
Nature | Vol 631 | 18 July 2024 | 617

Article

Spike deep mutational scanning helps 
predict success of SARS-CoV-2 clades

Bernadeta Dadonaite1, Jack Brown2, Teagan E. McMahon1, Ariana G. Farrell1, 
Marlin D. Figgins3,4, Daniel Asarnow2, Cameron Stewart2, Jimin Lee2, Jenni Logue5, 
Trevor Bedford3,6,7, Ben Murrell8, Helen Y. Chu5, David Veesler2,7 & Jesse D. Bloom1,7 ✉

SARS-CoV-2 variants acquire mutations in the spike protein that promote immune 
evasion1 and affect other properties that contribute to viral fitness, such as ACE2 
receptor binding and cell entry2,3. Knowledge of how mutations affect these spike 
phenotypes can provide insight into the current and potential future evolution of the 
virus. Here we use pseudovirus deep mutational scanning4 to measure how more than 
9,000 mutations across the full XBB.1.5 and BA.2 spikes affect ACE2 binding, cell entry 
or escape from human sera. We find that mutations outside the receptor-binding 
domain (RBD) have meaningfully affected ACE2 binding during SARS-CoV-2 
evolution. We also measure how mutations to the XBB.1.5 spike affect neutralization 
by serum from individuals who recently had SARS-CoV-2 infections. The strongest 
serum escape mutations are in the RBD at sites 357, 420, 440, 456 and 473; however, 
the antigenic effects of these mutations vary across individuals. We also identify 
strong escape mutations outside the RBD; however, many of them decrease ACE2 
binding, suggesting they act by modulating RBD conformation. Notably, the growth 
rates of human SARS-CoV-2 clades can be explained in substantial part by the 
measured effects of mutations on spike phenotypes, suggesting our data could enable 
better prediction of viral evolution.

Over the past 4 years of SARS-CoV-2 evolution, the virus has accumu-
lated mutations throughout its genome. The most rapid evolution has 
occurred in the viral spike, for instance, the XBB-descended variants 
that dominated in 2023 have 45–48 spike protein mutations relative 
to the earliest known strains from Wuhan in late 2019. The reason for 
this rapid evolution is that spike mutations can strongly affect both 
the virus’s inherent transmissibility and ability to escape pre-existing 
immunity1,3. A crucial aspect of interpreting and forecasting SARS-CoV-2 
evolution is therefore understanding the impact of current and poten-
tial future mutations on the spike.

Here we measure how thousands of mutations to the spike gly-
coprotein of the XBB.1.5 and BA.2 SARS-CoV-2 strains affect three 
molecular phenotypes critical to viral evolution: cell entry, ACE2 
binding and neutralization by human polyclonal serum (Fig. 1a). To 
do this, we extend a recently described pseudotyped lentivirus deep 
mutational scanning system4 that enables safe experimental charac-
terization of mutations throughout the spike5. We demonstrate that 
mutations outside the RBD can substantially affect spike binding to 
ACE2. We also define the mutations that escape neutralization by sera 
from humans who have been multiply vaccinated and also recently 
infected by XBB or one of its descendant lineages (XBB*), and show 
there is appreciable heterogeneity in the antigenic impact of muta-
tions across individuals. Finally, we show that the spike phenotypes 
we measure explain much of the changes in viral growth rate among 

different SARS-CoV-2 clades that have emerged in humans over the past  
few years.

Design of spike mutant libraries
We created mutant libraries of the spikes from the XBB.1.5 and BA.2 
strains. We chose these strains because nearly all human SARS-CoV-2 
circulating at present descends from either BA.2 or XBB.1.5’s parent line-
age XBB6, and because XBB.1.5 is the sole component of the COVID-19 
booster vaccine recommended by the WHO in 2023 (ref. 7). We wanted 
the libraries to contain all evolutionary accessible amino-acid muta-
tions tolerable for spike function. We therefore included all muta-
tions observed an appreciable number of times among the millions 
of SARS-CoV-2 sequences in Global Initiative on Sharing All Influenza 
Data (GISAID). In addition, we included all possible mutations at sites 
that change often during SARS-CoV-2 evolution or are antigenically 
important1,8, and deletions at key N-terminal domain (NTD) and RBD 
sites. These criteria led us to target roughly 7,000 amino-acid mutations 
in each of the XBB.1.5 and BA.2 libraries (Extended Data Fig. 1a). We 
created two independent libraries for each spike so we could perform 
all deep mutational scanning in full biological duplicate. The actual 
libraries contained between 69,000 and 102,000 barcoded spike vari-
ants with an average of two mutations per variant, and covered 99% 
of the targeted mutations, as well as some extra mutations (Extended 
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Data Fig. 1a). To retrospectively validate that this library design cov-
ered most evolutionarily important mutations, we confirmed that our 
XBB.1.5 libraries provided adequate coverage for high-confidence 
experimental measurements of nearly all spike mutations now pre-
sent in XBB, BA.2 and BA.2.86-descended Pango clades—despite the 
fact that BA.2.86 had not even emerged yet at the time we designed 
the library (Extended Data Fig. 1b). So although our libraries do not 
contain all spike mutations, they cover nearly all mutations that are 
relevant in the near- to mid-term evolution of SARS-CoV-2. Because 
the RBD is an especially important determinant of ACE2 binding and 
serum antibody escape9, we also made duplicate XBB.1.5 libraries 
that saturated all amino-acid mutations in only the RBD (Extended  
Data Fig. 1a).

