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Semantic encoding during language 
comprehension at single-cell resolution

Mohsen Jamali1,7, Benjamin Grannan1,7, Jing Cai1, Arjun R. Khanna1, William Muñoz1, 
Irene Caprara1, Angelique C. Paulk2,3, Sydney S. Cash2,3, Evelina Fedorenko4 & Ziv M. Williams1,5,6 ✉

From sequences of speech sounds1,2 or letters3, humans can extract rich and nuanced 
meaning through language. This capacity is essential for human communication.  
Yet, despite a growing understanding of the brain areas that support linguistic and 
semantic processing4–12, the derivation of linguistic meaning in neural tissue at the 
cellular level and over the timescale of action potentials remains largely unknown. 
Here we recorded from single cells in the left language-dominant prefrontal cortex as 
participants listened to semantically diverse sentences and naturalistic stories. By 
tracking their activities during natural speech processing, we discover a fine-scale 
cortical representation of semantic information by individual neurons. These 
neurons responded selectively to specific word meanings and reliably distinguished 
words from nonwords. Moreover, rather than responding to the words as fixed 
memory representations, their activities were highly dynamic, reflecting the words’ 
meanings based on their specific sentence contexts and independent of their 
phonetic form. Collectively, we show how these cell ensembles accurately predicted 
the broad semantic categories of the words as they were heard in real time during 
speech and how they tracked the sentences in which they appeared. We also show how 
they encoded the hierarchical structure of these meaning representations and how 
these representations mapped onto the cell population. Together, these findings 
reveal a finely detailed cortical organization of semantic representations at the 
neuron scale in humans and begin to illuminate the cellular-level processing of 
meaning during language comprehension.

Humans are capable of communicating exceptionally detailed mean-
ings through language. How neurons in the human brain represent 
linguistic meaning and what their functional organization may be, how-
ever, remain largely unknown. Initial perceptual processing of linguistic 
input is carried out by regions in the auditory cortex for speech1,2 or 
visual regions for reading3. From there, information flows to the amodal 
language-selective9 left-lateralized network of frontal and temporal 
regions that map word forms to word meanings and assemble them into 
phrase- and sentence-level representations4,5,13. Processing meanings 
extracted from language also engages widespread areas outside this 
language-selective network, with diverging evidence suggesting that 
semantic processing may be broadly distributed across the cortex11 
or that it may alternatively be concentrated in a few semantic ‘hubs’ 
that process meaning from language as well as other modalities7,12. 
How linguistic and semantic information is represented at the basic 
computational level of individual neurons during natural language 
comprehension in humans, however, remains undefined.

 Despite a growing understanding of semantic processing from imag-
ing studies, little is known about how neurons in humans process or 
represent word meanings during language comprehension. Further, 

although speech processing is strongly context dependent14, how con-
textual information influences meaning representations and how these 
changes may be instantiated within sentences at a cellular scale remain 
largely unknown. Finally, although our semantic knowledge is highly 
structured15–17, little is understood about how cells or cell ensembles 
represent the semantic relationships among words or word classes dur-
ing speech processing and what their functional organization may be.

Single-neuronal recordings have the potential to begin unravelling 
some of the real-time dynamics of word and sentence comprehension at 
a combined spatial and temporal resolution that has largely been inac-
cessible through traditional human neuroscience approaches18–20. Here 
we used a rare opportunity to record from single cells in humans18,19,21 
and begin investigating the moment-by-moment dynamics of natural 
language comprehension at the cellular scale.

Single-neuron recordings during speech processing
Single-neuronal recordings were obtained from the prefrontal 
cortex of the language-dominant hemisphere in a region centred 
along the left posterior middle frontal gyrus (Fig. 1a and Methods  
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(‘Acute intraoperative single-neuronal recordings’) and Extended 
Data Fig. 1a). This region contains portions of the language-selective 
network together with several other high-level networks22–25, and 
has been shown to reliably represent semantic information during 
language comprehension11,26. Here recordings were performed in 
participants undergoing planned intraoperative neurophysiology. 
Moreover, all participants were awake and therefore capable of per-
forming language-based tasks, providing the unique opportunity to 
study the action potential dynamics of individual neurons during 
comprehension in humans.

