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Abstract 

Sleep occurs in all animals but its amount, form, and timing vary considerably between species and between individuals. Currently, 
little is known about the basis for these differences, in part, because we lack a complete understanding of the brain circuitry con-
trolling sleep–wake states and markers for the cell types which can identify similar circuits across phylogeny. Here, I explain the 
utility of an “Evo-devo” approach for comparative studies of sleep regulation and function as well as for sleep medicine. This approach 
focuses on the regulation of evolutionary ancient transcription factors which act as master controllers of cell-type specification. 
Studying these developmental transcription factor cascades can identify novel cell clusters which control sleep and wakefulness, 
reveal the mechanisms which control differences in sleep timing, amount, and expression, and identify the timepoint in evolution 
when different sleep–wake control neurons appeared. Spatial transcriptomic studies, which identify cell clusters based on transcrip-
tion factor expression, will greatly aid this approach. Conserved developmental pathways regulate sleep in mice, Drosophila, and C. 
elegans. Members of the LIM Homeobox (Lhx) gene family control the specification of sleep and circadian neurons in the forebrain and 
hypothalamus. Increased Lhx9 activity may account for increased orexin/hypocretin neurons and reduced sleep in Mexican cavefish. 
Other transcription factor families specify sleep–wake circuits in the brainstem, hypothalamus, and basal forebrain. The expres-
sion of transcription factors allows the generation of specific cell types for transplantation approaches. Furthermore, mutations in 
developmental transcription factors are linked to variation in sleep duration in humans, risk for restless legs syndrome, and sleep-
disordered breathing. This paper is part of the “Genetic and other molecular underpinnings of sleep, sleep disorders, and circadian 
rhythms including translational approaches” collection.
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Statement of Significance

Sleep is a mysterious but essential behavior present in all animals. The amount, form, and timing of sleep varies considerably 
between species and between individuals. However, little is known about the basis for these differences, in part, because we lack a 
complete understanding of the brain circuitry controlling sleep–wake states and markers for cell types which can identify similar 
circuits across species. Studying evolutionary ancient transcription factors which act as master controllers of cell-type specifica-
tion can identify novel cell clusters which control sleep and wakefulness; reveal the mechanisms which control differences in sleep 
timing, amount, and expression between species; identify the timepoint in evolution when different sleep–wake control neurons 
appeared; and provide a basis to understand sleep–wake abnormalities in developmental disorders.

Introduction
Sleep states have been described in every animal which has 
been closely examined. However, there are large variations in the 
amount, timing, and behavioral expression of sleep in different 
animals and humans, as well as variations in the ratio of differ-
ent types of sleep [1–5]. In recent years, there has been increased 
interest in the evolution of sleep behavior but currently, there 
is no overarching framework which can help unify the neural 

mechanisms which underlie the differences and similarities of 
sleep between and within species.

“Evo-devo” is an area of biology which seeks to understand 
differences and similarities in the form and physiology of dif-
ferent species by studying the developmental processes which 
underlie the generation of different tissues. This approach 
focuses on the regulation of evolutionary ancient transcription 
factors which act as master regulators of cell-type specification 
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during development in all animals to understand differences 
in anatomy and physiology [6, 7]. This approach proposes that 
morphological changes, and by extension changes in physiology 
and behavior, are mainly due to mutations in the cis-regulatory 
DNA sequences of these developmental transcription factors 
and of the target genes in the large networks that they control, 
typically encompassing tens or hundreds of genes [7]. In this 
review, I explain the utility of this approach for understand-
ing sleep regulation and function as well as for sleep medicine 
(Figure 1).

Researchers have studied the brain circuitry which controls 
sleep and wakefulness for more than 100 years [8]. Early stud-
ies of the neuronal circuits which control sleep, beginning 50-60 
years ago, focused heavily on a small number of aminergic and 
cholinergic neurotransmitter systems due to the development 
of histochemical and immunohistochemical stains which ena-
bled visualization of their cell bodies in brain regions implicated 
in sleep–wake control, the availability of pharmacological tools 
acting on these systems, as well as their large cell bodies which 
facilitated unit recordings in vivo [9–11]. More recent experiments 
have focused on neurons that use the main inhibitory and excit-
atory neurotransmitters in the brain, GABA and glutamate, as 
essential components of sleep–wake circuitry [12, 13]. The new 
focus on ubiquitous GABAergic and glutamatergic systems, which 
make up 99% of the neurons in the brain [14], presents a problem 
in identifying the key neurons involved in sleep–wake regula-
tion. In some cases, the expression of calcium-binding proteins 
or neuropeptides has been useful in identifying specific groups 
of subcortical GABAergic or glutamatergic neurons involved in 
regulating sleep–wake behavior and cortical electrical activity. 
However, this approach cannot be applied to most GABAergic 
and glutamatergic neurons. Furthermore, there are considerable 

variations in calcium-binding protein and neuropeptide content 
between species, during development, and in response to changes 
in neuronal activity. Thus, the use of these markers has limita-
tions when attempting to compare sleep–wake circuitry between 
species. A potentially more fruitful approach to identify subpopu-
lations of glutamatergic and GABAergic neurons, including sleep–
wake control neurons, is to use transcription factors as markers 
[15, 16]. Recent RNA-seq and spatial transcriptomic approaches 
revealed that combinations of transcription factors, especially 
developmental transcription factors, are the most informative 
in discriminating distinct clusters of neurons and non-neuronal 
cells [16, 17].

