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Abstract 

Purpose Our study aimed to develop and validate a homologous recombination deficiency (HRD) scoring algorithm 
in the Chinese breast cancer population.

Methods and materials Ninety‑six in‑house breast cancer (BC) samples and 6 HRD‑positive standard cells were 
analyzed by whole‑genome sequencing (WGS). Besides, 122 BCs from the TCGA database were down‑sampled 
to ~ 1X WGS. We constructed an algorithm named AcornHRD for HRD score calculated based on WGS at low coverage 
as input data to estimate large‑scale copy number alteration (LCNA) events on the genome. A clinical cohort of 50 
BCs (15 cases carrying BRCA  mutation) was used to assess the association between HRD status and anthracyclines‑
based neoadjuvant treatment outcomes.

Results A 100‑kb window was defined as the optimal size using 41 in‑house cases and the TCGA dataset. HRD score 
high threshold was determined as HRD score ≥ 10 using 55 in‑house BCs with BRCA  mutation to achieve a 95% BRCA 
‑positive agreement rate. Furthermore, the HRD status agreement rate of AcornHRD is 100%, while the ShallowHRD 
is 60% in standard cells. BRCA  mutation was significantly associated with a high HRD score evaluated by AcornHRD 
and ShallowHRD (p = 0.008 and p = 0.003, respectively) in the TCGA dataset. However, AcornHRD showed a higher pos‑
itive agreement rate than did the ShallowHRD algorithm (70% vs 60%). In addition, the BRCA-positive agreement rate 
of AcornHRD was superior to that of ShallowHRD (87% vs 13%) in the clinical cohort. Importantly, the high HRD score 
assessed by AcornHRD was significantly correlated with a residual cancer burden score of 0 or 1 (RCB0/1). Besides, 
the HRD‑positive group was more likely to respond to anthracycline‑based chemotherapy than the HRD‑negative 
group (pCR [OR = 9.5, 95% CI 1.11–81.5, p = 0.040] and RCB0/1 [OR = 10.29, 95% CI 2.02–52.36, p = 0.005]).

†Jia‑Ni Pan, Pu‑Chun Li, Meng Wang and Ming‑Wei Li contributed equally to 
this work.

*Correspondence:
Feng Lou
fenglou@acornmed.com
Xiao‑Jia Wang
wxiaojia0803@163.com
Wen‑Ming Cao
caowm@zjcc.org.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40001-024-01936-y&domain=pdf


Page 2 of 10Pan et al. European Journal of Medical Research          (2024) 29:366 

Conclusion Using the AcornHRD algorithm evaluation, our analysis demonstrated the high performance 
of the LCNA genomic signature for HRD detection in breast cancers.

Introduction
Breast cancer susceptibility genes BRCA1 and BRCA2 are 
involved in homologous recombination (HR) and play a 
pivotal role in the repair of DNA double-strand breaks 
[1]. Cancers with loss of HR function due to the inactiva-
tion of BRCA1/2 and other HRR genes are known to be 
sensitive to platinum and poly (adenosine diphosphate-
ribose) polymerase (PARP) inhibitors [2–4]. Germline 
BRCA  mutations account for 5.3% of all breast cancers 
[5], and Turner [6] showed that homologous recombina-
tion deficiency (HRD) has a prevalence of approximately 
18% in breast cancer. Thus, HRD testing would allow 
more precise treatment recommendations and provide 
benefits to populations receiving platinum and PARP 
inhibitors (PARPi). Moreover, the conclusion has been 
confirmed in multiple clinical trials of ovarian cancer. 
Patients with BRCA  wild-type but positive HRD have an 
equal benefit from PARPi compared with BRCA  muta-
tions, based on the results of the PRIMA study and the 
PAOLA-1 study [7, 8]. While commercial HRD detection 
methods are available abroad, there is no uniform stand-
ard in China so far.

