukocyte recruitment and migration), and upregulates 
endothelial TSP-1 expression [143, 161] – a phenomenon 
which perhaps underlies the increase in TSP-1 exhib-
ited by the ME/CFS group in this study. The potential of 
S100-A9 to cause endothelial dysfunction and damage, 
as well as its overexpression during inflammatory states 
and its proinflammatory nature, may be of relevance to 
ME/CFS, a disease which is characterized by endothelial 
dysfunction [11, 12, 14, 16, 17, 162] and (dysregulated) 
inflammation [26, 101, 104, 106]. Even more so, S100-A9 
can directly activate platelets and promote procoagu-
lant functions [163]. Data regarding S100-A9 in ME/CFS 
cohorts is scarce, and hence requires investigation, espe-
cially since it plays important roles in immune and vas-
cular function. With regards to SARS-CoV-2, S100-A9 is 
increased during infection [164, 165].

A comment on viral proteins
With regards to viral involvement, a study published in 
late 2022 discovered signs of active human herpesvirus 
6 (HHV6) and Epstein-Barr Virus (EBV) in neurological 
tissue from deceased ME/CFS patients [6], thereby sup-
porting previous hypotheses implicating herpesviruses in 
this condition [3, 5]. A more recent study also highlighted 

the presence and role of active herpes infection in a much 
larger cohort [7], as have other studies in the past [166–
168]. There are also indications that viral reactivation 
of these herpesviruses is central to ME/CFS and Long 
COVID pathology [6, 169]. However, because much of 
the human population harbors latent herpesviruses (and 
indeed Mycobacterium tuberculosis and Helicobacter 
pylori and other dormant bacteria) without overt disease, 
the specific mechanisms by which their activity may con-
tribute to ME/CFS pathology requires further study.

Our only significant DIA LC-MS/MS findings related 
to herpesviruses is the downregulation of protein UL29 
from HHV6-H in the ME/CFS group. This is not conclu-
sive, and most likely reflects the difficulty of detecting 
low-abundance proteins in plasma samples with a high 
dynamic range, especially when using global, untargeted 
proteomics approaches. Future studies aiming to con-
fidently detect viral proteins should aim to decrease the 
dynamic range within plasma samples if doing DIA anal-
yses, or perform targeted proteomics experiments. We 
also noticed that several viral proteins were phosphory-
lated; planning an experiment with this is in mind might 
offer information about viral activity.

Conclusion
Identification of potential ME/CFS biomarkers is impera-
tive for improved diagnosis, mechanism elucidation, and 
clinical care. Using DIA LC-MS/MS we show a signifi-
cant, differential expression of proteins in PPP samples 
from ME/CFS and healthy individuals, involving the 
coagulation system, endothelium, and immune system.

Significant increases in TSP-1 and PF4, and a signifi-
cant decrease in PROS suggest that the coagulation sys-
tem is dysregulated in the present ME/CFS cohort. Our 
present and previous data [8] point to a procoagulant 
profile in ME/CFS, revolving around platelet hyperactiv-
ity and potentially a dysregulated endothelium. Related 
and recent studies are in accord with these inferences 
[11–14, 16, 17, 22, 23]. Incidentally, Long COVID suffers 
benefit from anticoagulant and antiplatelet therapy [170, 
171]; further research is required to determine if this 
form of therapy will benefit ME/CFS patients exhibiting 
clotting pathology and thrombotic endothelialitis.

Beyond the coagulation system, our data further sup-
port immunological dysfunction in ME/CFS, including 
alterations in the complement system, as well as increases 
in LF and S100-A9. Deficits in the complement system, 
including a downregulation of the complement proteins 
that constitute the membrane-attack complex, could be 
related to viral infection and immune dysregulation in 
ME/CFS [3, 26], and deserves further study.

Our results highlight physiological systems – namely 
the cardiovascular, coagulation, and immune system – 
and proteins that require further research with regards 
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to their contribution to the pathogenesis of ME/CFS, 
symptom manifestation, and biomarker potential. Fur-
thermore, individuals from the ME/CFS study population 
were not diagnosed with diabetes mellitus, and hence this 
study gives insight into the thrombotic and cardiovascu-
lar risk associated with ME/CFS individuals also affected 
by diabetes mellitus.

Study limitations
A major limitation of using DIA LC-MS/MS on samples 
that contain a large dynamic range is the detection and 
quantitation of low abundance proteins, such as herpes-
virus proteins (not to mention the computational power 
and efficiency needed to identify and annotate each 
peptide detected). Future studies can aim to decrease 
the dynamic range when assessing viral proteins via this 
method, or employ targeted proteomics techniques (for 
the sake of identifying low-abundance proteins, as well as 
corroborating what was identified in the present, untar-
geted experiment).

Furthermore, a similar approach will benefit from a 
larger sample size and a further subdivision of the study 
groups by gender. The inclusion of a study population 
that experiences a similar lifestyle to that of ME/CFS 
individuals, i.e. a bed-bound population without ME/
CFS, such as post-bone fracture patients, will also be 
beneficial. Another important point to raise is the influ-
ence of pre- and post-menopausal physiology in the 
female population [172, 173], which was not accounted 
for in our recruitment process.
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