Large-scale studies in Drosophila melanogaster, C. elegans, and 
vertebrate nervous systems have concluded that developmental 
transcription factors distinguish neuron types most effectively 
and can distinguish almost all unique populations of neuronal 
cells [16–18]. Transcription factors controlling the development 
of different tissues were uncovered through analysis of develop-
ment mutants. Classic studies by William Bateson had described 
animals that displayed extra, missing, or altered parts. He termed 
developmental variants in which one body part was transformed 
into the likeness of another “homeotic” from the Greek word 
homeos meaning similar [6]. Later studies showed that homeo-
tic mutants in the fruit fly, D. melanogaster, were due to changes 
in single genes which contained a specific DNA binding domain 
named the homeobox [19, 20]. Homeotic genes with this DNA 
binding domain were called homeobox genes or Hox genes for 
short. Many of the homeobox-containing genes are found in clus-
ters throughout the genome, indicating an ancient system for the 
control of development [21, 22]. Subsequently, homologs of the 
homeobox genes were identified in vertebrates as duplications 
of the Drosophila gene clusters. The homeobox gene superclass 

1) Identify the developmental 
transcription factors which specify 
known sleep-wake control neurons

2) Identify novel groups of sleep-wake control 
neurons based on developmental transcription 

factor expression

Outline of an Evo-Devo Approach for Sleep Biology and Medicine

4) Identify the timepoint in 
evolution when different sleep 
control neurons appeared

5a) Compare the coding and cis-regulatory regions 
of the genes in humans to understand sleep 
differences and genetic basis of sleep disorders

3b) Compare the coding and cis-regulatory regions of 
developmental transcription factors which specify these neurons 
to understand basis for differences in sleep between species

5b) Study transcription factor cascades 
to understand how sleep abnormalities 
arise in developmental disorders

3a) Compare sleep-wake control neurons identified by developmental transcription 
factors across species which have differences in sleep amount, type or timing

6) Use transcription factors to drive 
generation of sleep-wake control 

neurons for transplantation approaches

Figure 1.  Roadmap and flowchart for the use of an evo-devo approach in sleep research and sleep medicine.
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predates the evolutionary split between animals, plants, and fungi 
but many homeobox genes appear unique to animals [23]. The 
functional diversification of homeobox genes by gene duplication 
and divergence has been shown to be an important mechanism 
in the evolution of distinct body plans and organs in bilaterian 
metazoans [24]. In this review, I examine how using homeobox 
and other developmental transcription factors as markers can 
benefit sleep research and medicine (Figure 1).

Using developmental transcription factors for identification 
purposes has already proven useful in uncovering novel sub-
types of cortical GABAergic interneurons [25], as well as sub-
types of globus pallidus GABAergic projection neurons [26, 27]. 
Only recently has the study of these transcription factors been 
applied to understand evolutionary differences in sleep–wake 
circuitry and behavior [28, 29] as well as to identify novel sleep 
circuits and their ontogeny, as described in subsequent sections. 
Linking clusters of neurons identified by expression of develop-
mental transcription factors to sleep behavior can be done using 
fate-mapping i.e. mark these neurons during development and 
follow their identity in adults or by using strains of animals which 
express transgenes expressed under the control of the promoter 
regions for these transcription factors [30]. Many of these devel-
opmental transcription factors also remain active in adults [21, 
30, 31]. Thus, neurons expressing these transcription factors 
can also be identified in adults by staining or other techniques 
which identify the protein or mRNA. One major advantage of this 
approach is that homeobox genes and other developmental tran-
scription factors are highly conserved during evolution [21, 22, 
32, 33], allowing identification of functionally related neuronal or 
glial cell types across widely divergent species and allowing cor-
relations with behavioral phenotypes.

Studies of developmental transcription factors 
in sleep and circadian biology—focus on the Lim 
homeobox gene family
Animal homeodomain genes can be divided into 10 distinct 
classes [23, 33]. Of these 10 classes, the homeobox gene family 
which has been studied the most in sleep and circadian biology is 
the LIM homeobox (Lhx) transcription factor family. The Lhx genes 
are unique to the animal lineage and have patterning roles dur-
ing embryonic development in flies, nematodes, and vertebrates, 
with a conserved role in specifying neuronal identity [22, 33]. The 
LIM domain is a zinc finger protein motif that is named for the 
founding genes of the class: lin-11, islet (isl)-1, and mitosis entry 
checkpoint (mec)-3 [34–36]. The Lhx proteins contain two tandem 
LIM domains N-terminal to their homeodomain allowing dimer-
ization with LIM domains in other proteins of the same subfam-
ily. Lhx genes are divided into six subgroups based on homology: 
Lhx1/5/lin-11, Lhx2/9/Apterous, Lhx3/4, Lhx6/8, Islet, and LIM home-
obox (Lmx)/Lim-6 [33, 37]. During development, cells express dif-
ferent combinations of Lhx genes and produce a LIM code that 
defines cell fate [22, 37]. In both vertebrates and Drosophila, moto-
neuron subtype identification is determined by a combinatorial 
code of Lhx genes and similar codes appear to be present in a 
variety of central nervous system neurons [22].