In current practice, anthracycline-based regimens and 
the sequential administration of taxanes are the most 
commonly used chemotherapy regimens in neoadjuvant 
and adjuvant settings. Prior studies have shown that plat-
inum chemotherapy agents are active in the treatment 
of breast cancer with a germline BRCA  mutation and/
or HRD [9–11]. In the neoadjuvant setting, a single-arm 
prospective study using cisplatin monotherapy reported 
a pathologic complete response (pCR) rate of 61% among 
BRCA1-mutated breast cancer patients [12]. Moreo-
ver, the GeparSixto trial demonstrated that the pCR 
rates were 33.9% and 63.5% in the paclitaxel plus lipo-
somal doxorubicin (PM) group and PM plus carboplatin 
group, respectively, among HRD breast cancer patients 
[11]. Conversely, the INFORM trial results showed that 
anthracycline-based regimens are also effective in HER2-
negative BRCA -mutated breast cancer. The pCR rate was 
18% and 26% in the single-agent cisplatin group and dox-
orubicin-cyclophosphamide group, respectively, which 
yielded a risk ratio (RR) of 0.70 (90% CI 0.39–1.2) [13]. 
Moreover, it was recently reported that breast cancers 
with high HRD scores are more sensitive to anthracycline 
in the neoadjuvant setting [14, 15].

This study aimed to develop an HRD scoring algorithm 
based on the Chinese population and compare its perfor-
mance with the Shallow algorithm in different cohorts. 

To validate the accuracy of this HRD scoring algorithm, 
we evaluated the correlation between HRD scores with 
BRCA  mutations and pCR for anthracycline-based neo-
adjuvant chemotherapy (NAC).

Methods and materials
DNA extractions, library preparation, and sequencing
Five HRD-positive and 1 HRD-negative standards (Cat 
No. CBP90023) stored at -20℃ from Nanjing Cobi-
oer Biosciences CO., LTD prepared for genome-wide 
DNA extraction. Tumor tissue was collected from 41 
in-house samples (cohort I) and 55 in-house samples 
with BRCA  mutations (cohort II) from 85 breast cancer 
patients, and leukocytes were collected from 50 baseline 
healthy control samples. All genomic DNA (gDNA) was 
extracted using the Genomic DNA Extraction Kit (Item 
No. DP304). According to the quantitative results of the 
QUIBT tool, 200 ng gDNA was used for library construc-
tion. Subsequently, 200  ng gDNA for each sample was 
transferred to a 50-μL Covaris tube and segmented to the 
main peak of 300–350 bp using the Covaris M220 instru-
ment. Next, segmented DNA was end-repaired, A-tailed, 
and ligated with custom adapters in reaction pooling. 
The ligation product was amplified (6 cycles) and puri-
fied using AmpureXP beads (Agencourt/Beckman Coul-
ter). After purification, the library was quantified using a 
Qubit 4 fluorimeter and the Qubit dsDNA HS Assay Kit 
(ThermoFisher). Finally, library fragment quality control 
was performed using Agilent 2100 Bioanalyzer and Agi-
lent 2100 DNA 1000 Kit. Each library was programmed 
to generate ~ 3.5 Gb bases.

Filter and variant calling
The FASTP tool [16] was applied for FASTQ file qual-
ity control to remove reads with the adaptor, low-quality 
bases. High-quality reads were aligned into the human 
genome (hg19) with Burrows-Wheeler Aligner [17]. 
Duplicate reads generated by PCR were marked using 
Picard (broadinstitute.github.io/picard/). Moreover, 
local realignment around known InDels and base quality 
were recalibrated, and duplicate reads were subsequently 
removed using the Sentieon tool [18]. Finally, base alter-
natives and InDels detected by Sentieon were annotated 
using Annovar [19]. A series of 122 aligned bam files 
(Supplementary Table  1) downloaded from the TCGA 
breast cancer database (www. cancer. gov/ about- nci/ organ 
izati on/ ccg/ resea rch/ struc tural- genom ics/ tcga) were 
down-sampled to ~ 1X whole-genome sequencing (WGS) 

http://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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with SamBamba software [20]. Subsequently, all bam 
files were also processed with the above pipelines. BRCA 
-positive status implies that any mutation was detected 
in either BRCA1 or BRCA2 for each sample. Identified 
mutation criteria in BRCA were as follows: (1) mutation 
information was collected from the TCGA database for 
somatic mutation; and (2) for germline mutation iden-
tified by the in-house analysis pipeline, its status was 
annotated as likely pathogenic or pathogenic by either 
InterVar [21] or ClinVar [22], and the number of support-
ing allele reads was greater than 3.

