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Abstract 

Pharmacokinetic (PK) studies can provide essential information on abuse liability 
of nicotine and tobacco products but are intrusive and must be conducted in a clinical 
environment. The objective of the study was to explore whether changes in plasma 
nicotine levels following use of an e-cigarette can be predicted from real time monitor-
ing of physiological parameters and mouth level exposure (MLE) to nicotine before, 
during, and after e-cigarette vaping, using wearable devices. Such an approach would 
allow an -effective pre-screening process, reducing the number of clinical stud-
ies, reducing the number of products to be tested and the number of blood draws 
required in a clinical PK study Establishing such a prediction model might facilitate 
the longitudinal collection of data on product use and nicotine expression among con-
sumers using nicotine products in their normal environments, thereby reducing 
the need for intrusive clinical studies while generating PK data related to product use 
in the real world.

An exploratory machine learning model was developed to predict changes in plasma 
nicotine levels following the use of an e-cigarette; from real time monitoring of physi-
ological parameters and MLE to nicotine before, during, and after e-cigarette vaping. 
This preliminary study identified key parameters, such as heart rate (HR), heart rate vari-
ability (HRV), and physiological stress (PS) that may act as predictors for an individual’s 
plasma nicotine response (PK curve). Relative to baseline measurements (per partici-
pant), HR showed a significant increase for nicotine containing e-liquids and was con-
sistent across sessions (intra-participant). Imputing missing values and training 
the model on all data resulted in 57% improvement from the original’learning’ data 
and achieved a median validation R2 of 0.70.

The study is in its exploratory phase, with limitations including a small and non-diverse 
sample size and reliance on data from a single e-cigarette product. These findings 
necessitate further research for validation and to enhance the model’s generalisability 
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and applicability in real-world settings. This study serves as a foundational step 
towards developing non-intrusive PK models for nicotine product use.

Keywords:  Pharmacokinetic, Physiological Measurements, Plasma nicotine, Heart 
Rate, Machine Learning

Introduction
Pharmacokinetic (PK) studies that measure nicotine levels in the blood plasma over time 
to estimate the amount of nicotine reaching systemic circulation, were first conducted in 
the 1980s [12, 27]. Since then, nicotine exposure from traditional tobacco products, such 
as cigarettes and smokeless tobacco/snuff, has been well characterised by the maximum 
nicotine concentration (Cmax), time taken to reach maximum concentration (Tmax) 
and overall nicotine dose (estimated from the area under the curve of plasma concentra-
tion against time, e.g., AUC60) [3]. These studies have shown that blood concentrations 
of nicotine rise quickly during smoking and peak upon completion of consumption [3].

Data provided by PK studies can yield fresh insights into how nicotine products are 
used, and the implications they have for abuse liability   [18], health effects [16], and 
addiction [27]. These studies, therefore, play an important role in the evaluation of 
new tobacco and nicotine products, including e-cigarettes, Tobacco Heating Products 
(THPs), and Nicotine Replacement Therapies (NRTs) [6, 10, 15].

However, PK studies are intrusive for the participants and must be conducted in a con-
trolled clinical setting under medical supervision so are therefore both expensive and 
time-consuming. Additionally, blood sampling is generally conducted for a relatively 
short time post-puffing (e.g., 120  min). It is likely that, in a real-world environment, 
users would show different patterns of puffing and consumption behaviours, which may 
also change as they adapt to new products. In short, it would be useful to have a tool to 
predict long-term changes in nicotine PK under real-world conditions.

Methods of measuring nicotine exposure non-invasively have been developed, includ-
ing mouth level exposure (MLE) using real-time optical obscuration [14, 21] and ciga-
rette filter analysis [24, 28]. However, these approaches may be limited in their ability to 
predict the exposure of nicotine to, and absorption from, the respiratory tract because 
they do not consider non-inhaled puffs (mouth-spill) post-puff inhalation, exhalation 
patterns, or differences in the respiratory retention of individual aerosol constituents. 
Filter analysis is applicable only to cigarettes and provides an estimate of total rather 
than real-time exposure. Furthermore, optical obscuration requires participants to use 
the products through a puffing topography device in the clinic, which is used as a rep-
resentative sample of real-world conditions. Lastly, MLE methods provide the maxi-
mum, total, or puff-by-puff quantity of nicotine that might reach systemic circulation, 
but do not consider the bioavailability of nicotine in the blood system. Therefore, novel 
non-intrusive methods of estimating nicotine exposure in a non-clinical setting are still 
required.

Through their ability to make high-quality predictions based on minimal training data, 
artificial Intelligence (AI) methods such as machine learning (ML) are being increasingly 
used to overcome time-consuming, intrusive, and costly data collection approaches in 
numerous fields, ranging from disease diagnosis to drug discovery [1, 7]. ML as a pre-
diction approach has been used in clinical studies of smoking cessation, status, and 
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addiction [9, 8, 26]. In particular, ML can train models for multiple endpoints. Further-
more, by using an iterative process to predict missing values that are put back into the 
model, ML algorithms can derive prediction models based on sparse datasets [30, 31]. 
As nicotine has several known physiological effects on heart rate (HR), blood pressure, 
and skin temperature [4, 17], we considered the possibility of identifying a set of physio-
logical measures that could, via a prediction model, provide a “Digital Twin(s)” to mimic 
the output of clinical PK studies.

In this study, we have explored AI methods using physiological parameters such as 
surrogate measures of clinical PK data. We have developed a ML model that, based on 
physiological measurements, consumer puffing behaviour and MLE data collected via 
a connected e-cigarette device (ePen3), predicts nicotine uptake into the bloodstream. 
Our findings establish a platform for longitudinal monitoring of nicotine and tobacco 
product users in their everyday environment with minimal intrusion, while generat-
ing PK data related to product use in the real world. This new approach allows a ‘pre-
screening’ of products based on key physiological parameters to help reduce the extent 
of intrusive PK testing required on study participants.