Several members of the LIM homeobox family have been 
implicated in the specification of GABAergic, cholinergic, and 
orexin/hypocretin neurons involved in sleep–wake control as well 
as their activity in adults (Table 1). Multiple developmental tran-
scription factors (Lhx2, Six3, and Six6) are broadly expressed in the 
anterior hypothalamus and needed for the specification of dif-
ferent nuclei from hypothalamic neuroepithelium including the 

master circadian clock located in the suprachiasmatic nucleus 
(SCN) [41, 42]. However, Lhx1 has a more restricted role in con-
trolling the terminal differentiation of neurons in the SCN and 
regulating their function [42–44], although it is also expressed 
in other hypothalamic and extra-hypothalamic brain regions. 
Deletion of Lhx1 during development in mice results in the loss 
of neuropeptides in the SCN, dampens clock gene expression and 
impairs the synchrony of circadian oscillator neurons [42, 44]. 
Furthermore, Lhx1 regulates light control of sleep timing [44] and 
heat resistance of the SCN [43]. Phase-shifting light pulses acutely 
reduce Lhx1 expression and its target genes which are involved 
in SCN coupling [44]. Taken together, these findings reveal Lhx1 
as a key transcription factor involved in SCN development and 
circadian rhythmicity which could potentially be used to iden-
tify master circadian regulator neurons in other species either 
alone, or in combination with other developmental transcription 
factors. Study of Lhx1 expression in the developing anterior ven-
tral hypothalamus in different species may be useful in under-
standing changes in the organization of circadian regulation. 
Presumably, Lhx1 would not be expressed in this brain region in 
fish species where a clear SCN master clock has not been iden-
tified [65]. Instead, in fish, circadian rhythms are controlled by 
the pineal gland. Another Lhx family member, Lhx9 is needed for 
early development of the mammalian pineal gland [59], whereas 
a different family member Lhx4 is strongly regulated by circadian 
phase and plays an important role in nocturnal melatonin syn-
thesis in rats and humans [60]. A different Lhx family member, Isl1 
plays a similar role in pigs [61].

Another subfamily of Lhx genes which control the develop-
ment of sleep–wake control neurons is the Lhx6/Lhx8 subfamily. 
In the forebrain, Lhx6 and Lhx8 are expressed early in the medial 
ganglionic eminence region which generates many forebrain 
GABAergic and cholinergic neurons [25]. Expression of Lhx8 is 
required for the development of forebrain cholinergic neurons 
[38, 39], including the basal forebrain cholinergic neurons which 
regulate sleep homeostasis and cortical fast electrical activity [8]. 
Whether Lhx8 regulates the activity of basal forebrain cholinergic 
neurons and their role in sleep homeostasis in adults has not yet 
been tested. The related transcription factor Lhx6 is expressed in 
medial ganglionic eminence neurons which will later use GABA 
as a neurotransmitter, although it does not control the expres-
sion of the genes required for GABAergic neurotransmission [66]. 
Many GABAergic projection neurons in the basal forebrain and 
globus pallidus express Lhx6 [26], as do cortical and striatal par-
valbumin and somatostatin-positive interneurons [66]. In prelim-
inary studies, chemogenetic activation of basal forebrain Lhx6 
neurons promotes wakefulness [40]. Lhx6 can also be expressed 
in a subset of cholinergic forebrain neurons which express GAD65 
but not GAD67 [67] and thus may define a unique population of 
dual phenotype cholinergic/GABAergic neurons which have been 
identified in the basal forebrain and striatum [40, 67, 68]. Lhx6 
is not only expressed in the telencephalon but also present in 
a restricted number of neurons in the diencephalon. The use of 
Lhx6 and a diencephalon-specific developmental transcription 
factor as markers allowed the identification of a novel group of 
sleep-active neurons in the hypothalamus and zona incerta [45]. 
Expression of Lhx6 is required for the survival of these neurons 
[46]. Several subtypes of diencephalic Lhx6+ neurons are dis-
tinguished by the expression of the transcription factors Dlx1/2, 
Nkx2-2, and Nkx2-1 [46]. Nkx2-2 specifically regulates the devel-
opment of sleep pressure-sensitive cells in the zona incerta [46]. 
Lhx6+ zona incerta neurons directly inhibit wake-active hypo-
cretin/orexin neurons and GABAergic neurons in the lateral 
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hypothalamus [45]. Lhx6+ neurons in the ventral zona incerta are 
also activated during paradoxical (REM) sleep rebound [47] and 
deletion of Lhx6 from the diencephalon decreases both NREM and 
REM sleep [45]. Thus, zona incerta Lhx6+ neurons promote sleep, 
especially REM sleep, via inhibition of wake-active populations in 
the hypothalamus and brainstem.