Effects of spike mutations on cell entry
We measured the effects of all library mutations on spike-mediated 
cell entry in 293T-ACE2 cells (Extended Data Fig. 1c,d and interactive 
heat maps at https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_
DMS/htmls/293T_high_ACE2_entry_func_effects.html and https://
dms-vep.github.io/SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding/
htmls/293T_high_ACE2_entry_func_effects.html). These measurements 
were highly correlated between the replicate libraries for each spike, 
indicating the experiments have good repeatability (Extended Data 
Fig. 1e). The effects of mutations were also well correlated between 
the XBB.1.5 and BA.2 spikes (Extended Data Fig. 1f), consistent with 
previous reports that most but not all mutations have similar effects 
on the spikes of different SARS-CoV-2 variants10,11. As expected, stop 
codons were highly deleterious for cell entry (Fig. 1b). Because our 
full-spike library design strategy favours functionally tolerated muta-
tions in spike, most amino-acid mutations in our libraries just slightly 
impaired cell entry and some but not all single-residue deletions were 
also well tolerated (Fig. 1b). SARS-CoV-2 has acquired numerous dele-
tions in the NTD’s flexible loops during its evolution12,13, and consistent 
with that evolution we find that the flexible loops but not the core β 
sheets of the NTD are relatively tolerant of deletions (Extended Data 
Fig. 1g). Overall, the effects of mutations on cell entry were fairly well 
correlated with the effects of amino-acid mutations on viral fitness 
estimated from millions of natural human SARS-CoV-2 sequences14 
(Extended Data Fig. 1h).

No individual mutation in either the XBB.1.5 or BA.2 spikes notably 
increased pseudovirus cell entry, although some mutations did margin-
ally improve entry (Fig. 1b and interactive heat maps linked in figure 
legend). One mutation that slightly improves pseudovirus entry in 
both XBB.1.5 and BA.2 is P1143L (Fig. 1c), which is found in the recently 
emerged BA.2.86 lineage15. We previously reported that mutations to 
P1143 also improve cell entry for BA.1 and Delta pseudoviruses4. The 
deletion mutations in our libraries are usually more deleterious for cell 
entry than substitutions (Fig. 1b); however, deletion of V483 in the RBD 
is well tolerated for cell entry, consistent with emergence of this muta-
tion in the BA.2.86 variant15. The F456L mutation, which has emerged 
repeatedly in XBB clades after being rare in earlier BA.2-derived clades, 
is well tolerated for cell entry in XBB.1.5 but substantially deleterious 
in BA.2 (Fig. 1c).

Non-RBD mutations affect ACE2 binding
To measure how mutations in spike affect receptor binding, we 
leveraged the fact that the soluble ACE2 ectodomain neutralizes 
spike-mediated infection with a potency proportional to the strength 
of spike binding to ACE2 (refs. 1,16). To validate this fact, we made 
pseudoviruses with six different spike variants and quantified their 
neutralization by monomeric ACE2 (Fig. 2a). Compared to the BA.2 
spike, the Wuhan-Hu-1+D614G spike is neutralized less potently by 
soluble ACE2 consistent with its weaker ACE2 binding17,18, whereas four 

mutants of BA.2 known to have higher ACE2 binding2 (N417K, N417F, 
R493Q and Y453F) were all neutralized more potently by soluble ACE2 
(Fig. 2a). The quantitative neutralization by soluble ACE2 was highly 
correlated with previously measured monomeric RBD-ACE2 affini-
ties2,18,19 (Fig. 2b).

Using this approach, we measured how mutations across both 
the XBB.1.5 and BA.2 spikes affect apparent ACE2 binding (Extended 
Data Fig. 2 and interactive heat maps of all mutation effects at https://
dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/monomeric_
ACE2_mut_effect.html and https://dms-vep.github.io/SARS-CoV-2_Omi-
cron_BA.2_spike_ACE2_binding/htmls/monomeric_ACE2_mut_effect.
html). Because our assay measures ACE2 neutralization rather than 1:1 
ACE2-RBD affinity there are several distinct mechanisms that could 
affect what we refer to as ACE2 binding: direct changes in 1:1 RBD-ACE2 
binding affinity2,20, changes in spike that modulate the conformation 
of the RBDs (such as up and down movements)21,22 and ACE2-induced 
shedding of the S1 subunit23,24.

The effects of RBD mutations on ACE2 binding to the spike meas-
ured using pseudovirus deep mutational scanning correlate well with 
previously reported measurements from RBD yeast display for both 
XBB.1.5 and BA.2 (ref. 20) (Fig. 2c). We also measured ACE2 binding for 
the XBB.1.5 pseudovirus libraries with saturating RBD mutations using 
both monomeric and dimeric soluble ACE2. The RBD-only pseudovi-
rus measurements were highly correlated with the full-spike library 
measurements (Extended Data Fig. 3a), and the measured values were 
highly similar for monomeric versus dimeric soluble ACE2 (Extended 
Data Fig. 3b). ACE2 binding and pseudovirus cell entry are distinct 
properties, with no strong correlation between these properties among 
tolerated mutations (Extended Data Fig. 3c), probably reflecting the 
fact that cell entry can be limited by factors unrelated to receptor bind-
ing, especially in target cells expressing moderate to high levels of 
ACE2, such as those used in our experiments.

A striking observation from the deep mutational scanning is that 
some mutations outside the RBD appreciably affect binding to ACE2 
(Fig. 2d and Extended Data Figs. 2 and 3). To validate these findings, 
we used mass photometry to measure binding of the soluble native 
ACE2 dimer to the spike ectodomain trimer (Fig. 3a). Mass photom-
etry measures protein-protein interactions in solution by detecting 
changes in light scattering that are proportional to protein molecu-
lar mass25, which allows us to detect binding of one or more ACE2 
molecules to the spike (Fig. 3a). We produced prefusion-stabilized 
HexaPro26 BA.2 and XBB.1.5 spikes, along with mutants that our deep 
mutational scanning experiments showed to modulate ACE2 binding, 
and performed mass photometry in the presence of a series of ACE2 
concentrations (Fig. 3a,b, Extended Data Fig. 4 and Supplementary 
Figs. 1–3). As expected, we observed better and worse ACE2 bind-
ing for RBD mutations that have been previously identified to either 
increase (R493Q) or abrogate (R498V) ACE2 engagement, respectively2 
(Fig. 3b, left panels). Furthermore, we detected increased ACE2 bind-
ing for all but one of the BA.2 and XBB.1.5 spike trimers harbouring 
S1 subunit mutations (in NTD, RBD and SD1 domains) that our deep 
mutational scanning indicated had better binding (Fig. 3b middle 
panel, Extended Data Fig. 4 and Supplementary Figs. 2 and 3), as well 
as decreased ACE2 binding for S1 mutations that our deep mutational 
scanning indicated had worse binding (Fig. 3b). However, mutations 
to the BA.2 and XBB1.5 S2 subunit found to increase binding to ACE2 
in our deep mutational scanning did not lead to increased ACE2 bind-
ing detectable by mass photometry (Fig. 3b right panel, Extended 
Data Fig. 4b,c and Supplementary Figs. 2 and 3). Notably, some of 
these S2 mutations were previously reported to affect spike fusion27–29 
suggesting that they may indeed affect S1 shedding and in turn affect 
ACE2 binding consistent with our deep mutational scanning. How-
ever, unlike the spikes in deep mutational scanning experiments, the 
spikes used in mass photometry experiments are prefusion stabilized 
by introduction of the HexaPro mutations in the fusion machinery26. 
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These modifications to spike may limit the propagation of long-range 
allosteric changes induced by S2 subunit mutations, possibly explain-
ing the discrepancy between deep mutational scanning and mass 
photometry. Concurring with this hypothesis, we previously showed 
that ACE2-induced allosteric conformational changes that drive 
fusion peptide exposure were inhibited by the prefusion-stabilizing  
2P mutations30.