Methods
The study was conducted in two phases: Phase 1 assessed the feasibility of the modelling 
approach by determining changes in physiological measurements during vapour prod-
uct use and assessing initial nicotine levels predictions. Phase 2 incorporated observa-
tions and lessons learned from phase 1 to further improve prediction quality.

Study participants

The study population comprised regular e-cigarette adult users who were also full-time 
employees of British American Tobacco (BAT). Participants had previously registered 
interest in the study, which was performed onsite at BAT, Southampton, UK. The inclu-
sion criteria were general good health, minimum age of 21, and daily use of e-cigarettes 
for a minimum of 6 months. In addition, all participants were regular users of e-liquid 
with an average nicotine content of 12 mg/mL (Phase 1) and 18 mg/mL (Phase 2). Par-
ticipants were excluded from the study if they were pregnant or breastfeeding, had an 
allergy or sensitivity to any of the ingredients in the e-liquids, or if they had an electronic 
pacemaker or other active implantable medical device.

For Phase 1 of the study, participants were asked to abstain from using any nicotine-
containing products for 12 h prior to the study. For Phase 2 of the study, participants 
were asked to abstain from using any nicotine and/or caffeine-containing products 
for 12  h prior to the study. Participants were able to withdraw from the study at any 
time. After study completion, each participant received compensation for each session 
completed.

The study protocol and Informed Consent Form were approved by the Human 
Research Committee (HRC), British American Tobacco’s internal committee dedicated 
to ensuring all studies involving human subjects are carried out in accordance with the 
ethical principles outlined in the Declaration of Helsinki and other relevant guidelines.
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Study products puffing topography connected device

An augmented e-cigarette device was used to measure puffing topography through-
out the study. The Analytical Research Tool (ART) device (Fig.  1 and Supplementary 
Table S1) comprises an ePen3 vapour product [Nicoventures Trading Ltd, Globe House, 
London, UK] modified with the following sensors:

•	 flow sensor, to measure how the device is puffed and the temperature of the inlet air 
during puffing;

•	 temperature sensor, to measure the ambient air temperature;
•	 humidity sensor, to detect the external humidity.

Commercial ePen3 e-liquids (Dark Cherry, 0  mg/mL or 12  mg nicotine cartridges) 
were used with the ART device [BAT, London, UK] (Supplementary Table S2).

This study primarily examines the Dark Cherry flavour, the most popular-eliquid in 
the UK, to demonstrate a concept that adheres to UK market regulations. In contrast 
to the Frosina et  al. study conducted in Canada, where nicotine levels are allowed up 
to 50 mg/mL, this study aligns with the UK’s legal limit of 20 mg/mL. To ensure legal 
compliance, the product was appropriately adapted for a UK study. The purpose of this 
manuscript is a proof of concept. A subsequent study, which is outside of the scope of 
this manuscript, will rigorously test hypotheses and validate the findings presented here. 
This follow-on study will involve a single cohort of participants who will undergo blood 
draws and physiological monitoring to validate the methodology and results from this 
initial study.

Physiological measurement devices

For all participants (with the exception of one), physiological data were collected using 
an Eq. 02 + LifeMonitor [Equivital, Cambridge, UK] (Fig. 2). This is a chest-based, Food 
and Drug Administration (FDA) registered, physiological monitoring system, which has 
been extensively used in research and clinical studies and has been independently vali-
dated [22]. In one case, where a suitable belt size was not available, data were collected 
using the FDA cleared Bittium Faros 180 Electrocardiogram (ECG) Monitor [Bittium 
Corporation, Oulu, Finland].

The Eq. 02 + LifeMonitor system recorded ECG and respiration waveforms (at 256 Hz 
and 25.6 Hz, respectively) and provided outputs for heart rate (HR), breathing rate (BR), 
and skin temperature (based on a clinical grade infrared thermometer reporting skin 

Fig. 1  BAT’s Analytical Research Tool (ART)



Page 5 of 24Prasad et al. BioData Mining           (2024) 17:24 	

temperature every 5 s). In addition, 50% of participants wore an auxiliary oxygen satura-
tion sensor (Nonin XPOD 3012LP pulse oximeter) which also recorded photoplethys-
mography (PPG) waveforms at 100 Hz [Nonin, Plymouth, Minnesota, USA]. The other 
50% wore an auxiliary Galvanic Skin Response (GSR) sensor which measured skin con-
ductance in micro-Siemens at 16 Hz [Equivital, Cambridge, UK]. The Bittium Faros 180 
monitor collected ECG data only with a sampling frequency of 500 Hz (See Supplemen-
tary Fig. 7).

ECG data from the Eq. 02 + LifeMonitor system and the Bittium Faros 180 monitor 
were then processed through B-Secur’s FDA 510(k) cleared HeartKey® software library 
[B-Secur, Belfast, UK] to extract the following health and wellness metrics: HR, HRV, 
and Physiological Stress (PS).

Study protocol

Each study session lasted approximately 90  min. Prior to data collection, participants 
were fitted with the physiological monitoring belt (Eq.  02 + LifeMonitor or Bittium 
Faros 180 Monitor) and the use of the modified vapour product (ART) was explained. 
The ART e-liquid was weighed immediately before and after use to determine the Device 
Mass Loss (DML), which enabled nicotine exposure to be estimated.

Data collection was divided into three stages: pre-vaping, vaping, and post-vaping. 
Throughout the monitoring period, participants were seated in a calm environment to 
minimise changes in physiological parameters resulting from physical movement and 
other external factors. Baseline physiological data were recorded during the pre-vaping 
stage. In the vaping stage, participants were instructed to use the ART study product 
with designated e-liquid for 10 min, taking 1 puff every 30 s, resulting in a total of 21 
puffs. In the post-vaping stage, physiological data were continuously recorded for up to 
60 min.