Lhx1 and Lhx6 are not the only LIM homeobox genes expressed 
in the mammalian hypothalamus. Another Lhx family member, 
Lhx9, plays an important, evolutionary conserved role in direct-
ing the specification of a subset of orexin/hypocretin neurons 
[48, 49] which degenerate in the sleep disorder, narcolepsy [69, 
70]. Transcriptional profiling using a hypocretin translating 
ribosome affinity purification (bacTRAP) line identified Lhx9 as 
a highly expressed transcript in hypocretin neurons, a finding 
which was confirmed with immunohistochemical staining [48]. 
Constitutive knockout of Lhx9 in mice led to a ~30%-40% reduc-
tion in the number of hypocretin neurons and hypocretin fibers in 
target regions while hypothalamic anatomy otherwise appeared 
normal and there were no changes in the numbers of neigh-
boring dopamine or melanin-concentrating hormone neurons 
[48]. Electrophysiological and behavioral profiling revealed that 
Lhx9 knockout mice had a 20% reduction of wakefulness across 
24-hour recordings but no cataplexy or REM sleep changes, con-
sistent with a modest loss of hypocretin/orexins. Interestingly, 
most hypocretin neurons expressed detectable levels of Lhx9 
mRNA although Lhx9 protein was only detectable in a subset of 
neurons. Lhx9 did not regulate hypocretin promoter activity in 
vitro or hypocretin expression in vivo and overexpression of Lhx9 
in adults did not rescue the hypersomnolent phenotype indicat-
ing that Lhx9’s role is primarily in specifying a subset of these 
neurons. Lhx9 is also expressed in hypocretin neurons in zebraf-
ish and is necessary and sufficient to specify hypocretin neurons 
in this species [49]. In contrast to the findings described above, 

in a different study, Lhx9 directly induced hypocretin expression, 
and two potential binding sites for Lhx9 were identified in the 
hypocretin promoter [49]. Furthermore, these authors found that 
Lhx9 was sufficient to specify hypocretin neurons in the develop-
ing mouse hypothalamus [49]. Overexpression at embryonic day 
10.5 led to increased numbers of hypocretin neurons in the lateral 
hypothalamus at postnatal day 6. Collectively, although there are 
some important unresolved differences, these two studies con-
firm that Lhx9 is a key regulator of the specification of hypocretin/
orexin neurons in two species, zebrafish and mice, although addi-
tional factors are likely required, especially in mice. Interestingly, 
while the mouse hypothalamus contains thousands of hypocre-
tin/orexin neurons, adult zebrafish only contain around 40 hypo-
cretin neurons. It would be interesting to determine if altered 
regulation of Lhx9 contributes to these differences in numbers 
and differences in sleep–wake regulation. Other developmental 
transcription factors involved in specifying hypocretin/orexin in 
mice and zebrafish have recently been reported, including the 
transcription factors Peg3, Ahr, Nr2f2, Six6, Prrx1, and Nkx6-2 [50]. 
Similar to Lhx9, downregulation of Peg3 results in reduced hypo-
cretin (and MCH) numbers in mouse hypothalamus and abol-
ishes them in zebrafish. Studies of the promoter regions of these 
genes across species are likely to be informative in understanding 
changes in the hypocretin/orexin system and sleep, as described 
in the next section.

LIM homeobox genes have also been implicated in the con-
trol of sleep in invertebrates. In C. elegans, several different states 
of inactivity, most notably the developmental state Lethargus, 
have properties which allow them to be considered analogous 
to mammalian sleep [63, 71]. Sleep in C. elegans is induced by 
two sleep-active neurons, RIS and ALA [71]. Lim-6, a member of 
the Lmx subfamily of LIM homeodomain genes [33], specifies 
GABAergic neurotransmission in the RIS neuron and determines 

Table 1.  Developmental transcription factors which regulate the specification and adult function of sleep–wake control neurons in 
defined regions of the brain

Brain region/neurotransmitter system Functional role Developmental transcription factor(s) References

Basal forebrain cholinergic neurons Cortical activation and sleep 
homeostasis

Lhx8, Islet 1 [38, 39]

Basal forebrain GABAergic neurons (subset) Wake promotion Npas1, Lhx6 [30, 40]

Suprachiasmatic nucleus of the hypothalamus Circadian rhythms Lhx1, Six3 [41–44]

Zona incerta GABAergic neurons (subset) Sleep promotion Lhx6 [45–47]

Lateral hypothalamus orexin/hypocretin neurons Wake promotion
sleep–wake stabilization
REM suppression

Lhx9, Peg3 [28, 48–50]

Midbrain reticular formation/ventrolateral 
periaqueductal gray GABAergic neurons

REM sleep control Gata, Nkx2-2, Skor2 [51]

Pontine tegmentum glutamatergic/cholinergic 
neurons close to the superior cerebellar peduncle 
and parabrachial nucleus

Inhibit REM sleep and promote 
NREM sleep

Atoh1/Math1 [52]

Brainstem serotonergic neurons Wake active, REM suppression Lmx1b, Pet1, Nkx2-2 [53, 54]

Locus coeruleus noradrenaline neurons Arousal, REM suppression, 
control of sleep spindles

Phox2a [55]

Parabrachial glutamatergic neurons (subset) Arousal? Lmx1b [56]

Medullary neurons/astrocyes Breathing, sleep homeostasis Phox2b [57, 58]

Pineal gland Melatonin synthesis Lhx9, Lhx4, Isl1 [59–61]

C. elegans ALA neuron Sleep promotion Lhx3, Chx10, Phox2 [62]

C. elegans RIS neurons Sleep promotion Lim-6 (Lmx subfamily of Lhx genes), 
Aptf-1 (Ortholog of Tfap-2 in 
Drosophila and Tfap-2beta in humans)

[63, 64]
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RIS-dependent sleep activity through the expression of the AP-2 
class developmental transcription factor Aptf-1, which in turn 
specifies the expression of FLP-11 neuropeptides [63]. At sleep 
onset, RIS depolarizes and releases FLP-11 to induce a systemic 
sleep state. In Drosophila, neuronal-specific knockdown of the 
AP-2 ortholog, Tfap-2, abolished nighttime sleep and affected 
neuronal development, whereas conditional knockdown in the 
adult also produced a milder sleep phenotype [64]. Mutation of 
the human ortholog, Tfap-2beta, causes Char disease, a severe 
neurodevelopmental disorder which may be associated with 
sleep disruption [64]. Thus, these findings suggest an evolution-
arily conserved role of LIM homeobox and AP-2 family transcrip-
tion factors in sleep regulation and sleep disruption in C. elegans, 
Drosophila, and humans.