Workflow of the algorithm for HRD evaluation
We developed an internal algorithm for assessing the 
HRD status of cancer patients by detecting copy number 
variations (CNV) based on low-coverage WGS, termed 
AcornHRD. HRD score was predicted based on the count 
of large-scale copy number alteration (LCNA) events, 
and the methodology was similar to the LST (large-
scale state transition) in SNP arrays. LCNA events were 
assessed by coverage of sliding windows in the genome. 
Here, windows (specific-sized regions) are continuous 
segments of the genome used to detect LCNA; the cover-
age refers to the number of reads in each specific position 
or window in WGS data. The detailed algorithm descrip-
tion can be divided into two parts. Part one was to calcu-
late the CNV ratio in the window unit along the genome 
as follows:

i The coverage from WGS data were counted and 
normalized according to the library size and GC 
content with LOWESS [23] statistics to calculate a 
Ratiogc−correction in each window.

ii RatioMj  calculated the median of the GC-corrected 
ratio for j-th window in the baseline samples. It is 
defined for a given window j as:

 *n is the number of samples in the baseline.
iii Ratiogc−correction

j  represented the GC-corrected ratio 
for the j-th window of the test sample. The CNV ratio 
quantifies the relative abundance of a window com-
pared to baseline samples. It is defined for a given 
window j as:

RatioMj = Median
(
Ratiogc−correction

j1 , Ratiogc−correction
j2 ,

. . . , Ratiogc−correction
jn

)

CNV Ratio =

Ratio
gc−correction
j

RatioMj
.

The CNV ratio result file was used as input data to 
estimate the HRD status for each sample. Part two was 
to detect the HRD status as follows: firstly, to minimize 
the impacts from highly complex genomic regions (such 
as centromere regions, telomere regions, and highly 
repetitive regions) and sex chromosomes, overlap win-
dows were removed. Subsequently, CNV ratios in each 
window were processed with  log2 fold change. Next, 
windows were merged into large segments with chromo-
some arm information and processed CNV ratio by the 
circular binary segmentation (CBS) method with the R 
procedure (bioconductor.org/packages/release/bioc/
html/DNAcopy.html). Finally, the above segment larger 
than 10 Mb was defined as an LCNA event [24–26]. We 
calculated the HRD score, defined as the count of LCNA, 
which is determined by the coverage of 100-kb windows. 
Tumors with HRD scores ≥ 10 were classified as exhibit-
ing HRD scores high (refer to the Results section for fur-
ther details).

Validation by clinical breast cancer samples
We retrospectively reviewed the medical records of 1449 
patients with primary breast cancer who visited the Zhe-
jiang Cancer Hospital from February 2008 to October 
2020 and completed a 98-gene panel genetic screening. 
Fifty patients who received anthracycline-based NAC and 
underwent subsequent surgery (mastectomy or breast-
conserving surgery) were included in the statistical analy-
sis (see Fig. 1 and Supplementary Table 2 for details). All 
of them received NAC with epirubicin (75  mg/m2) and 
cyclophosphamide (600  mg/m2), followed by docetaxel 
(80–100 mg/m2) every 3 weeks for 8 cycles. All biopsied 
tumor samples for histological and HRD examination 
were obtained from patients before NAC and kept by 
fixed-formalin paraffin-embedded (FFPE). The study was 
reviewed and approved by the Ethical Committee of Zhe-
jiang Cancer Hospital and was performed in accordance 
with the Declaration of Helsinki.