Although physiological measurements were constantly measured throughout the 
study, specific timepoints before, during, and after vaping that aligned with the meas-
urement points in the historic PK dataset were used for data analysis and to facilitate 
direct comparisons (Supplementary Table S3). Based on observations from Phase 1, the 

Fig. 2  Equivital’s Eq. 02 + LifeMonitor
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baseline data collection period was increased to 50 min before vaping in Phase 2 to bet-
ter account for natural fluctuations in HR and to establish a more accurate baseline. In 
addition to physiological measurements, participants completed a short questionnaire 
in Phase 1 that included questions about caffeine use and exercise. In Phase 2, additional 
questions regarding daily nicotine intake, smoking habits, and length of nicotine product 
use, were included in the questionnaire.

Study measures

Age, sex, height, and weight were recorded for each participant. In Phase 1, body mass 
index (BMI), body fat percentage, and muscle percentage were measured using Smart 
Scales. In Phase 2, visceral fat (VF) percentage and resting metabolism (RM) were addi-
tionally measured by using an Omron Body Composition and Fat Monitor (Model 
BF511) (Fig. 3).

Data collected on the Eq.  02 + LifeMonitor system included ECG and respiration 
waveform data, skin temperature, GSR, oxygen saturation, and associated HR, and BR 
data. The raw ECG data were processed through the HeartKey® software library to 
extract values for HR, HRV, and PS for input into the prediction model. Data collected 
from the ART device included puff duration, puff volume, and DML. Qualitative data 
were collected from questionnaires completed before and after the monitoring period.

Historic nicotine PK data for modelling

A historic, nicotine PK data set was used in the study as a ‘learning’ dataset to initially 
train the ML model for predicting plasma nicotine levels [13]. The ‘Clinical data were 
obtained during a standard blood draw trial from 30 adult smokers, each using four 
products (a conventional cigarette, and an e-cigarette with three different e-liquids) 

Fig. 3  Omron’s Body Composition and Body Fat Monitor (Model BF511)
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with blood samples taken for 90 min from the start of product use. For the historical 
PK dataset, a period of 8  h of abstinence from nicotine-containing products before 
the first daily blood draw was observed.

In addition to the PK values (Cmax, Tmax, AUC​60) for the 120 participant/product 
combinations, this data set contained participant characteristics (biological sex, age, 
and BMI), product information (device type and nicotine strength), puffing type (ad 
libitum or fixed puff ), and blood draw timings, among other descriptors. To better 
understand any potential factors that could affect the accuracy of the models’ pre-
dictions, the blood draw time was converted into month, day, and hour. This was 
done to determine whether any variability in the blood draw measurements could be 
explained by systematic or behavioural changes, such as those related to the study 
parameters. The extracted PK data included the maximum concentration of plasma 
nicotine (Cmax), time taken to reach Cmax (Tmax), area under the concentration–time 
curve from the time of dosing to the time of the last sample collection (AUC​60), along 
with plasma nicotine concentrations at specific time points relative to nicotine prod-
uct use (0 (baseline), 5, 8, 10, 15, 30, and 60 min). The study timepoints are grouped 
into three distinct stages, 1) pre-vaping (50  min baseline), 2) vaping (5, 8, 10  min), 
and 3) post-vaping (15, 30, 60 min).

In this study, time was not used as an input variable. To enable analysis of the physi-
ological and nicotine data measured at seven distinct time points throughout the 
study, a data format appropriate to the problem at hand was adopted. Rather than 
representing each study participant as having seven separate data points (rows) in 
the dataset, a single data point for each participant was created. This was achieved 
by expanding each feature being measured into seven separate columns in the data-
set. For example, the heart rate measurement was decomposed into seven columns, 
representing heart rate measured at different time points such as heart_rate_0 mins, 
heart_rate_5 mins, heart_rate_8 mins, and so on. This formatting approach enabled 
simplification of the dataset while retaining all the necessary information for analysis 
and allowed us to use a wider range of statistical methods for modelling and inference.

Data collation and analysis

All data, including physiological data, device usage data, participant questionnaire 
data, and historic nicotine PK data (existing clinical were entered into the data col-
lation and analysis program Zizo [Zizo Software, Milton Keynes, UK]. This platform 
comprises an in-memory pattern database for the storage of large datasets (Zizo DB), 
a processing tool to integrate, clean and transform the data (Zizo Pathway), and a 
visualisation and exploration tool (Insight). The platform integrated the various data-
sets and generated a spreadsheet for each participant containing numerous descrip-
tors, including participant characteristics (sex, age, height), experimental parameters 
(puffing type, nicotine level, product), and physiological markers (HR, BR, oxygen 
saturation, HRV) recorded at multiple time points across the study.

Data were analysed by B-Secur and Equivital using a range of analysis tools includ-
ing Matlab and Excel respectively, to identify trends and potential correlations 
between vaping and physiological response.
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Modelling methodology

The model generated to predict plasma nicotine levels from physiological parame-
ters was developed with Alchemite™ [Intellegens, Cambridge, UK], an ML algorithm 
used to handle sparse input data in a variety of fields [19, 23, 30, 31]. Alchemite™ 
distinguishes itself by its robust methods to prevent overfitting, a common pitfall in 
machine learning, especially in datasets with sparsity and significant noise. It achieves 
this through advanced techniques such as automated feature selection, Bayesian opti-
misation methods, and assembling strategies, which collectively enhance the mod-
el’s generalisability and predictive accuracy. A graphical representation of the sparse 
imputation fitting procedure of the Alchemite™ machine learning algorithm is illus-
trated within Fig. 4.