Non-RBD mutations that enhance ACE2 binding have played an 
important role in SARS-CoV-2 evolution. The following non-RBD muta-
tions that enhance ACE2 binding occurred in the main pre-Omicron vari-
ants of concern: A570D (Alpha), A222V (several moderate-frequency 
Delta sublineages), T1027I (Gamma) and D950N (Delta) (Extended Data 
Fig. 2d). In addition, the following non-RBD mutations that occurred 

in Omicron variants, all of which represent reversions to pre-Omicron 
residue identities, increase ACE2 binding: K969N, K764N and Y655H. 
Consistent with previous studies showing that the original D614G muta-
tion increased the proportion of RBDs in the up conformation21, we find 
that G614D decreases full-spike ACE2 binding (Fig. 3b and Extended 
Data Fig. 2d).

To systematically examine the recent evolutionary role of 
non-RBD-ACE2 binding-enhancing mutations, we tabulated non-RBD 
mutations that enhance binding and are new mutations in at least 
four XBB-descended Pango clades (Fig. 3c). Some of these muta-
tions may explain why certain clades had a growth advantage. For 
example, the NTD mutation Q52H provided the EG.5.1 lineage with 
a clear growth advantage over EG.5 (ref. 6), despite not measurably 
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Fig. 1 | Deep mutational scanning to measure phenotypes of the XBB.1.5 
and BA.2 spikes. a, We measure the effects of mutations in spike on cell entry, 
receptor binding and serum escape using deep mutational scanning (DMS). We 
then use these measurements to predict the evolutionary success of human 
SARS-CoV-2 clades. b, Distribution of effects of mutations in XBB.1.5 and BA.2 
spikes on entry into 293T-ACE2 cells for all mutations in the deep mutational 
scanning libraries, stratified by the type of mutation and the domain in spike. 
Negative values indicate worse cell entry than the unmutated parental spike. 
Note that the library design favoured introduction of substitutions and 
deletions that are well tolerated by spike, explaining why many mutations of 
these types have neutral to only modestly deleterious effects on cell entry.  
c, Cell entry effects of mutations F456L, P1143L and deletion of V483 relative to 

the distribution of effects of all substitution and deletion mutations in the 
libraries. Interactive heat maps with effects of individual mutations across  
the whole spike on cell entry are at https://dms-vep.github.io/SARS-CoV-2_
XBB.1.5_spike_DMS/htmls/293T_high_ACE2_entry_func_effects.html and 
https://dms-vep.org/SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding/
htmls/293T_high_ACE2_entry_func_effects.html. The boxes in b and c span  
the interquartile range, with the horizontal white line indicating the median. 
Whiskers in b indicate 0.75 of the interquartile range plotted from the smallest 
value of the first and highest value of the third quartile. For c, the effect of 
deleting V483 was not measured in the BA.2 spike. The effects of mutations are 
the mean of two biological replicate measurements made with different deep 
mutational scanning libraries.
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affecting serum neutralization31. Our deep mutational scanning pro-
vides an explanation for the success of EG.5.1 by showing that Q52H 
enhances ACE2 binding. Similarly, T572I is now appearing conver-
gently in JN.1-descended lineages6, and our results show that mutation 
enhances ACE2 binding.

Heterogeneous sera escape
We next mapped how mutations in spike affect neutralization by the 
polyclonal antibodies in sera from ten vaccinated individuals who either 
had a confirmed XBB* infection or whose last infection was during 
a period when XBB lineages were the dominant circulating variants 
(Supplementary Table 1). We performed these measurements with 
the full-spike XBB.1.5 libraries using 293T cells expressing moderate 
levels of ACE2 that better capture the activities of non-RBD antibod-
ies32,33, although the key sites of escape were mostly similar if we used 
293T cells expressing high levels of ACE2 or the RBD-only libraries 
(Extended Data Fig. 5). The sites of greatest serum escape were mainly 
in the RBD (Fig. 4a–c and interactive plot at https://dms-vep.github.
io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/summary_overlaid.html). 
These sites include 357, 371, 420, the 440–447 loop, 455–456 and 473, 
as well as a few sites in the NTD, such as positions 200 and 234. At some 
sites, the escape mutations are strongly deleterious to ACE2 binding 
(Fig. 4c). For instance, mutations at Y473 cause strong neutralization 
escape but greatly reduce ACE2 binding, probably explaining their low 
frequency among circulating SARS-CoV-2 variants. In addition, only 
some of the antibody escape mutations mapped in our experiments are 

accessible by single-nucleotide mutations to XBB.1.5 (Fig. 4c). Several 
escape mutations that are single-nucleotide accessible and do not 
strongly impair ACE2 binding are found in recent variants, including 
mutations at site 456 in EG.5.1 and many other XBB variants, mutations 
at 455 in HK.3.1 and JN.1, mutations at 420 in GL.1 and mutations at 200 
in XBB.1.22 (ref. 6).