Statistical analyses
The primary endpoint was RCB 0/1 with a secondary 
endpoint of pCR. Fisher’s exact or Chi-squared test was 
used to test association with binary response and asso-
ciation of clinical variables and HRD score. We used the 
odds ratio (OR) as a measure of the strength of associa-
tion between two variables and calculated a 95% confi-
dence interval. A P-value less than 0.05 was considered 
statistically significant. All statistical analyses were per-
formed using Python software version 3.
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Results
Development of the AcornHRD algorithm
AcornHRD was based on the results of the CNV ratio 
as input data to estimate LCNA events on the genome. 
A fitness window size appears particularly important 
for samples of low coverage. To address the question 
of optimal window size, we adopted up to ten differ-
ent window sizes (40 kb, 80 kb, 100 kb, 150 kb, 200 kb, 
300 kb, 500 kb, 800 kb, 1 Mb, and 1.4 Mb) to estimate 
the number of LCNA in each sample from cohort I 
(Supplementary Table  3). The results showed that 
the 100-kb window size covered most of the samples 
(31, 75.6%), followed by 500-kb window sizes (73.2%) 
(Fig.  2A). Furthermore, similar results were observed 
in the TCGA cohort, with the 100-kb window size 
still covering the largest number of samples (Fig. 2B). 
Additionally, this window size maintains a balance 
between capturing sufficient genomic information and 
minimizing noise, ensuring accurate LCNA identifi-
cation. In summary, our findings reveal that although 
some alternative window sizes captured comparable 
percentages of samples, the 100-kb window size con-
sistently exhibited the highest stability and resolution 
across different datasets.

Establishing a threshold for the HRD score
HRD, another tumor biomarker, is being used in 
guiding therapy in an increasing number of stud-
ies [27–30]. Both deleterious mutations and pro-
moter methylation of BRCA1/2 could cause HRD and 
genomic instability. Furthermore, BRCA  mutations are 
known to be strongly associated with HRD. The HRD 
threshold was selected to have a high sensitivity for 
detecting HR deficiency in breast cancer. We defined 
the BRCA -positive agreement rate as the proportion of 
the number of samples with a high HRD score in the 
BRCA -positive samples; the BRCA -negative agree-
ment rate was the same as that mentioned above. To 
obtain a BRCA -positive agreement rate of at least 95%, 
the threshold was set at the 5th percentile of the HRD 
scores in cohort II (Supplementary Table 4) of known 
BRCA -positive tumors. The HRD scores of patients 
with BRCA  mutation were assessed in the test panel 
with a 100-kb window size and 50-kb step size. Of 55 
patients, 53 (96.4%) were identified as having a high 
HRD score due to a score greater than or equal to 10 
(Supplementary Table 5). For a 95% confidence detec-
tion rate, the score of 10 was defined as the cut-off 
threshold value.

Fig. 1 Patient selection criteria. Some patients met multiple exclusion criteria. BC: breast cancer, MBC: metastatic breast cancer, EBC: early breast 
cancer, A: anthracycline
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Comparing HRD status with AcornHRD and ShallowHRD 
algorithms in the standard sample
For a more comprehensive evaluation of the AcornHRD 
algorithm, ShallowHRD software [31] was added to the 
following comparative analysis. As described in the 
method section, six standard cells were sequenced with 
whole genomic DNA. Compared to the HRD status of 6 
standard samples (5 HRD positive and 1 HRD negative), 
the HRD status agreement rate of AcornHRD is 100%, 
while the agreement rate of ShallowHRD is only 60% 
(Table 1).

Correlation between BRCA mutations and HRD status 
with AcornHRD and ShallowHRD algorithms in the TCGA 
cohort
Mutations in the BRCA  are strongly associated with 
HRD positivity [32, 33]; thus, we applied the BRCA -posi-
tive agreement rate to assess and compare the accuracy 
of the two HRD assessment methods in a large TCGA 
cohort (2 samples without somatic mutation informa-
tion were filtered out) [31]. The mutations of BRCA  genes 
were confirmed in tumor sequencing reads by in-house 

calling variation pipeline (more details presented in 
the Methods). Of the 120 patients, 20 (16.7%) harbored 
BRCA  mutations (Supplementary Table  9). The results 
of AcornHRD (Table 2) and ShallowHRD (Table 3) both 
showed that BRCA  mutation is significantly correlated 
with a high HRD score (p = 0.008 and p = 0.003, respec-
tively). However, the BRCA -positive agreement rate of 
AcornHRD was higher than that of the ShallowHRD 
algorithm, which was 70% (14/20) and 60% (12/20), 
respectively (Tables 2 and 3).