The initial model was trained using the existing clinical dataset, including Cmax, Tmax, 
AUC​60, and plasma nicotine concentrations at specific time points relative to nicotine 
product use (0 (baseline), 5, 8, 10, 15, 30, and 60 min) [13]. Cmax and plasma nicotine 
concentration values were log-transformed to reduce the relative effect of high values on 
the variance, improving the model’s ability to generalise to unseen data.

To maximise the amount of data used during training and to build a more general-
ised model, a fivefold cross-validation approach was employed, in which the training 
dataset was partitioned into five randomly selected subsets. A ML model was subse-
quently trained on each subset, except for one, which was used as the validation set, 
and performance was measured by making predictions and calculating the coefficient 
of determination (R2):

where yiobs is the itℎ observed value and yipred is the corresponding prediction. The 
closer the value of R2 to 1, the higher the predictive ability of the model. To identify 
the best performing set of model hyperparameters, sequential model-based optimisa-
tion was performed using the Tree-structured Parzen Estimator (TPE) [5]. Sixty models 
were sequentially trained, with the aim to maximise the median R2 across all targets in 
the validation sets. Note that all R2 measures reported are from validation sets: we do 
not record the training-set fit performances, as validation performance is a more reliable 
estimate of model performance on future, unseen, test data.

Note, only columns that were at an equivalent or earlier time point to the plasma 
nicotine concentration being modelled were permitted as inputs. This ensured that 
only inputs that were available at test time would be used in making a prediction, 
mimicking the real application of the model in a potential clinical setting.

The present study was conducted to explore whether various physiological param-
eters, such as HR and BR, might be used as surrogate measures for nicotine plasma 
levels during and after use of a vapour product. Ultimately, establishing such correla-
tions might facilitate the collection of data on product use and nicotine expression 
among consumers using nicotine products in their normal environments, thereby 
reducing the need for intrusive clinical studies.

R2 = 1−
i(ypredi − yobsi)2

i(y
obsi−y obs)

2,
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Identifying physiological trends during vapour product use (Phase 1)

Phase 1 of the study explored whether there was a direct correlation between vari-
ous physiological metrics and nicotine exposure and tried to pinpoint measures that 
might best contribute to a model for predicting plasma nicotine levels following the 
use of a vapour product. To explore additional inputs into the prediction model, user 
puffing behaviour, including puff duration, puff volume, and DML were also col-
lected. In order to ensure consistency with the historical PK data set, the period of 

Fig. 4  A graphical illustration of the machine learning method for sparse data imputation
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abstinence from nicotine-containing products before the first daily blood draw was 
set at 8 h.

Identifying additional physiological inputs and improving model performance (Phase 2)

Phase 2 further explored additional physiological inputs, such as HRV, PS, and BR, and 
their impact on model performance. More participants were utilised to capture greater 
variance within the data to improve model performance and generalisability, thereby 
building a stronger model with a more robust study design utilising a control sample. 
Based on the historical PK and Phase 1 model findings, the period of abstinence from 
nicotine-containing products prior to the first daily blood draw was extended to 12 h. 
The details of this change are discussed in the ’Results and Discussion’ section that 
follows.

Results and discussion
The present exploratory study was conducted to explore whether various physiologi-
cal parameters, such as HR and BR, might be used as surrogate measures for nicotine 
plasma levels during and after use of a vapour product with the aim of identifying a set 
of physiological measures that might, via a prediction model, provide a “digital twin” to 
mimic the output of clinical PK studies. Ultimately, establishing such a prediction model 
might facilitate the longitudinal collection of data on product use and nicotine expres-
sion among consumers using nicotine products in their normal environments, thereby 
reducing the need for intrusive clinical studies while generating PK data related to prod-
uct use in the real world.

Feasibility study (Phase 1)

Phase 1 of the study tested the feasibility of our approach. Physiological measures and 
product use parameters were evaluated among individuals using a vapour product and 
used to inform an initial prediction model trained on a historic dataset of clinical PK 
data [13].

Physiological trends during vapour product use

In total, 13 adult e-cigarette users were recruited to use the ART device with 12  mg/
mL nicotine e-liquid (Table 1). The ages of the participants ranged from 27 to 43 years, 
with 62% (8/13) of the study population being male. Twelve participants wore the 
Eq. 02 + LifeMonitor system, with additional sensors for GSR (n = 6) and oxygen satura-
tion (n = 6); one participant wore the Bittium Faros 180 monitor, which collected only 
ECG data.

Over the 90 min study session, user puffing behaviour data were collected for all 13 
participants. Notably, DML, which gives an estimate of MLE to nicotine, varied widely 
across the participants from 0.04 to 0.33 mg/mL (Supplementary Table S4).

Physiological data were also successfully collected for all 13 participants, enabling 
the exploration of correlations among the various physiological measures. Consist-
ent with previous studies [11], HR positively correlated with BMI. However further 
investigation is required to establish the extent to which this correlation is accurate. 
Fairly large intra-participant variations in HR were noted over the 10 min baseline 
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collection period, suggesting the need to establish the resting HR over a longer base-
line period for each participant.

As expected from previous studies [2, 29], there was an increase in mean HR 
during the vaping session, which was proportional to the trend in predicted nico-
tine levels and the plasma nicotine levels derived from the historic PK data (Fig. 5 
(a); p-value for correlation being significant: 6 × 10–50). A similar correlation was 
observed for mean PS (Fig. 5 (c); p-value for correlation being significant: 4 × 10–9), 
while HRV showed an inverse correlation with estimated nicotine levels (Fig. 5 (b); 
p-value for correlation being significant: 8 × 10–7). However, BR, skin temperature, 
and GSR displayed little or no change, during the vaping session. Changes were 
noted in oxygen saturation, but they were too coarse and did not seem to corre-
late with nicotine exposure. Thus, among the physiological measures recorded, HR, 
HRV, and PS showed the most promise as potential predictors of nicotine levels dur-
ing vapour product use.