Differentiation of the ALA neuron is coordinated by the com-
bined action of LIM homeodomain protein Lhx3 (Ceh-14) and two 
members of the Paired-like homeodomain family, Chx10 and Phox2 
[62]. Lhx3 is expressed only in the ALA neuron and is required 
for ALA-specific gene expression throughout development. These 
examples illustrate commonalities to the developmental pro-
grams which control sleep in vertebrates. Furthermore, they rep-
resent an independent line of evidence, beyond pharmacological 
and genetic similarities, for rest in invertebrates being analogous 
to sleep in vertebrates [71]. Given the conserved role of Lhx genes 
in specifying GABAergic neurons, it is tempting to speculate that 
mutations or duplications of Lhx genes or their cis-regulatory 
regions may have been involved in the generation of novel neural 
cell types regulating sleep and wakefulness during evolution.

The most primitive species where a sleep-like state has been 
described are Cnidarians such as the upside-down Jellyfish and 
Hydra, organisms which use neural nets and do not have a 
well-defined nervous system [72, 73]. Four families of Lim homeo-
box genes are present in the Cnidarian lineage [33] but it has not 
yet been investigated whether they play a role in sleep regulation.

The sections above describe the identification of the transcrip-
tion factors which specify several previously known populations 
of sleep–wake control neurons. However, the identification of 
sleep-promoting Lhx6+ neurons in the zona incerta illustrates 
the potential to use developmental transcription factors to iden-
tify novel subpopulations. Other examples of this are findings in 
the brainstem which identified a population of excitatory gluta-
matergic neurons in the pons which regulate REM and non-REM 
sleep based on the expression of the pro-neuron transcription 
factor gene Atoh1 (Atonal homolog 1, Math1) [52] and delinea-
tion of a midbrain GABAergic population involved in REM sleep 
control which expresses the developmental transcription factors 
Gata2, Nkx2-2, and Skor2 [51]. In the parabrachial region of the 
dorsolateral pons, the LIM homeobox gene Lmx1b identifies a pop-
ulation of glutamatergic neurons with ascending projections to 
the cerebral cortex and may be involved in arousal [56]. In the 
basal forebrain, a key node of the ventral part of the ascending 
reticular activating system, we have recently identified a novel 
population of GABAergic wake-promoting neurons which express 
the developmental transcription factor, neuronal PAS domain 1 
(Npas1) [30]. The related transcription factor, Npas2, is a major 
component of the molecular circadian clock in cells outside the 
SCN and regulates NREM sleep oscillations and sleep homeosta-
sis [74, 75].

In addition to identifying novel subpopulation of neurons, sev-
eral studies have identified developmental transcription factors 
underlying the generation of previously known brainstem neu-
rons involved in sleep–wake control (Table 1). Paired-like homeo-
box proteins Phox2a and Phox2b are critical for the development 

of brainstem noradrenergic cell groups, with Phox2a having a spe-
cific role in the development of the locus coeruleus [55]. Phox2b 
is expressed more widely in the brainstem and specifies neurons 
and astrocytes in the medulla involved in respiration and sleep 
homeostasis. Mutations in Phox2b cause sleep-disordered breath-
ing [57, 58]. Brainstem serotonin neurons are specified by the 
combined action of the transcription factors Lim homeobox 1b 
(Lmx1b), Nkx2-2, and plasmacytoma expressed transcription fac-
tor 1 (Pet1) [53]. Lmx1b is also expressed in adults and regulates 
serotonin synthesis [54]. Much remains to be learned about the 
specification of different classes of glutamatergic neurons in the 
brainstem reticular formation involved in the control of ascend-
ing arousal, REM sleep, and muscle atonia. The transcription 
factors which specify brainstem cholinergic neurons involved in 
REM sleep control also remain to be uncovered.

Further analysis of developmental transcription factors is 
likely to uncover additional novel subpopulations of sleep–wake 
control neurons, as well as reveal the developmental and evolu-
tionary origin of other known subpopulations. The developmen-
tal origin of some important sleep–wake related regions remains 
to be revealed. In particular, we do not yet know the transcrip-
tion factors which control the specification of descending REM 
muscle atonia neurons in the dorsolateral pons which are lost in 
REM sleep behavior disorder or the midbrain reticular formation 
neurons which are the origin of the ascending reticular activating 
system and are damaged in disorders of consciousness. Similarly, 
we do not understand the specification of sleep-promoting para-
facial or melanin-concentrating hormone neurons or sleep-active 
GABAergic neurons in the ventrolateral and median preoptic 
hypothalamic regions, although RNA-seq analysis of gene expres-
sion across the hypothalamus provides some clues [85].