Fig. 2 Mode frequency across ten distinct window sizes: For each sample, the mode of LCNA count is classified as 1, while other values are 
designated as 0. Subsequently, the frequency of mode samples is computed for each window. The horizontal axis signifies ten distinct window 
sizes, and the vertical axis denotes the sample count. Panel A shows the mode frequency in ten different window sizes for 41 breast cancer samples 
sourced from our in‑house breast cancer cohort. Panel B displays the same for 122 breast cancer samples obtained from the TCGA database

Table 1 HRD status of six standards assessed by AcornHRD and ShallowHRD

Positive represents HRD standard sample and negative represents non-HRD standard sample

High: HRD score ≥ 10, Low: HRD score < 10 for AcornHRD

High: HRD score ≥ 15, Low: HRD score < 15 for ShallowHRD

Standard ID AcornHRD ShallowHRD

Proven status HRD score HRD status HRD score HRD status

102109017T3 Positive 30 High 34 High

102109018T3 Positive 14 High 13 Low

102109019T3 Positive 25 High 22 High

102109020T3 Positive 12 High 12 Low

102109021T3 Positive 11 High 8 Low

102109022T3 Negative 3 Low 3 Low

Table 2 The HRD status according to BRCA  mutations by 
AcornHRD in TCGA cohort

HRD score high: HRD score ≥ 10; HRD score low: HRD score < 10

HRD status BRCA  status Total

Mutated Non-mutated

HRD score high 14 (70.0%) 38 (38.0%) 52

HRD score low 6 (30.0%) 62 (62.0%) 78

Total 20 100 120



Page 6 of 10Pan et al. European Journal of Medical Research          (2024) 29:366 

Association of HRD scores with responses to NAC 
by AcornHRD and ShallowHRD algorithms
Of the clinical cohort, 15 BRCA -positive and 35 BRCA 
-negative patients were considered to evaluate HRD 
status (Supplementary Table  6). The HRD score result 
showed that the BRCA -positive agreement rate of 
AcornHRD is far superior to that of ShallowHRD, 
whereas the BRCA -negative agreement rate is not as good 
(Supplementary Table 7 and Supplementary Table 8). In 
addition, the AcornHRD evaluation performed better 
than did that of the ShallowHRD score; specifically, the 
high HRD score was significantly associated with residual 
tumor burden 0/1 (p = 0.020 for AcornHRD and p = 0.182 
for ShallowHRD) (Table 4). In summary, AcornHRD was 
more stable in the application performance across three 
different cohorts of WGS data, which is superior to the 
published algorithm.

Clinicopathologic characteristics of high HRD score tumors
Among the 50 patients in the clinical cohorts who 
received anthracycline-based neoadjuvant therapy, 28 
had high HRD scores, and 22 had low HRD scores. A 
high HRD score was significantly correlated with BRCA  
mutations (see Table  5 and Supplementary Table  10 for 
details). The breast cancer samples selected for the clini-
cal study were all HER-2 negative, including 24 TNBC 
samples and 26 ER and/or PR-positive samples. A high 
HRD score significantly correlated with TNBC and high 
Ki-67 expression (Table  5). High HRD scores showed a 

trend toward correlation with ER-negative and PR-nega-
tive status (Table 5).

Correlation between HRD status and NAC efficacy
In this study, HRD positivity includes either a high HRD 
score or a BRCA  mutation, whereas HRD negativity 
included a low HRD score and no BRCA  mutation. Of the 
50 patients, 30 were identified as HRD-positive. Moreo-
ver, pCR and residual tumor burden (RCB 0/1) were both 
important indicators for tumor efficacy evaluation, of 
which pCR (RCB 0) was the main evaluation indicator.

Patients with HRD positivity were more likely to 
respond to standard NAC containing anthracyclines 
than HRD-negative patients, as indicated by a pCR 
(RCB 0) outcome (OR = 9.5, 95% CI 1.11–81.5, p = 0.040) 
(Table 6). Similar results were observed for the combined 
endpoint of RCB 0/1. In addition, patients with HRD 
positivity were more likely to achieve RCB 0/1 compared 
to non-deficient patients (OR = 10.29, 95% CI 2.02–52.36, 
p = 0.005) (Table  7). These results are applicable to a 
cohort of 35 patients without germline BRCA muta-
tions. Patients with HRD-positive status showed a higher 
tendency towards an RCB 0/1 response than did HRD-
negative patients (OR = 6.0, 95% CI 1.00–35.91, p = 0.050) 
(Table 7). 