To obtain preliminary control HR data, the study was repeated on four partici-
pants (Participant ID 17, 27, 29, 32) who used ART with the same flavour e-liquid 
(Dark Cherry) but without nicotine (0  mg/mL). Control group participants were 
blinded to nicotine content. Three participants wore the Eq.  02 + LifeMonitor sys-
tem (GSR, n = 1; oxygen saturation, n = 2) and one participant wore the Bittium Faros 
180 monitor (ECG data only). The biometric data showed that the PS across control 
participants was not significantly correlated with predicted nicotine levels during 
the vaping session at the 5% level (p-value for significant correlation: 0.08), but no 
evidence was obtained that HR and HRV were uncorrelated with predicted nicotine 
levels using the control e-liquid (Fig. 5; p-values for significant correlation 2 × 10–49 
and 4 × 10–4 respectively). However, a clear systematic shift between the control and 
nicotine groups is observed for the three physiological responses plotted in Fig. 5a-c. 
This highlighted the importance of collecting extended baseline measurements to be 
able to correct for the uncertainty in measurements due to limited vaping time and a 
longer abstinence window before data collection to avoid nicotine remaining in the 
blood at the beginning of the vaping session.

Table 1  Characteristics of participants in Phase 1 using ART with 12 mg/mL nicotine e-liquid

ID Age (years) Weight (kg) Height (cm) BMI (kg/m^2) Fat (%) Muscle (%) Sex

30 32 71.4 167.0 25.6 26.7 35.7 M

28 30 99.4 180.0 30.7 32.0 32.5 M

32 28 77.0 160.0 37.1 41.0 21.0 F

31 27 90.7 180.5 27.8 30.0 33.8 M

29 30 74.6 170.5 25.7 24.6 37.2 M

27 39 112.3 172.5 37.7 41.4 26.8 M

26 28 56.3 168.0 19.9 29.0 28.2 F

24 34 85.4 162.0 32.5 48.3 22.5 F

17 27 76.8 176.0 24.8 24.4 37.1 M

33 32 73.0 176.0 23.6 35.3 27.6 F

24 43 57.0 172.0 19.3 28.1 27.8 F

35 28 79.1 179.0 25.8 27.2 34.7 M

36 35 81.4 175.0 25.4 20.3 39.4 M
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Fig. 5  Comparison between average plasma nicotine levels derived from historic nicotine PK data a Average 
Heart Rate, b Average Heart Rate Variability, and c Average Physiological Stress between nicotine and control 
(0 mg/mL nicotine) vapour product use. A 5-min baseline was employed before the beginning of the session. 
The ‘during-puffing’ stage is indicated within the blue box
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Initial nicotine plasma prediction model

Numerous AI modelling algorithms have been reported in recent years. In selecting a 
modelling approach to predict plasma nicotine levels, the main consideration was the 
high proportion of missing values (≈82%) which resulted from merging the historic clin-
ical PK dataset with Phase 1 and 2 data. An imputation program based on ML was there-
fore considered to provide a good starting basis. Specifically, an imputation model uses 
all existing data (descriptors and target endpoints) as an input and fills in the missing 
values by predicting them from the data that is present [19]. Furthermore, such model 
enables prediction uncertainty to be calculated, which means that the quality of the pre-
diction can be improved by focusing on the most confident results. The imputation algo-
rithm Alchemite™ uses an iterative process to predict missing values and subsequently 
derive prediction models based on sparse data sets containing as few as 6.3% of data 
points [30, 31]. Although developed for materials science applications [30], it has been 
shown to outperform other computational approaches in the fields of structure–activity 
relationships [31], drug discovery [19, 20], rat PK [25], and sensory analyses [23]. Alch-
emite™ was selected based on this flexibility, coupled with its ability to be retrained as 
more data becomes available [19].

A preliminary model was built using the historic clinical PK dataset. Descriptors 
included participant characteristics (biological sex, age, and BMI), blood draw timings 
(day, month, and hour), product information (device type and nicotine strength), and 
puffing type (ad libitum or fixed puff). The targets were Cmax, Tmax and nicotine plasma 
levels recorded at seven timepoints (0, 5, 8, 10, 15, 30, and 60 min) for each participant. 
The preliminary model achieved reasonable accuracy overall, with a cross-validation 
performance of R2 = 0.446, in line with results from modelling studies in related fields, 
such as prediction of rat PK parameters [25], and performed better at post-vaping time 
points (15, 30, and 60 min) than at vaping time points (5 and 8 min) (Supplementary 
Figure S1).