The first evo-devo approach applied to sleep 
regulation: alterations of sleep duration in 
cavefish
As described in the section above, progress is being made regard-
ing our understanding of the specification of sleep and circadian 
neurons by developmental transcription factors, especially those 
in the LIM homeobox family. Knowledge of the developmental 
transcription factors which specify different types of neurons is a 
prerequisite for an evo-devo approach which attempts to explain 
differences in sleep behavior within and between species. A 
beautiful example of such a comparative approach in the sleep–
wake field is provided by studies of Astyanax mexicanus, a model 
organism for studying evolutionary variations in anatomy and 
physiology [28, 29, 86]. This teleost fish exists as two populations 
(morphotypes), surface fish that inhabit rivers, and multiple cave 
populations with convergent evolution of sleep loss. Sleep is dra-
matically reduced in adult cavefish compared to surface counter-
parts. What could account for this difference in sleep behavior? 
Hypocretin/orexin neurons are a well-known wake-promoting 
cell group in the hypothalamus which degenerate in the sleep 
disorder narcolepsy [69, 70]. The number of hypocretin/orexin 
(HCRT)-positive hypothalamic neurons is increased significantly 
in cavefish, and HCRT is upregulated at both the transcript and 
protein levels by as much as 3-fold [28, 29]. Pharmacological or 
genetic inhibition of HCRT signaling increases sleep in cavefish, 
suggesting enhanced HCRT signaling underlies the evolution of 
sleep loss [29]. Furthermore, ablation of the lateral line or starva-
tion increases sleep in cavefish but not surface fish and similarly 
inhibits hypocretin expression only in cavefish [29]. Thus, sev-
eral lines of evidence suggest that increased hypocretin activity 
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promotes sleep loss in cavefish. However, a fascinating recent 
study shows that hypocretin signaling is not absolutely required 
for sleep–wake control in fish [87], since several fish species of 
the Botiidae family have mutations in the hypocretin gene and/
or the type 2 hypocretin receptor, which render them nonfunc-
tional [87]. Interestingly, loss of hypocretin signaling in fish does 
not lead to behavioral arrests or cataplexy-like events [87], as 
observed in narcolepsy in mammals.

What could account for increased hypocretin activity which 
drives sleep loss in cavefish? As described in the previous section, 
the Lim homeobox transcription factor, Lhx9, regulates the spec-
ification of hypocretin/orexin neurons in zebrafish and in mice 
[48, 49]. Retaux et al. confirmed that Lhx9 is expressed in regions 
of the brain which go on to generate hypocretin neurons and used 
morpholino knockdown approaches to test a causal role in the 
specification of hypocretin neurons in A. mexicanus [28]. Three 
different knockdowns of Lhx9 reduced the numbers of hypocre-
tin neurons in the hypothalamus whereas embryos injected with 
Lhx9 mRNA had more hypocretin neurons. Alie et al. went on to 
investigate whether altered regulation of Lhx9 could account for 
increased numbers of hypocretin/neurons in cavefish, when com-
pared to surface fish [28]. Indeed, they found that Lhx9 expression 
is turned on earlier and over a larger domain in cavefish com-
pared to surface fish. Importantly, cavefish with knockdown of 
Lhx9 had similar amounts of locomotor activity, a proxy for sleep–
wake activity, as surface fish [28]. Collectively these two studies 
show that, as predicted by the evo-devo approach, variations in 
sleep circuitry and behavior can be accounted for by differential 
regulation of a master developmental transcription factor, Lhx9. 
Interestingly, increased activity of hypocretin neurons in aged 
mice results in sleep loss [88], suggesting a conserved role of 
hypocretin neurons in regulating sleep duration across different 
species. Further studies of Lhx9 expression in the hypothalamus 
and the cis-regulatory regions of Lhx9 across species would be 
interesting to test to what extent Lhx9 and hypocretin activity 
can account for differences in sleep duration more generally.

Implications for genetic studies of sleep–wake 
behavior and sleep medicine
Several genome-wide association studies in humans have impli-
cated developmental transcription factors in sleep–wake con-
trol and sleep disorders (Table 2). Sleep duration is associated 

with variations near paired homeobox 8 (Pax8) [2, 81] and with 
DNA methylation levels of Pax8 in hypersomnia patients [82]. 
Sleep duration and short sleep are also associated with poly-
morphisms of forkhead box P2 (Foxp2) [2], whereas SATB home-
obox 2 (Satb2), is suggested to contribute to the risk of insomnia 
and sleep disturbances in Glass syndrome [81]. Mutations of 
Foxp2 cause developmental disorders associated with speech 
disruption but these patients also commonly exhibit sleep dis-
turbances [76]. Intronic variants in the homeobox gene Meis1 
are implicated in a 50% increase in risk for restless legs syn-
drome (RLS) [78]. Polymorphisms of Meis1 are also implicated in 
risk for insomnia [79] and for periodic limb movements (PLM) 
which disrupt sleep [80]. Meis1 is expressed in the developing 
spinal cord as well as the cerebellum, forebrain, and substantia 
nigra. Which of these regions mediate Meis1’s role in sleep–wake 
control and in the pathogenesis of RLS and PLM is still unclear, 
but one study reported that the risk allele of the lead single-
nucleotide polymorphism in the Meis1 locus for RLS reduces 
enhancer activity in the Meis1 expression domain of the mouse 
embryonic ganglionic eminences which generate forebrain 
GABAergic and cholinergic neurons [89]. The transcription fac-
tor ladybird homeobox corepressor 1 (Lbxcor1), is also implicated 
in risk for RLS, possibly related to its role in the development of 
spinal cord sensory pathways [78]. In the brainstem, Phox2b is 
involved in the specification of neurons and astrocytes in the 
medulla which regulate respiration and sleep [58]. Polyalanine 
expansion and frameshift mutations of Phox2b lead to congen-
ital central hypoventilation syndrome, which includes sleep-
apnea as one of its major symptoms [57, 83]. In mice, deletion of 
the homeobox transcription factor, Goosecoid-like (Gscl), one of 
the genes deleted in DiGeorge syndrome or 22q11 deletion syn-
drome, reduced time spent in REM sleep, reduced theta power 
and increased arousability from REM sleep, apparently without 
altering the anatomy of the interpeduncular nucleus where it is 
expressed [77].