Discussion
Genomic scar analysis is a very important HRD detec-
tion method. When non-homologous end joining (NHEJ) 
repair is initiated, it leaves “genomic scars”, which are 
traces of damage repair in the genome [34]. Cells with 
HRD cannot repair DNA double-strand breaks as effec-
tively as cells with HR pathways. As a result, they exhibit 
genomic scarring, which refers to quantifiable genomic 
alterations that can be used to reverse the cell’s HRD 
status. There are three main types of genomic scars 
caused by HRD: loss of heterozygosity (LOH), telomeric 
allelic imbalance (TAI), and large-scale state transitions 
(LST) [33]. To date, the Food and Drugs Administration 
has approved two products for clinical testing of HRD, 

Table 3 The HRD status according to BRCA  mutations by 
ShallowHRD in TCGA cohort

HRD score high: HRD score ≥ 15; HRD score low: HRD score < 15

HRD Status BRCA  status Total

Mutated Non-mutated

HRD score high 12 (60.0%) 26 (26.0%) 38

HRD score low 8 (40.0%) 74 (74.0%) 82

Total 20 100 120

Table 4 Association of HRD status with RCB from clinical cohort between AcornHRD and ShallowHRD

HRD score high: HRD score ≥ 10, HRD score low: HRD score < 10 for AcornHRD

HRD score high: HRD score ≥ 15, HRD score low: HRD score < 15 for ShallowHRD

Clinical cohort (n = 50) RCB0/1 n (%) RCB2/3 n (%) OR 95% CI P value

Acorn HRD

 HRD score low 4 (18) 18 (82) 1

 HRD score high 14 (50) 14 (50) 4.5 1.21–16.72 0.020

Shallow HRD

 HRD score low 17 (41) 24 (59) 1

 HRD score high 1 (11) 8 (89) 0.18 0.02–1.55 0.182
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namely Myriad myChoice ® CDx (myriad-oncology.
com/mychoice-cdx) and FoundationFocus ™ CDx BRCA  
LOH (www. acces sdata. fda. gov/ cdrh_ docs/ pdf16/ p1600 

18c. pdf ). Both products use the detection of BRCA  gene 
mutations combined with the genomic scar to assess 
HRD status. The former contains the BRCA  genes cod-
ing region and 54,091 single nucleotide polymorphisms 
(SNPs) population. The Genomic Instability Score (GIS) 
was obtained by comprehensively calculating three indi-
cators: LOH, TAI, and LST, while GIS ≥ 42 was consid-
ered positive for genomic instability status [29, 35]. The 
latter calculated the proportion of fragments with LOH 
in this genome by covering 3500 SNPs in 324 genes on 
22 chromosomes, and LOH accounted for ≥ 16%, that 
is, “high LOH [36]”. The above two commercial kits lack 
large-sample prospective clinical study data applied to 
the Chinese population; thus, studies promoting the 
development and clinical validation of these kits in China 
are warranted.

It has been confirmed that LST is feasible and has 
unique advantages for assessing HRD [24, 25, 33, 37]. 
LST is referred to the number of chromosomal breaks 
between flanking regions of at least 10  Mb [24, 38]. 
Moreover, it has been reported that the LST genomic 
signature accurately identified tumors with HRD and dis-
played excellent performance in a TNBC cohort, reach-
ing almost 100% in sensitivity and specificity for HRD 
detection, where HRD was defined as BRCA  inactivation 
[24, 25]. Furthermore, LST had better HRD evaluation 
performance in low-coverage sequencing than did LOH 
[26].

The ShallowHRD is a software tool based on min-
ing copy number alterations profile from TCGA breast 
cancer that displays a high performance for HRD detec-
tion in breast cancers in low coverage genomic data 
[31]. Fundamental to evaluating the HRD status is the 
robust determination of copy number data, which can be 
obtained using either SNP arrays, whole exome sequenc-
ing (WES), or WGS. Comparing CNV derived from SNP 
array, WES, and WGS has revealed that WGS yields a 
more uniform distribution of quality parameters, such as 

Table 5 Patient characteristics and HRD score from clinical 
cohort

HRD score high: HRD score ≥ 10; HRD score low: HRD score < 10 for AcornHRD

OR: odds ratio, CI: confidence interval, Pre-: premenopause, Post-: 
postmenopause