Whereas the same mutations often escape many sera, there is also 
heterogeneity such that the sera-average is not fully reflective of the 
effects of mutations on any individual serum (Fig. 4b,d and Extended 
Data Fig. 6). For example, whereas mutations to site Y473 strongly 
escape neutralization by most sera, two sera we analysed (493C and 
501C) are largely unaffected by mutations at that site. Other key sites of 
escape, including 420 and 456, show similar heterogeneity across sera. 
To validate that escape mutations can have very different effects across 
sera, we performed standard pseudovirus neutralization assays5 against 
a panel of point mutants to the XBB.1.5 spike (Fig. 4d). The changes in 
neutralization in these validation assays were highly correlated with 
the escape measured by deep mutational scanning, and confirmed the 
serum-to-serum heterogeneity. For example, Y473S strongly reduces 
neutralization by sera 287C and 500C, but actually slightly increases 
neutralization by serum 501C. Similarly, F456L substantially reduces 
neutralization by only some sera (Fig. 4d).

The deep mutational scanning identifies mutations that increase, 
as well as escape, neutralization (Extended Data Fig. 7). Sensitizing 
mutations often occur at sites that are mutated in XBB.1.5 relative to 
earlier variants, such as sites 373, 405, 417, 460, 486 and 505 (Extended 
Data Fig. 7). Presumably in many cases, reverting mutations at these 
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sites restores neutralization by antibodies elicited by infection or vac-
cination with earlier viral strains. To confirm that the sensitizing muta-
tions identified in the deep mutational scanning actually increased 
neutralization, we validated the sensitizing effects of R403K and N405K 
in standard pseudovirus neutralization assay (Fig. 4d). In addition, 
some sensitizing mutations seem to act by placing the RBD in a more 
up conformation as discussed in the next subsection.

RBD conformation affects serum escape
Most sites of strong escape described in the previous section are proxi-
mal to the ACE2-binding motif in the RBD that is the target of many 
potent neutralizing antibodies34,35. However, the deep mutational 
scanning also reveals individual mutations at non-RBD or ACE2-distal 
RBD sites that strongly escape neutralization. Some of these sites, 
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such as 42, 200 and 234 in the NTD, 572 in SD1 and 852 in S2 have muta-
tions that cause as much escape as ACE2-proximal RBD mutations, 
decreasing serum neutralization by as much as sixfold (Fig. 4a,d). 
Whereas most mutations at any given site have similar effects on 
escape (that is, either promoting or sensitizing) at many ACE2-proximal 
RBD sites, different mutations at the same non-RBD or ACE2-distal 

RBD site can have opposing effects on neutralization (Fig. 5a–c). Fur-
thermore, there is a strong correlation between mutational effects 
on neutralization and ACE2 binding at these sites: mutations that 
reduce neutralization also reduce ACE2 binding, and mutations 
that increase neutralization also increase ACE2 binding (Fig. 5a,b). 
No such consistent correlation exists between neutralization and 
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ACE2 binding for RBD escape sites in close proximity of ACE2 binding  
interface (Fig. 5c).

We propose that non-RBD and ACE2-distal RBD mutations that 
increase both neutralization and ACE2 binding do so by shifting the 
RBD to a more upright position, whereas those that decrease neutraliza-
tion and ACE2 binding do so by shifting the RBD to a more downwards 
position36–38. Previous work has shown that mutations that put the RBD 
in a down position reduce neutralization by antibodies that target RBD 
residues only accessible in the up position, whereas antibodies that can 
bind both the up and down RBD are unaffected by such mutations15,39. 
Consistent with this previous work, we confirmed that the mutations at 
ACE2-distal sites identified in our full-spike deep mutational scanning 
as probably affecting RBD conformation only affect neutralization by 
monoclonal antibodies that bind only to the up conformation of the 
RBD (Extended Data Fig. 8).

Our results show that mutations that affect neutralization and ACE2 
binding by modulating RBD conformation are common in certain 

regions of spike: a result that makes structural sense, because most 
of these mutations are located near the interfaces between the RBD and 
other spike domains (Fig. 5d and Extended Data Fig. 9). Furthermore, 
many of these strong escape sites, including N234, F371, P373, F375, 
A376, S408, A570 and T572, have been previously shown by structural 
methods to affect RBD conformation22,36–38,40–43 or the conformation 
of key RBD epitopes19,44.

Spike phenotypes and clade growth
SARS-CoV-2 evolution in humans is characterized by the repeated 
emergence of new viral clades, which often possess extra amino-acid 
mutations in spike relative to their predecessors. To test whether our 
deep mutational scanning measurements could help explain which 
clades are evolutionarily successful, we estimated the relative growth 
rates in humans of sufficiently-sampled SARS-CoV-2 clades using mul-
tinomial logistic regression45 (Extended Data Fig. 10a–c). As expected, 
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more recent clades generally had higher growth rates, consistent with 
evolution selecting for viral clades that are more fit (Extended Data 
Fig. 10a), presumably in part due to further mutations in spike46.

We sought to determine whether the growth of clades could be pre-
dicted from how their mutations affect the spike phenotypes measured 
by deep mutational scanning. Note that almost any mutation-based 
measurement (such as just counting mutations) trivially correlates 
with clade growth because newer clades typically have both better 
growth rates and more spike mutations (Extended Data Fig. 10a,d). 
For instance, clade growth rates strongly correlate with the number of 
spike mutations relative to the early Wuhan-Hu-1 sequence (Extended 
Data Fig. 10e). But this correlation is not informative because the ques-
tion of evolutionary interest is not whether SARS-CoV-2’s spike will 
acquire more mutations over time (we already know this will happen), 
but rather which of the various mutant viruses present at any given time 
will spread. Furthermore, phylogenetic correlations can exaggerate 
associations between mutations and clade growth47. Therefore, we 
focused on predicting changes in clade growth for each pair of parent–
descendant clades separated by at least one spike mutation (Extended 
Data Fig. 10b). This approach eliminates the confounding effects of 
phylogenetic relatedness and the accumulation of mutations over 
time (Extended Data Fig. 10e,f), and better answers the question of 
how specific mutations affect clade growth.