Genome-wide association studies in humans have identified 
polymorphisms in genes which affect sleep duration but collec-
tively these polymorphisms only account for a small part of the 
variance. The strongest association for sleep duration is at the 
Pax8 locus but the effect only accounts for around 2-3 minutes 
of sleep duration [90]. According to the evo-devo framework, it 
would be of interest in the future to determine whether alter-
ations in the cis-regulatory regions of master developmental 

Table 2.  Developmental transcription factors linked to sleep and developmental disorders with sleep abnormalities

Transcription factor Functional effect of disruption and disorder References

Forkhead box protein P2 (Foxp2) Change in sleep duration/insomnia in developmental disorders with 
speech disruption

[76]

Goosecoid-like homeobox (Gscl) REM sleep abnormalities in DiGeorge or 22q11 deletion syndrome [77]

Ladybird homeobox corepressor (Lbxcor1) Restless legs disorder [78]

Myeloid ecotropic viral integration site 1 homolog 
(Meis1)

Restless legs disorder, insomnia, periodic limb movements during 
sleep

[78–80]

Paired homeobox 8 (Pax8) Change in sleep duration/hypersomnia [2, 81, 82]

Paired-like homeobox 2B (Phox2b) Sleep-disordered breathing [58, 83]

POU class 3 factor 2 (POU3F2) Autism spectrum disorder [84]

Special AT-Rich sequence-binding homeobox 2 (Satb2) Insomnia and sleep disturbance in Glass syndrome [81]

Transcription factor activator protein-2 beta 
(Tfap-2beta)

Sleep disturbances in Char disease [64]
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transcription factors might account for more of the variance 
in sleep physiology by affecting the development of sleep–wake 
circuits, particularly since these factors regulate the expression 
of a large number of target genes. In Drosophila, a genome-wide 
association study uncovered single-nucleotide polymorphisms 
which accounted for 55% of the variance in sleep and the major-
ity (85%) were located in noncoding regions [91], as predicted by 
the evo-devo framework proposed here. Genes involved in devel-
opmental processes were a common theme for all sleep traits 
and roughly half of the genes associated with sleep traits were 
expressed during development [91]. In particular, a network of 
114 genes was identified which interact genetically or physically 
with the epidermal growth factor receptor pathway involved 
in the development of the nervous system [91]. Other studies 
in Drosophila and mice have linked the wnt signaling pathway 
which is active during central nervous system development [92], 
the nuclear factor-binding κ light chain in B cells (NF-κB) family 
of developmental transcription factors [93] and the developmen-
tal transcription factor, Pdm3 [84], in developmental changes in 
sleep and alterations in sleep amount, timing or architecture. 
Detailed, state-of-the-art experiments in Drosophila revealed 
the mechanism by which the POU family transcription factor 
Pdm3 acts to promote sleep during development by regulating 
the innervation of a sleep-promoting region, CCX, by inhibi-
tory input from wake-promoting dopamine neurons, through 
regulating the expression of a synaptogenesis gene, Msp300, in 
CCX neurons [84]. The human homolog of pdm3, POU6F2, has 
been associated with subtypes of autism spectrum disorders 
[84]. Another gene, insomniac (inc), an adaptor for the autism-
associated gene Cul3 ubiquitin ligase, acts in a defined period 
of neuronal of Drosophila development to impact sleep in adults 
[94]. Collectively, these findings suggest that developmental 
alterations can impact adult sleep phenotypes and be a poten-
tial cause for adult sleep disorders [84, 94].

Study of the regulation of cis-regulatory regions of transcrip-
tion factors involved in the specification of sleep–wake circuits 
seems likely to provide insights into the normal trajectory of sleep 
amount and form during development [95, 96] as well as altera-
tions of sleep and wakefulness in neuropsychiatric disorders with 
a developmental component. For instance, considerable work 
has focused on the involvement of forebrain cortical and stri-
atal GABAergic interneurons derived from the medial and caudal 
ganglionic eminences (MGE/CGE) in the pathophysiology of neu-
ropsychiatric disorders. However, the MGE and CGE are also the 
origin of GABAergic projection neurons involved in sleep–wake 
control in the globus pallidus and basal forebrain. Thus, altera-
tions of progenitor neurons might lead to altered numbers, loca-
tion, or activity of MGE or CGE-derived neurons which regulate 
sleep–wake activity and cortical activation, as well as alterations 
in cortical and striatal interneurons. In fact, genes expressed in 
the subpallial regions which generate forebrain interneurons and 
projection neurons in the striatum, globus pallidus, and basal 
forebrain are enriched in GWAS studies of self-reported sleep 
duration [2, 90].