Subsequently, the plasma nicotine prediction model was retrained with the additional 
Phase 1 data, comprising 0  mg/mL nicotine eliquid (control), as well as new descrip-
tors, including participant characteristics (muscle percentage, body weight percentage), 
experimental parameters (puffing volume, product nicotine level, DML), and physiologi-
cal markers (HR, HRV, BR, oxygen saturation) taken at seven time points (0, 5, 8, 10, 15, 
30, and 60 min) for the nine targets (Tmax, Cmax, and predicted nicotine concentration 
at (0, 5, 8, 10, 15, 30, and 60 min). Incorporating the Phase 1 data in the model resulted 
in an 18% improvement in predictive accuracy on validation data (R2 = 0.526) over the 
preliminary model using only the existing clinical data set (Supplementary Figure S6 and 
Supplementary Figure S8). The increase in data has helped the ML algorithm to under-
stand underlying trends better by ‘seeing through the noise,’ while the new physiological 
measurements reduced the amount of unexplained variance. In addition, key descriptors 
that contributed most strongly to the model’s predictions were identified using feature 
importance values, such as a change in HR from baseline ( � HR) and the participant’s 
age (Supplementary Figure S2). Furthermore, areas within the domain that are known 
to be important but were not covered in the original clinical dataset, such as PS, HRV, 
and puffing volume were highlighted. Moreover, the feature importance analysis of the 
model yielded intriguing results as the variables of month, hour, and day were identified 
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as significant predictors of blood nicotine levels. In light of this, the Phase 2 study imple-
mented measures to reduce the presence of nicotine in blood plasma. Specifically, the 
abstaining time from nicotine-containing products was increased from 8 to 12  h, and 
the consumption of caffeine-containing products within this timeframe was curtailed. 
In addition, more stringent study protocols were implemented. These steps were taken 
based on observations made during the historical and Phase 1 studies. Notably, the 
study uncovered significant findings regarding the month variable, potentially indicating 
behavioural changes during the holiday season as data was collected in December 2020 
and January 2021. Additionally, the day of the blood draw was found to be significant 
to a lesser extent, which could be attributed to behavioural changes over the course of 
the week. To ensure that the prediction model could be applied to new data, the study 
hour, day, and month were excluded from future analyses. This simplification not only 
enhances the model’s interpretability and generalisability but also ensures that time is 
not used as an input. As a result, the Phase 2 model relied solely on demographic and 
physiological data as inputs.

To evaluate performance, both the initial model built on historic nicotine PK data and 
the revised model incorporating Phase 1 data were used to predict plasma nicotine levels 
for a participant from the existing clinical study who was not included in the training 
set (Fig. 6). All predicted plasma nicotine values were accompanied with a correspond-
ing uncertainty value, which indicates the model’s confidence in its prediction. The 
predicted levels showed reasonable agreement with the actual nicotine concentrations 
measured in the participant’s plasma (Fig. 6). Predictions with larger error between the 
actual plasma nicotine value also had higher uncertainty. Therefore, the model was less 
confident in those predictions. It is pertinent to note, that uncertainty can be reduced, 
and prediction accuracy improved by acquiring more participant data, as well as identi-
fying better predictors for modelling. 

Overall, the findings from Phase 1 supported the feasibility of using a ML imputation 
algorithm and physiological measurements including HR and PS to predict plasma nico-
tine levels; in particular, HR was identified as a strong predictor of plasma nicotine lev-
els. Moreover, a key observation (Fig. 6) was the wide variability in individual baseline 
HR, indicating that more robust baseline physiological data would be needed to obtain 
a better understanding of “normal” resting HR and to improve estimates of HR during 
use of the vapour product. In relation to this, the intra-participant reproducibility of 
HR measurements should be established and data from a larger set of participants using 
non-nicotine (control) e-liquids should be collected.

Revised plasma nicotine prediction model (Phase 2)

To improve any prediction model, the quantity, quality, and diversity of data are criti-
cal to allow the model to learn from the widest possible spectrum of cases. Therefore, 
in Phase 2 of the study, more data, including new physiological measures and data from 
e-liquids with different strengths of nicotine, were obtained for a larger number of par-
ticipants. Based on the above findings on average HR (Fig. 5a), the baseline period for 
data collection was increased from 10 to 50 min. Participants were also asked to abstain 
from both nicotine and caffeine for 12 h before the first blood draw to reduce any trace 
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amount of blood nicotine. These new datapoints were incorporated into the initial model 
to produce a revised ML model for predicting plasma levels during vapour product use.

Among the 19 participants recruited in Phase 2, 16 used ART with 18 mg/mL nico-
tine, 1 with 12 mg/mL nicotine, 1 with 6 mg/mL nicotine, and 1 with 0 mg/mL nico-
tine (based on personal preference / ‘normal use’). To expand the control data, the 18 
participants using nicotine-containing e-liquids also attended a second puffing session, 
in which they used ART with 0 mg/mL nicotine (participants were blinded to this). In 
addition, one participant (ID 39) took part in three vaping sessions using ART with 
18 mg/mL nicotine e-liquid to establish the reproducibility of the physiological measure-
ments. Lastly, additional physical data, including RM and percentage VF were collected 
via smart scales (Table 2). More extensive data on exercise level, caffeine and nicotine 
intake, and the length of nicotine product use, among others, were also collected via the 
participant questionnaire; these data were not used in the modelling but were gathered 
to help build greater context around the observed trends.

Biometric data were successfully collected for the 19 participants, all of whom wore 
the Eq. 02 + LifeMonitor system (GSR, n = 10; oxygen saturation, n = 9). The reproduc-
ibility of the physiological measurements was initially tested by conducting three nic-
otine vaping sessions for one participant. Figure  7a shows that HR for this individual 
followed a similar trend in all three sessions. The subsequent collection of physiological 
measurements for 50 min before the start of the vaping stage enabled a more confident 
determination of the mean change in HR from the baseline. ΔHR (all participant aver-
age results), peaked at the end of the vaping session (10 min) in the nicotine group but 
remained relatively close to 0 throughout the 10 min puffing session in the non-nicotine 
group (Fig. 7b and Supplementary Figure S3).