Changes in growth between parent–descendant clade pairs were 
positively correlated with all three experimentally measured spike 
phenotypes both among just XBB-descended clades (Fig. 6a and 
Extended Data Fig. 11) and among all BA.2, BA.5 and XBB-descended 
clades (Extended Data Fig. 12). The correlations were statistically sig-
nificant for sera escape and cell entry as assessed by randomization of 
the measurements among mutations. However, these univariate cor-
relations do not fully capture the information in the experiments, as the 
effects of mutations on the spike phenotypes are themselves correlated 
(for example, mutations that cause sera escape sometimes decrease 
ACE2 binding). We therefore performed ordinary least-squares multiple 
linear regression of changes in clade growth versus all three pheno-
types. The predictions of this regression correlated with changes in 
clade growth better than any individual phenotype, and were highly 

statistically significant as assessed by randomization of the measure-
ments among mutations (Fig. 6b and Extended Data Fig. 12). Sera escape 
uniquely explained the largest fraction of the variance in changes in 
clade growth, but ACE2 binding and cell entry effects also explained 
some variance. By contrast, neither RBD yeast-display deep mutational 
scanning of antibody escape8,48 and ACE2 affinity20 nor the EVEscape 
deep learning model49 were consistently better than randomized data 
at predicting changes in clade growth at a significance level of P = 0.05 
(Extended Data Figs. 11 and 12).

We also sought to test the ability of full-spike deep mutational scan-
ning to explain the high fitness of BA.2.86 and its descendant clades (for 
example, JN.1), which were identified after the completion of the experi-
ments described in this study50. Because there are not yet sufficient 
distinct BA.2.86-descended clades to make meaningful comparisons 
with clade growth, instead we performed a different test inspired by 
Thadani et al.49: we generated sequences with random sets of naturally 
observed spike amino-acid mutations that had the same number of 
differences relative to BA.2 as did BA.2.86, or relative to BA.2.86 as all 
designated BA.2.86-descended clades. Our XBB.1.5-based full-spike 
deep mutational scanning could distinguish the true BA.2.86 and 
BA.2.86-descended clades from sequences with the same number of 
mutations with high statistical significance, and did so better than RBD 
yeast-display deep mutational scanning or EVEscape (Supplementary 
Fig. 4).

Discussion
More than 16 million human SARS-CoV-2 genomes have been sequenced 
to date, enabling rapid identification of variants with new mutations at 
the sequence level. However, interpreting the consequences of these 
mutations on viral spread in a partially immune population remains 
a major challenge. Here we show how pseudovirus-based deep muta-
tional scanning can characterize the effects of mutations throughout 
spike on three distinct phenotypes critical to viral fitness: cell entry, 
ACE2 binding and serum antibody escape.

The full-spike pseudovirus data we generate enables several key 
insights that were not apparent from previous yeast-display RBD 
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deep mutational scanning approaches1,2,48. Most obviously, the data 
encompass all spike domains, not just the RBD. These data show that 
non-RBD mutations can affect ACE2 binding, probably by altering the 
conformation of the RBD in the context of the spike trimer (for example, 
in up versus down position). Such mutations are highly relevant for 
SARS-CoV-2 evolution—for instance, enhancement of ACE2 binding 
by non-RBD mutations appears to explain why EG.5.1 spread so rapidly 
after it acquired Q52H, why A222V subvariants of Delta spread widely, 
why A570D was selected in Alpha, and why T572I is now arising so fre-
quently in BA.2.86-descended variants.

Pseudovirus deep mutational scanning also enables us to directly 
measure how mutations affect neutralization by polyclonal sera. By 
contrast, previous RBD-display deep mutational scanning could only 
measure how mutations affect antibody binding51, and so to estimate 
mutational effects on serum neutralization escape it was necessary 
to characterize hundreds of individual antibodies assumed to repre-
sent the polyclonal neutralizing repertoire of humans1,8. The ability 
to directly map how mutations affect serum neutralization leads to 
two new insights. First, it reveals the heterogeneity in how mutations 
affect neutralization by sera from different individuals. For instance, 
we characterize sera from XBB* infected individuals that are both 
strongly affected and almost completely unaffected by mutations at 
key sites such as 456 or 473. The sera examined in this study came from 
individuals with varied immunization and infection histories, which 
probably contributes to observed escape heterogeneity, although 
individual-to-individual variation in humoral response may also play 
a role. This person-to-person heterogeneity in the antigenic effects of 
spike mutations will increase as individuals accumulate increasingly 
distinct exposure histories, and could come to play an important role 
in shaping SARS-CoV-2 evolution and disease susceptibility as it does 
for influenza virus52–54.

The second major insight from direct mapping of serum escape 
is that mutations outside the RBD can have marked effects on neu-
tralization. For instance, NTD mutations such as Y42F and N234T 
decrease neutralization by some sera by nearly sixfold. The existence 
of such strong non-RBD escape mutations may seem surprising given 
that most neutralizing activity in human sera come from antibodies 
that bind the RBD9,32,51,55. However, our data indicate that the strong-
est non-RBD serum escape mutations act primarily by shifting the 
RBD to the down conformation, thereby indirectly escaping class 1 
and 4 antibodies that bind to RBD surfaces only accessible in the up 
conformation15,39. Of course, such mutations come at a cost to ACE2 
binding, because the RBD cannot bind receptor in the down confor-
mation56,57. Nonetheless, the ubiquity of such mutations suggests 
that this mechanism of escape merits monitoring and is in line with 
previous observations made with endemic human coronaviruses58–60. 
For instance, the RBD of the CoV-229E spike has never been observed 
in the up conformation61,62 despite the fact that this spike somehow 
manages to bind its receptor during infection. Whether SARS-CoV-2’s 
spike could eventually evolve to also far more strongly favour a down 
RBD conformation is unknown.