Degeneration of sleep–wake neurons has been identified in a 
variety of disorders. Loss of orexin/hypocretin neuron in the lat-
eral hypothalamus is the cause of most human cases of narco-
lepsy [69, 70] whereas degeneration of subcoeruleus/sublateral 
dorsal nucleus muscle atonia neurons in the dorsal pons results 
in REM sleep behavior disorder [97]. During aging, the numbers 
of sleep-promoting GABAergic/galaninergic neurons in the ven-
trolateral preoptic area [98] as well as arousal-promoting cholin-
ergic and GABAergic neurons in the basal forebrain are reduced 

[99] and they are further reduced in dementia patients [98]. 
Thus, strategies to replace these lost neurons may prove bene-
ficial. Transplantation of brain embryonic progenitor cells has 
been successfully tested in preclinical models of epilepsy and 
Parkinson’s disease [100, 101]. Transplantation and overexpres-
sion approaches have also shown promise in rodent narcolepsy 
models [102]. Knowledge of the transcription factor cascades 
which control the development of orexin/hypocretin neurons 
could allow more refined approaches to enhance the numbers of 
viable orexin/hypocretin neurons, for instance, using overexpres-
sion of Lhx9 [48, 49]. Currently, the transcription factors which 
control the specification of muscle atonia neurons in the dorsal 
pons or ventrolateral preoptic area sleep-promoting neurons are 
unknown, but when identified they could prove useful in devel-
oping transplantation approaches to treat REM sleep behavior 
disorder or sleep fragmentation in dementia respectively. Many 
developmental transcription factors are also active in adults [31]. 
Thus, modulation of their activity might represent a novel phar-
macological target to complement existing approaches to modu-
late sleep and arousal [103].

Limitations of this approach
Comparative approaches to compare the circuitry controlling 
sleep–wake behavior in different brain regions across species to 
understand differences in sleep amount timing and expression 
are only possible once the transcription factors controlling the 
specification of specific sleep–wake circuits have been elucidated 
in one species. As described above, some progress has been made 
for specific circuits in the basal forebrain, hypothalamus, and 
brainstem. Nonetheless, we are far from a complete understand-
ing. In particular, the specification of major sleep–wake neurons 
in the ventrolateral preoptic area, median preoptic area, dorsolat-
eral pons, and brainstem reticular formation is largely unknown. 
However, with the advent of whole-brain cellular atlases of the 
mouse brain, based on RNA-seq and spatial transcriptomics 
approaches [14, 16], it is likely that this gap can be filled very soon.

Another potential limitation of the approach described here is 
that transcription factors are used at different times and places 
throughout the development of the nervous system and most cell 
types can only be defined through the coordinated action of sev-
eral transcription factors. How many transcription factors might 
be needed to define neural identity? This question has recently 
been addressed. In C. elegans, the combined expression of home-
odomain proteins can be used to identify all of its neurons [18]. 
While some neurons can be identified based on the expression of 
a single homeodomain gene, on average, the combined expres-
sion of four distinct homeodomain genes is needed [18]. Thus, 
the need to direct expression based on the coordinated action 
of several different promoter regions places some limitations in 
designing viral vectors which express proteins which can be used 
for gain or loss of function approaches to test the function of the 
target cell type in sleep–wake control. However, molecular biol-
ogy is moving at a rapid pace, and it seems likely that this limi-
tation will be overcome soon. In fact, progress has already been 
made in this area, allowing targeting of neurons based on double 
or triple intersectional targeting [104] or multiplexing CRISPR to 
generate unlimited genetic switches [105]. A related issue is that 
the cis-regulatory regions of master developmental transcription 
factor genes tend to be very large and composed of multiple ele-
ments [7]. However, it seems likely that smaller fragments may 
be sufficient to direct expression in particular neuronal classes, 
especially when combined with other promoters/enahncers.
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Conclusions
The central recommendation of this perspective is for sleep 
researchers to identify the transcription factor cascades which 
specify the identity of sleep–wake regulatory neurons and glia 
and the cis-regulatory DNA regions which control developmental 
transcription factor expression (Figure 1). Studying the develop-
mental transcription factor cascades which control the specifica-
tion of neurons and glia has the potential to identify novel circuits 
which control sleep and wakefulness, reveal the mechanisms 
which control differences in sleep timing, amount, and expres-
sion in different species and identify the timepoint in evolution 
when different sleep–wake control neurons appeared. Study of 
these developmental transcription factors will be facilitated by 
large-scale studies which propose a similar approach to define 
every unique cell type in mouse brains [14–16] and will allow 
identification of novel cell types involved in sleep–wake control 
where no other unique markers are available, particularly in 
ancient regions such as the brainstem reticular formation, hypo-
thalamus, and basal forebrain. Identification of these transcrip-
tion factor cascades may lead to novel therapeutic approaches for 
sleep and circadian disorders by creating specific types of sleep–
wake neurons to replace those which are lost in degenerative 
disorders or by manipulating the activity of those transcription 
factor cascades which remain active in adults.
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