Table 2  Characteristics of participants in Phase 2 using ART with 0–18 mg/mL nicotine e-liquid

ID Age (years) Weight (kg) Height (cm) BMI Fat (%) Muscle (%) Sex Visceral 
Fat (%)

RM (kcal)

17 28 78.7 176 25.3 25.6 26.2 M 8 1747

18 30 105.1 172.5 35.3 45.5 19.9 M 19 1891

22 46 89.4 166 32.4 50.6 20.8 F 10 1595

23 40 58.6 168 20.8 29.0 29.2 F 4 1317

24 34 85.4 162 32.5 48.3 22.5 F 8 1536

26 29 56.7 168 20.1 29.4 28.0 F 8 1297

27 40 111.7 175.5 36.3 39.2 27.8 M 19 2145

28 30 96.5 180 29.8 29.4 33.9 M 11 1981

29 30 73.6 170.5 25.3 22.9 38.2 M 8 1692

31 27 92.7 180.5 28.5 30.3 33.6 M 11 1932

32 27 76.4 160 29.8 44.3 24.3 F 7 1441

33 32 76.7 176 24.8 35.2 28.3 F 5 1542

34 43 58.5 172 19.8 27.4 29.3 F 3 1339

35 28 79.8 179 24.9 20.9 39.0 M 7 1772

36 33 79.8 175 26.1 27.0 35.0 M 9 1749

37 23 63.6 177 20.3 24.4 32.4 F 3 1425

38 26 82.4 173 27.5 25.0 37.4 M 10 1821

39 37 68 171 23.3 21.7 37.5 M 7 1581

40 29 71.6 180 22.1 15.9 41.4 M 4 1655
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Regarding other physiological measurements, BR remained unchanged in both 
the nicotine and control groups (Supplementary Figure S4). Contrary to Phase 1, 
where little change in GSR was observed, GSR peaked at approximately 20 min after 
the start of the vaping session for seven participants (Supplementary Figure S5). A 
possible explanation for this difference was the closer adherence to abstinence from 
both nicotine and caffeine for 12 h prior to data collection in Phase 2, as determined 
from the participant questionnaires (SQ1). PS and HRV showed the same trends as 
observed in Phase 1 of the study – namely, PS increased and HRV decreased with the 
trend in plasma nicotine levels (data not shown).

Like Phase 1, DML, indicating MLE to nicotine, ranged widely from 0.05 to 0.23 mg/
mL for the 18 mg/mL nicotine e-liquid (n = 16), and was 0.09 mg/mL and 0.11 mg/
mL for the 12 and 6  mg/mL nicotine e-liquids, respectively. DML for the nicotine-
free e-liquid also ranged widely from 0.07 to 0.26 mg. Therefore, no direct link could 
be determined between DML and change in physiological measurements which may 

Fig. 7  a Reproducibility of HR measurements in one participant. b Mean percentage change in HR from 
baseline in nicotine and non-nicotine groups
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be due to participants taking a puff but not inhaling, which is a common consumer 
behaviour when using inhalation nicotine products (Supplementary Table S4).

The existing clinical data, Phase 1, and Phase 2 data were compiled into a final 
global dataset with 153 descriptors, 9 targets, and significant sparsity (~ 82% missing). 
The descriptors consisted of 7 participant characteristics (age, BMI, percentage fat/
muscle/visceral fat), 6 experimental parameters (puffing type, nicotine level, type of 
product), and 20 physiological markers taken at seven time points (HR, oxygen satu-
ration, HRV). The targets were Cmax, Tmax, and seven plasma nicotine concentrations 
at baseline (0), 5, 8, 10, 15, 30 and 60 min from the start of vaping.

To give an indication of the modelling quality using this final dataset, performance 
on unseen data for one participant was removed from the global dataset and their 
plasma nicotine levels were predicted from their physiological data alone. Figure  8 
shows that there was close correspondence between the participant’s predicted and 
their actual plasma nicotine levels determined in the PK study for fixed puffing, 
although the prediction of Cmax was somewhat higher for ad  libitum. It is believed 
that puffing was harder to predict for ad  libitum due to the greater variability in 

Fig. 8  a Fixed puff and b Ad Libitum plasma nicotine concentration PK-curve predictions for a participant 
whose data were removed from the training set
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consumer puffing behaviour. Note, the original focus of this study was only on fixed 
puff and not ad libitum.

In a follow up study, the model performance on unseen data could be further improved 
by either applying stricter environmental controls to minimise the influence of other 
effects, such as, movement, distractions etc. or by including this information as inputs 
for modelling.

To examine in more detail the accuracy obtainable using all the available data, a final 
model was trained using information from every participant. The prediction accuracy 
of the model on validation data increased from R2 = 0.526 (Phase 1) to R2 = 0.700 by the 
end of Phase 2 (Supplementary Figure S6). The change in root-mean-square error for 
each endpoint over the three models is also given in Supplementary Figure S8. In addi-
tion, the model showed better prediction of plasma nicotine during and after vaping than 
before (Fig. 9a). Note, ideally all participants’ plasma nicotine levels should be zero at the 
beginning of the study, which would result in 100% predictive accuracy and an R2 = 1. 
Therefore, since R2 was < 1 at 0 min (R2 = 0.5), then there was either 1) insufficient absti-
nence time prior to the study or 2) some participants using nicotine-containing products 
during the 12-h abstaining window. From Fig.  9b-d, the product nicotine concentra-
tion is found to be the most important predictor within all three puffing regimes, this is 
expected as nicotine is known to have a strong impact on physiological measurements.

Interestingly, descriptors that contributed most to the prediction model varied 
depending on the stage of the study (pre-vaping, vaping, and post-vaping) (Fig. 9b–d). 
Height and age become stronger predictors within the later time periods, which might 
have some link with a participant’s metabolism. BMI is a particularly useful predictor 
within the during puffing regime, which is not an output previously investigated.

HR, HRV, and PS are all found to be important predictors for plasma nicotine level 
within all puffing regimes (Fig. 9a-d). These results corroborate the observations found 
in Fig.  5, whereby these indicators demonstrated a strong qualitative correlation with 
average nicotine levels.

Limitations
This study marks a preliminary effort in modelling nicotine pharmacokinetics with less 
invasive methods, but is still exploratory in nature. The key limitations include:

Exploratory nature

 The study is at an exploratory stage, highlighting the preliminary nature of the model 
and the need for further research, validation, and refinement. The use of R2 for model 
fit, while standard, may not fully capture all aspects of predictive accuracy, particularly 
across different scales and contexts.