The most important indication of the relevance of our work is that our 
measurements of spike phenotypes partially explain the evolutionary 
success of different SARS-CoV-2 clades in humans. A longstanding goal 
of evolutionary biology is to understand the molecular phenotypes that 
contribute to fitness63, and then measure them with sufficient accuracy 
to predict which mutants will actually spread in the real world. We have 
taken a real step towards this goal, because the spike phenotypes meas-
ured by our deep mutational scanning explain a substantial amount of 
the changes in growth rates of recent SARS-CoV-2 clades. Of course, 
pseudovirus spike deep mutational scanning will never perfectly pre-
dict SARS-CoV-2 evolution: evolution itself is partially stochastic64, 
pseudovirus experiments do not capture all phenotypes of spike rel-
evant to transmission or multicycle replication and our experiments 
completely ignore mutations to non-spike genes that contribute to 

fitness14,65. Furthermore, it remains technically challenging for deep 
mutational scanning to account for epistatic interactions among muta-
tions66, and we need modelling approaches that better account for how 
person-to-person heterogeneity in immune-escape mutations shape 
viral evolution52. However, the fact that our deep mutational scan-
ning has substantial power to explain clade growth shows that we have 
reached the point at which experiments can enable useful predictions 
about SARS-CoV-2 evolution. An important area of future work will be 
integrating these highly informative experimental measurements into 
even more sophisticated models of viral evolution49,67,68.
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Data availability
The data described in this paper are available in both interactive and 
numerical form in various levels of detail. For easy interactive visuali-
zation of the data, we suggest the following interactive charts of how 
mutations affect all measured phenotypes after applying a reason-
able set of filters to remove lower confidence measurements: XBB.1.5 
spike, https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/
htmls/summary_overlaid.html; BA.2 spike, https://dms-vep.github.io/
SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding/htmls/summary_over-
laid.html and XBB.1.5 RBD, https://dms-vep.github.io/SARS-CoV-2_
XBB.1.5_RBD_DMS/htmls/summary_overlaid.html. For numerical  
data on mutational effects on all measured phenotypes after applying 
the same reasonable set of filters, see XBB.1.5 spike, https://github.com/
dms-vep/SARS-CoV-2_XBB.1.5_spike_DMS/blob/main/results/summa-
ries/summary.csv; XBB.1.5, spike, per-serum escape: https://github.
com/dms-vep/SARS-CoV-2_XBB.1.5_spike_DMS/blob/main/results/
summa ries/per_antibody_escape.csv; BA.2 spike, https://github. 
com/dms-vep/SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding/blob/
main/results/summaries/summary.csv and XBB.1.5 RBD, https://github.
com/dms-vep/SARS-CoV-2_XBB.1.5_RBD_DMS/blob/main/results/sum-
maries/summary.csv. Raw sequencing data files have been uploaded 
to BioProjects under the following accession codes: PRJNA1034580 for 
the XBB.1.5 full-spike library, PRJNA1035795 for the XBB.1.5 RBD-only 
library and PRJNA1035933 for the BA.2 full-spike library.
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In addition to the above interactive charts and numerical data, the 
entire computational pipelines are available along with rich interactive 
HTML displays of results. These numerical data and HTML displays 
include extra options to filter the data for higher and lower confidence 
values, such as by examining the measurements in each of the two 
replicate libraries or filtering measurements by how many variants 
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | XBB.1.5 and BA.2 spike deep mutational scanning 
libraries. a, Number of targeted and final number of mutations and barcoded 
variants in the XBB.1.5 and BA.2 full spike and XBB.1.5 RBD pseudovirus-based 
deep mutational scanning libraries. b, Total number of unique spike amino-
acid mutations present in BA.2, BA.5, BA.2.86, and XBB descended Pango 
clades and the number of those mutations that are present in at least three 
barcoded variants in each replicate of the XBB.1.5 full spike libraries, which was 
the minimum number of occurrences we needed to make high-confidence 
estimates of the mutational effects on cell entry. The first number is the total 
number of mutations meeting the criteria and the number in parentheses is the 
number of these mutations covered in the libraries: for example, there are 108 
spike amino-acid mutations that occur in more than one XBB-descended clade, 
and 107 of those mutations are well covered in our XBB.1.5 full spike libraries.  
c, Method for creating genotype-phenotype linked spike deep mutational 
scanning libraries, as previously described in Dadonaite et al.4. Lentivirus 
backbone plasmids encoding barcoded mutagenised spike genes together 
with helper and VSV-G expression plasmids are transfected into 293 T cells to 
make VSV-G pseudotyped virus. These viruses are used to infect 293T-rtTA cells 
at MOI < 0.01 so that no more than one spike variant is integrated into each cell. 
Transduced cells are selected for lentiviral integration, and spike pseudotyped 
virus libraries are produced from these cells by transfecting helper plasmids in 
the presence of doxycycline to induce spike expression. In the absence of 

doxycycline and with added VSV-G expression plasmid, VSV-G pseudotyped 
virus libraries are also produced from the same cell lines; these VSV-G 
pseudotyped viruses are used to help estimate effects of spike mutations on 
cell entry as described in the next panel. d, Method used to measure effects  
of mutations in spike on cell entry. The ability of each spike variant to mediate 
cell entry is assessed by quantifying its relative frequency in 293T-ACE2 cells 
infected with spike-pseudotyped versus VSV-G pseudotyped libraries.  
e, Correlations between the effects of mutations on cell entry measured using 
each of the two independent full spike libraries of XBB.1.5 or BA.2. Throughout 
the rest of this paper, we report the mean value between the two libraries.  
f, Correlation between mutational effects on cell entry measured for the 
XBB.1.5 versus BA.2 full spike libraries. g, Cell-entry effects as measured in the 
deep mutational scanning of mutations in either the flexible loops or core 
β-sheets of the NTD. The left plot shows the effects of amino-acid mutations; 
the right plot shows the effects of single-residue deletions. The black line 
indicates the median entry effect, and the boxes indicate the interquartile 
range. Mutational effects are the median of two biological replicates. Whiskers 
indicate 0.75 of the interquartile range plotted from the smallest value of the 
1st and highest value of the 3rd quartile. h, Correlation between mutational 
effects measured with the XBB.1.5 or BA.2 full spike libraries and fitness effects 
of those mutations estimated from actual human SARS-CoV-2 sequences14.
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Extended Data Fig. 2 | Correlations among measured mutational effects on 
ACE2 binding. a, Correlation between effects of mutations on ACE2 binding 
measured with XBB.1.5 full spike and XBB.1.5 RBD pseudovirus libraries.  
b, Correlation between effects of mutations on ACE2 binding measured using 
XBB.1.5 RBD pseudovirus library with monomeric and dimeric ACE2. Heatmaps 
with the XBB.1.5 RBD pseudovirus measurements made using monomeric and 
dimeric ACE2 are at https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_RBD_
DMS/htmls/monomeric_ACE2_mut_effect.html and https://dms-vep.github.
io/SARS-CoV-2_XBB.1.5_RBD_DMS/htmls/dimeric_ACE2_mut_effect.html, 

respectively c, Correlation between effects of mutations on ACE2 binding and 
spike-mediated cell entry for different libraries. d, ACE2 binding heat map 
showing key non-RBD sites that have mutated in the past major SARS-CoV-2 
variants. Specific variant mutations are highlighted in red outline. Table on  
the right indicates variants in which these mutations occurred. See https://
dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/monomeric_ACE2_
mut_effect.html for an interactive plot showing ACE2 binding for all mutations 
measured in spike is at.