HRD score 
high 
(n = 28)

HRD score 
low (n = 22)

OR 95% CI P value

Age 0.58–5.62 0.310

 > 40 years 10 11 1

 ≤ 40 years 18 11 1.8

BMI(kg/m^2) 0.54–6.67 0.320

 < 25 18 17 1

 ≥ 25 10 5 1.89

BRCA  status 1.69–44.34 0.011

 Non‑
mutated

15 20 1

 Mutated 13 2 8.67

Menopause 0.11–2.72 0.730

 Pre‑ 25 18 1

 Post‑ 3 4 0.54

ER 0.10–1.02 0.050

 Negative 18 8 1

 Positive 10 14 0.32

PR 0.10–1.05 0.057

 Negative 19 9 1

 Positive 9 13 0.33

Ki‑67 1.33–25.05 0.032

 < 20% 3 9 1

 ≥ 20% 25 13 5.77

Molecular subtype 1.02–10.72 0.042

 Non‑TNBC 11 15 1

 TNBC 17 7 3.31

Table 6 Association of BRCA  mutation and HRD status with pCR (RCB 0) from clinical cohort

HRD positive = HRD score ≥ 10 for AcornHRD or BRCA  mutation

HRD negative = HRD score < 10 for AcornHRD

All patients (n = 50) pCR n (%) Non- pCR n (%) OR 95% CI Logistic P value

BRCA  status

 Non‑mutated 5 (14) 30 (86) 1

 Mutated 6 (40) 9 (60) 4.0 0.99–16.24 0.052

HRD status

 Negative 1 (5) 19 (95) 1

 Positive 10 (33) 20 (67) 9.5 1.11–81.5 0.040

BRCA  wild‑type (n = 35)

 HRD negative 1 (5) 19 (95) 1

 HRD positive 4 (27) 11 (73) 6.91 0.68–69.86 0.102

http://www.accessdata.fda.gov/cdrh_docs/pdf16/p160018c.pdf
http://www.accessdata.fda.gov/cdrh_docs/pdf16/p160018c.pdf
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genotype quality and coverage [39–41]. Moreover, stud-
ies indicated an excellent agreement (93.75%) between 
the original and down-sampled WGS-derived HR classi-
fication status [26]. WGS at low coverage robustly detects 
CNV, even in FFPE samples and liquid biopsies [42], at 
low cost and with easy-storable data outputs.

LCNA identified with Shallow whole-genome sequenc-
ing is increasingly popular in many diagnosis institu-
tions. However, low-coverage sequencing also brings 
some challenges. Since the ShallowHRD data are based 
on Western cases, it is unclear whether it is applicable to 
Chinese patients [31]. In the initial use of ShallowHRD, it 
was found that its performance of BRCA -positive agree-
ment rate in detecting HRD was poor. Furthermore, in 
the context of lower coverage genomes, the ability to 
accurately characterize somatic variations, including sin-
gle-nucleotide variants (SNVs), breakpoints, and CNVs, 
is compromised, particularly in tumors with low cellu-
larity or sequencing data exhibiting significant GC bias. 
Moreover, the uniformity of sequencing should be high; 
otherwise, it will be accompanied by serious noise pol-
lution. The low-coverage sequencing has to be balanced 
with the sensitivity and uniformity for robustly calling 
somatic mutations.

To address the questions, we developed an algo-
rithm named AcornHRD, which detects LCNA events 
based on a low-depth detection algorithm of ~ 1 × WGS 
reads. Compared with similar software ShallowHRD, 
AcornHRD achieved a good capacity for HRD detection 
and improved the obvious disadvantage of ShallowHRD 
of low BRCA -positive agreement rate in the standard and 
Chinese breast cancer cohort. Moreover, patients with 
high HRD score tumors evaluated by AcornHRD were 
significantly (p = 0.020) more likely to obtain RCB0/1 
than those with low HRD score tumors; however, the 
same was not statistically significant by ShallowHRD. In 
summary, the performance of AcornHRD in evaluating 

HRD is superior to that of ShallowHRD. However, it 
is worth mentioning that different HRD assessment 
methods and their algorithms are not equivalent, and 
AcornHRD needs to be further compared with the two 
FDA-approved products.