Participant data constraints

 The study’s participant range was limited, primarily based on a single individual, under-
scoring the need for a broader, more diverse participant sample in future research to 
enhance applicability.
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Product‑specific application

 The model’s current applicability is limited to a specific vapour product (ePen3). To 
ensure generalisability, future studies should test a variety of nicotine products.

Study design considerations

 Adjustments in study design, such as caffeine incorporation and extended abstinence 
periods, may have influenced outcomes and should be carefully considered in future 
research designs.

Need for clinical validation

 Comprehensive clinical validation, comparing model predictions with actual plasma 
nicotine levels, is critical for evaluating both accuracy and practical utility.

Device and participant selection factors

 Further clarification is needed regarding the impact of device modifications and the 
rationale behind participant selection and sensor usage.

Model evaluation metrics

 Although R2 was utilised for hyperparameter optimisation, the study does not delve 
into detailed error prediction for each endpoint. Future research might benefit from 
incorporating RMSE or other metrics to gain a more detailed understanding of model 
performance.

In essence, while the study provides a foundational step for computational nicotine 
pharmacokinetics modelling, extensive work is required to enhance its validity, reli-
ability, and generalisability.

Conclusions
This study has highlighted important factors that influence the effect of nicotine on 
the human body, such as BMI and age, as well as key physiological measures that cor-
relate with plasma nicotine levels following vapour product use, such as heart rate, 
heart rate variability, and physiological stress. The Machine Learning (ML) model also 
identified these descriptors to be important predictors for modelling nicotine concen-
tration within the blood. These findings were further supported by minimal physi-
ological changes in participants within a control group using non-nicotine vapour 
products.

Historic nicotine Pharmacokinetic (PK) data was used to train a ML model for the 
prediction of nicotine plasma levels. Incorporating additional physiological measures 
from the Phase 1 study led to a reasonable prediction accuracy in cross-validation 
(R2 = 0.526) with an improvement of 18% over the PK data-only model (R2 = 0.446). 
The inclusion of more diverse data from Phase 2 (including longer baseline measure-
ments, different strength nicotine products, control data from non-nicotine products, 
and participant information from questionnaires) further improved the prediction 
accuracy by 57% (R2 = 0.700) over the preliminary PK-data only model. Predictive 
performance was higher during the post-puffing period than during product use.
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Overall, findings suggest that physiological measures have the potential to act as a 
‘digital twin’ for nicotine PK data, facilitating the collection of real-world data, ena-
bling a pre-screening process of physiological parameters among participants prior 
to clinical studies, and potentially reducing the number of clinical PK studies needed. 
However, validation of the model in a clinical setting is needed in future studies. In 
addition, gathering more data from a larger number of participants will reduce the 
uncertainty in the predictions and develop a better and more generalised model.

Recommendations

Clinical PK Testing and AI Model Validation: We recommend designing and executing 
typical pharmacokinetic (PK) testing in a clinical environment. This would involve mon-
itoring real-time physiological parameters while conducting blood draws. The collected 
physiological data can then be input into the AI model to predict the PK curve. Com-
paring this predicted PK curve with the actual PK curve, derived from plasma nicotine 
concentrations obtained from blood draws, will provide a robust test of the AI model’s 
performance on unseen data.

Comprehensive Model Evaluation Metrics: In addition to using R2, we suggest 
employing root mean square error (RMSE) or other relevant metrics. This will allow for 
a more comprehensive evaluation of the model’s predictive errors and overall accuracy, 
enhancing our understanding of the model’s practical applicability and robustness.

Future research and implications

Preliminary Findings and Model Development: Our findings, while promising, represent 
an initial phase in the development of a machine learning (ML) model for predicting 
plasma nicotine levels from physiological parameters. The full realisation of this research 
holds substantial potential implications. A validated model could significantly stream-
line the evaluation process for new nicotine and tobacco products, reducing reliance on 
invasive PK studies and expediting the assessment of product safety and efficacy. After 
further validation there would be no intention to replace clinical measurements or clini-
cal studies, this exploratory capability would be used only as a pre-screen tool to inform 
clinical study designs.

Next Steps in Research:

•	 Clinical Validation: The immediate next step is to validate the model in a clinical set-
ting. This will involve comparing the model’s predictions against actual observed nic-
otine plasma levels under controlled conditions.

•	 Data Expansion for Accuracy and Generalisability: To refine the model’s accuracy 
and extend its applicability, we plan to collect data from a broader and more diverse 
participant group. This will include gathering longer baseline measurements, incor-
porating a variety of nicotine strengths, and including control data from non-nico-
tine products.

•	 Technological Integration: Integrating the model with connected e-cigarette devices 
or wearable health monitors could offer real-time insights into nicotine uptake. This 
integration would facilitate immediate adjustments in nicotine product usage, tailor-
ing it to individual needs.
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Implications of Research:

•	 Enhanced Screening for Nicotine Products: Once validated, the model could act as 
an effective tool for preliminary screening of nicotine products, identifying potential 
risks and efficacies prior to more extensive clinical trials.

•	 Personalised Health Insights: For individual users, the model could provide personal-
ised feedback on nicotine consumption, potentially aiding in harm reduction or ces-
sation efforts.

•	 Broader Applications in Pharmacology and Substance Use Research: The method-
ologies and insights gleaned from this study could be applied to other areas of phar-
macological research, potentially revolutionising our approach to studying substance 
absorption and its effects on the body.

Commitment to Research Progress: We are dedicated to advancing this field of 
research. The successful development and validation of this ML model are expected to 
offer considerable benefits to public health and the scientific community, bridging the 
gap between statistical modelling and clinical application.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13040-​024-​00375-z.
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