https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_RBD_DMS/htmls/monomeric_ACE2_mut_effect.html
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_RBD_DMS/htmls/monomeric_ACE2_mut_effect.html
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_RBD_DMS/htmls/dimeric_ACE2_mut_effect.html
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_RBD_DMS/htmls/dimeric_ACE2_mut_effect.html
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/monomeric_ACE2_mut_effect.html
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/monomeric_ACE2_mut_effect.html
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/monomeric_ACE2_mut_effect.html


Extended Data Fig. 3 | Effects of NTD and RBD mutations on full-spike ACE2 
binding. Mutations that enhance ACE2 binding are shaded blue, mutations 
that decrease affinity are shaded orange, mutations that are too deleterious  
for cell entry to be measured in the binding assay are dark gray, and light gray 
indicates mutations not present in our libraries. Interactive heatmaps showing 
mutational effects on ACE2 binding for the full XBB.1.5 and BA.2 spikes are at 

https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/
monomeric_ACE2_mut_effect.html and https://dms-vep.org/SARS-CoV-2_
Omicron_BA.2_spike_ACE2_binding/htmls/monomeric_ACE2_mut_effect.
html. Note that a few sites are missing in the static heatmap in this figure due to 
lack of coverage or deletions in the XBB.1.5 spike; see the interactive heatmaps 
for per-site numbering.

https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/monomeric_ACE2_mut_effect.html
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/monomeric_ACE2_mut_effect.html
https://dms-vep.org/SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding/htmls/monomeric_ACE2_mut_effect.html
https://dms-vep.org/SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding/htmls/monomeric_ACE2_mut_effect.html
https://dms-vep.org/SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding/htmls/monomeric_ACE2_mut_effect.html
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Extended Data Fig. 4 | Mass photometry measurements for S1 and S2 
occupancy. a, Illustration of Gaussian components for no (S0xACE2), one (S1xACE2), 
two (S2xACE2), or three (S3xACE2) ACE2-bound spikes. S1xRBD occupancy is the 
fraction of spikes bound by one ACE2 molecule and S2xRBD occupancy is the 
fraction of spikes bound by two ACE2 molecules. b, Top row - S1xRBD occupancy 

measured using mass photometry for different BA.2 spike mutants. Bottom 
row - S2xRBD occupancy for different BA.2 spike mutants. c, Top row - S1xRBD 
occupancy for different XBB.1.5 spike mutants. Bottom row - S2xRBD occupancy 
for different XBB.1.5 spike mutants. Error bars in plots b-c indicate standard 
error between two biological replicates.



Extended Data Fig. 5 | Correlation among serum escape mapping 
experiments. a, Correlation between mutation escape scores for experiments 
using the full-spike XBB.1.5 libraries performed on 293 T cells expressing high 
or medium amounts of ACE2 for four sera. Note that the medium cells were 
used for all other figures shown in this paper. b, Correlation between mutation 
escape scores for mutations in the XBB.1.5 full spike and RBD-only libraries. See 

https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/compare_
high_medium_ace2_escape.html and https://dms-vep.github.io/SARS-CoV-2_
XBB.1.5_spike_DMS/htmls/compare_spike_rbd_escape.html for interactive 
versions of these scatter plots that also show line plots of per-site escape values 
for each serum.

https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/compare_high_medium_ace2_escape.html
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/compare_high_medium_ace2_escape.html
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/compare_spike_rbd_escape.html
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/compare_spike_rbd_escape.html
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Extended Data Fig. 6 | Escape at key sites for each serum. Logoplots showing 
XBB.1.5 spike escape at 16 highest escape sites for each of the 10 sera measured. 
Letter heights indicate the escape caused by mutation to that amino acid. 

Letters are colored light yellow to dark brown depending on mutation effect on 
ACE2 binding. Left: all mutations measured. Right: mutations accessible with a 
single-nucleotide substitution.



Extended Data Fig. 7 | Mutations in XBB.1.5 spike that increase serum 
neutralization. Escape at each site in the XBB.1.5 spike averaged across the 10 
sera from individuals with prior XBB* infections, showing negative as well as 
positive values (Fig. 4 only shows positive values). Sites with negative escape in 
this plot are ones where many mutations make spike more sensitive to 

neutralization. Interactive plots with site and mutation-level escape are at 
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/summary_
overlaid.html (set ‘floor escape at zero’ at the bottom of the chart to false to 
show negative escape).

https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/summary_overlaid.html
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/summary_overlaid.html
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Only antibodies that bind RBD in the up 
conformation are escaped by mutations outside the structural epitope. 
This figure shows previously generated and published deep mutational 
scanning escape maps for three monoclonal antibodies, two of which bind to 
RBD only in the up conformation (REGN10933 and SC27) and one of which 
binds to the RBD in both the up and down conformation (LY-CoV1404). All 
antibodies are escaped by mutations in their direct structural epitope, but only 
the antibodies that bind only the up conformation are escaped by ACE2-distal 
mutations outside their epitope that affect RBD up/down conformation.  
a, REGN10933 escape profile mapped using a Delta full spike deep mutational 

scanning library4. REGN10933 only binds RBD in the up position72,73. Line plot 
shows mean escape at each position in Delta spike with sites that modulate RBD 
movement highlighted in red. Heatmap shows mutation escape scores for sites 
highlighted in red on the line plot. Surface representation of RBD is coloured by 
site mean escape score with sites showing escape in the RBD outside the main 
antibody labeled (PDB ID: 6XDG). b, SC27 antibody escape profile mapped 
using the XBB.1.5 saturated RBD deep mutational scanning library74. SC27 only 
binds RBD in the up conformation. (PDB ID: 7MMO). c, LY-CoV1404 escape 
profile mapped using the BA.1 full spike deep mutational scanning library4.  
LY-CoV1404 binds RBD in both up and down conformations75. (PDB ID: 7MMO).