Further, we investigated the relationship between the 
high HRD score and clinicopathological features of breast 
cancer. A high HRD score demonstrated a significant 
correlation with BRCA  mutations, high Ki-67 expression, 
and a tendency towards ER negativity and PR negativity. 
Thus, the phenotype of high HRD score tumors is consid-
ered to be biologically aggressive. High HRD score was 
significantly more prevalent in the triple-negative breast 
cancer (TNBC) subtype than in the other three subtypes, 
which is consistent with previously reported results [25, 
33, 43–45].

It has been shown that anthracycline-based regimens 
are effective in HER2-negative BRCA -mutated breast 
cancer [11, 13, 46–48]. Telli et  al. [14] reported that a 
high HRD TNBC identified by next-generation sequenc-
ing was more sensitive to anthracyclines in the neoad-
juvant setting. Recently, it has been reported that HRD 
tumors are more likely to benefit from anthracyclines, 
and HRD scores may be a clinically useful marker of che-
mosensitivity based on subtypes [45, 49]. In contrast, 
Imanishi et  al. [43] reported the opposite result. We 
conducted a retrospective analysis to examine the rela-
tionship between HRD score and the response to neo-
adjuvant anthracycline therapy in HER2-negative breast 
cancer patients. The findings revealed a significant asso-
ciation between HRD score and RCB 0/I as well as pCR 
in the overall population cohort (n = 50). Similar out-
comes were observed in the subset of patients without 
germline BRCA mutations (n = 35).

Previous studies have shown that response to neoadju-
vant platinum-based therapy (pCR and RCB0/1) is signif-
icantly associated with HRD status in TNBC [11, 29, 50], 

Table 7 Association of BRCA  mutation and HRD status with RCB from clinical cohort

HRD positive = HRD score ≥ 10 for AcornHRD or BRCA  mutation

HRD negative = HRD score < 10 for AcornHRD

All patients (n = 50) RCB0/1 n (%) RCB2/3 n (%) OR 95% CI Logistic P value

BRCA  status

 Non‑mutated 8 (23) 27 (77) 1

 Mutated 10 (67) 5 (33) 6.75 1.78–25.58 0.005

HRD status

 Negative 2 (10) 18 (90) 1

 Positive 16 (53) 14 (47) 10.29 2.02–52.36 0.005

BRCA  wild‑type (n = 35)

 HRD negative 2 (10) 18 (90) 1

 HRD positive 6 (40) 9 (60) 6.0 1.00–35.91 0.050
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suggesting the clinical utility of HRD scoring in selecting 
breast tumors that are more likely to respond to plati-
num-based regimens. Conversely, the GeparOLA study 
50 demonstrated that neoadjuvant therapy with Olaparib 
resulted in a higher rate of pCR compared to a carbo-
platin-based regimen (55.1% vs. 48.6%) in patients with 
HER2-negative or TNBC and HRD. Consistent results 
were obtained in younger (< 40  years) and HR-positive 
patients (76.2% vs 45.5%, 52.6% vs 20.0%, respectively), 
suggesting that HRD may have a good application in pre-
dicting the efficacy of PARPi for neoadjuvant treatment.

This study has several limitations. These include a 
small sample size used for validation, which may limit 
generalizability. Additionally, the relationship between 
more HRR genes and HRD status was not discussed. 
While AcornHRD method demonstrates promising per-
formance in HRD detection, further validation against 
established authoritative assays or algorithms is war-
ranted. Future studies will focus on optimizing perfor-
mance, validating in larger cohorts, analyzing more HRR 
genetic variants and improving clinical applicability. 
Despite these limitations, our AcornHRD method repre-
sents an advancement in HRD detection and offers valu-
able insights for improving patient care and treatment 
outcomes.

Conclusions
In conclusion, we have devised AcornHRD, an HRD score 
algorithm that surpasses clinical variables or BRCA1/2 
mutation status in effectively identifying tumors with a 
higher probability of responding to anthracycline-based 
neoadjuvant therapy in Chinese breast cancer patients. 
Moreover, AcornHRD holds potential for use in clinical 
applications and translational research, including patient 
screening for clinical trials and guiding the use of DNA-
damaging drugs.
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