https://doi.org/10.2210/pdb6XDG/pdb
https://doi.org/10.2210/pdb7MMO/pdb
https://doi.org/10.2210/pdb7MMO/pdb
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Extended Data Fig. 9 | Sites with highest inverse correlation between ACE2 
binding and serum escape. a, Correlation between ACE2 binding and serum 
escape for sites in XBB.1.5 spike. Only sites with at least 7 mutations measured 
and Pearson r < 0.82 are shown. b, Most sites with strongly negative correlations 
between mutational effects on ACE2 binding and escape are at positions that 
could plausibly impact the RBD conformation in the context of the full spike, 

since they tend to be at the interface of the RBD and other spike domains. Left: 
all sites from a shown on spike structure as spheres. RBD is colored in light pink, 
NTD light blue, SD1 green and the S2 subunit in yellow. Spheres are shown on 
only one chain for each domain for clarity (PDB ID: 8IOU). Right: RBD sites from 
a shown on RBD in up position engaged with ACE2. RBD is colored in light pink 
and ACE2 is gray.

https://doi.org/10.2210/pdb8IOU/pdb


Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Correlations in absolute clade growth with absolute 
clade phenotypes. a, Phylogenetic tree of XBB-descended Pango clades, 
colored by their relative growth rates. The tree shows only clades with at least 
400 sequences and at least one new spike mutation, and their ancestors. 
Ancestor clades with insufficient sequences for growth rate estimates are in 
white. b, The same phylogeny but with branches colored by the change in 
growth rate between parent-descendant clade pairs. c, Correlation between 
clade growth estimates made using the Murrell lab multinomial logistic 
regression model (see methods) or a hierarchical multinomial logistic 
regression implemented by the Bedford lab68 (see https://github.com/
nextstrain/forecasts-ncov/). Both sets of estimates are for clades designated 
after Jan-1-2023 and use the data available as of Oct-2-2023. The estimates are 
highly correlated, and everywhere else in this paper we report analyses using 
the Murrell lab estimates. d, Number of spike amino-acid mutations relative to 
the early Wuhan-Hu-1 virus in all SARS-CoV-2 Pango clades versus the clade 
designation dates. XBB-descended clades are in orange. As can be seen from 
this plot, newer clades tend to have more spike mutations. e, Because newer 
clades tend to have both more mutations and better growth, clade growth  
rate is trivially correlated with a clade’s relative distance (number of spike 
mutations) from Wuhan-Hu-1. However, this correlation is not informative as it 
is already known that new clades tend to have more mutations. f, If we instead 
correlate the change in growth rate between parent-descendant clade pairs 

separated by at least one spike mutation (Fig. 6b) with the change in spike 
mutational distance to Wuhan-Hu-1 there is no correlation, since this approach 
removes the co-variation with total mutation count. Therefore, simple 
mutation counting is not informative for predicting changes in clade growth.  
g, Correlations for the phenotypes measured by the full spike deep mutational 
scanning in the current paper; h, the phenotypes measured in yeast display 
RBD deep mutational scanning; i, predicted by the EVEscape method. These 
plots differ from Fig. 6a and Extended Data Fig. 11 in that they show the 
correlations in absolute clade growth with the absolute clade phenotypes, 
rather than comparing the changes in both for each parent-descendant clade 
pair. Absolute clade phenotypes are computed as the sum of mutation effects. 
The P-values above the plots is a one sided test that computes the fraction of 
times the correlation is greater than that for the actual data after randomizing 
the phenotypic effects among mutations. Note that the correlations are not 
reflective of the P-values (there can be high correlations but non-significant 
P-values) for the reasons noted in the main text and in e—phylogenetic 
correlations, and the fact that new clades have both more mutations and higher 
growth so that any “phenotype” that amounts to counting mutations gives a 
correlation in these plots. For this reason, comparing changes in clade growth 
to changes in spike phenotypes as done in Fig. 6a and Extended Data Fig. 11 is 
the correct approach to test whether a method can actually predict which new 
clades will be successful.

https://github.com/nextstrain/forecasts-ncov/
https://github.com/nextstrain/forecasts-ncov/


Extended Data Fig. 11 | See next page for caption.
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Extended Data Fig. 11 | Correlations of changes in growth with various 
other properties of spike for XBB descended clades. This figure shows the 
change in growth rate between parent-descendant clade pairs versus the 
change in various spike phenotypes, rather than showing the absolute clade 
growth and absolute spike phenotypes as in Extended Data Fig. 10. Comparing 
the changes removes phylogenetic correlations as discussed in the main text. 
a, Correlation between the changes in growth rate for parent-descendant clade 
pairs versus the change in each spike phenotype measured in the XBB.1.5 full-
spike deep mutational scanning described in the current paper (multiple 
mutations are assumed to have additive effects). These panels are the same as 
those shown in Fig. 6a, and are re-printed here to enable easier comparison to 
other panels in this figure. b, Correlations of changes in clade growth with 
changes in site-level antibody escape, ACE2 affinity, and RBD expression 

measured for RBD mutations in yeast-display deep mutational scanning.  
c, Correlation of changes in the EVEscape score with changes in clade growth. 
d, Ordinary least-squares regression of changes in the yeast-display RBD deep 
mutational scanning phenotypes versus changes in XBB-descendant clade 
growth. The small text indicates the unique variance explained by each variable 
as well as the coefficients in the regression. e, Ordinary least squares multiple 
linear regression of changes in XBB-descendant clade growth rate versus all 
three measured spike phenotypes using the XBB.1.5 full spike deep mutational 
scanning. This panel is the same as Fig. 6b, and is re-printed here to enable 
easier comparison to other panels in this figure. All panels are labeled with the 
Pearson correlation (r) and a P-value which is a one-sided test determined by 
computing how many randomizations of the mutational data yield correlations 
as large as the actual one.



Extended Data Fig. 12 | Correlations of changes in growth with various 
other properties of spike for BA.2, BA.5, and XBB descended clades. This 
figure is the same as Extended Data Fig. 11 except that it includes clades 

descended from any of BA.2, BA.5, and XBB whereas Extended Data Fig. 11 
includes just clades descended from XBB.
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