Altogether, we recorded from 133 well-isolated single units (Fig. 1a, 
right, and Extended Data Fig. 1a,b) in 10 participants (18 sessions; 8 
male and 2 female individuals, age range 33–79; Extended Data Table 1) 
using custom-adapted tungsten microelectrode arrays27–29 (microar-
ray; Methods (‘Single-unit isolation’)). To further confirm the consist-
ency and robustness of neuronal responses, an additional 154 units in 
3 participants (3 sessions; 2 male individuals and 1 female individual; 
age range 66–70; Extended Data Table 1) were also recorded using 
silicon Neuropixels arrays30,31 (Methods (‘Single-unit isolation’) and 
Extended Data Fig. 1c,d) that allowed for higher-throughput record-
ings per participant (287 units across 13 participants in total; 133 units 
from the microarray recordings and 154 units from the Neuropixels 
recordings). All participants were right-hand-dominant native English 
speakers and were confirmed to have normal language function by 
preoperative testing.

During recordings, the participants listened to semantically diverse 
naturalistic sentences that were played to them in a random order. This 
amounted to an average of 459 ± 24 unique words or 1,052 ± 106 word 

tokens (± s.e.m) across 131 ± 13 sentences per participant (Methods 
(‘Linguistic materials’) and Extended Data Table 1). Additional controls 
included the presentations of unstructured word lists, nonwords and 
naturalistic story narratives (Extended Data Table 1). Action potential 
activities were aligned to each word or nonword using custom-made 
software at millisecond resolution and analysed off-line (Fig. 1b). All 
primary findings describe results for the tungsten microarray record-
ings unless stated otherwise for the Neuropixels recordings (Extended 
Data Fig. 1).

Selectivity of neurons to specific word meanings
A long-standing observation32 that lies at the core of all distributional 
models of meaning33 is that words that share similar meanings tend to 
occur in similar contexts. Data-driven word embedding approaches 
that capture these relationships through vectoral representations11,34–39 
have been found to estimate word meanings quite well and to accu-
rately capture human behavioural semantic judgements40 and neural 
responses to meaning through brain-imaging studies11,26,37,39,41.

To first examine whether and to what degree the activities of neurons 
within the population reflected the words’ meanings during speech 
processing, we used an embedding approach that replaced each unique 
word heard by the participants with pretrained 300-dimensional 
embedding vectors extracted from a large English corpus (Meth-
ods (‘Word embedding and clustering procedures’))35,37,39,42. Thus, 
for instance, the words ‘clouds’ and ‘rain’, which are closely related 
in meaning, would share a smaller vectoral cosine distance in this 
embedding space when compared to ‘rain’ and ‘dad’ (Fig. 1c, left). 
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Fig. 1 | Semantic selectivity by single neurons during naturalistic speech 
processing. a, Left: single-neuron recordings were obtained from the left 
language-dominant prefrontal cortex. Recording locations for the microarray 
(red) and Neuropixels (beige) recordings (spm12; Extended Data Table 1) as well 
as an approximation of language-selective network areas (brown) are indicated. 
Right: the action potentials of putative neurons. b, Action potentials (black 
lines) and instantaneous firing rate (red trace) of each neuron were time-aligned 
to the onset of each word. Freq., frequency. c, Word embedding approach for 
identifying semantic domains. Here each word is represented as a 300- 
dimensional (dim) vector. d, Silhouette criterion analysis (upper) and purity 
measures (lower) characterized the separability and quality of the semantic 
domains (Extended Data Fig. 2a). permut., permutations. e, Peri-stimulus spike 
histograms (mean ± standard error of the mean (s.e.m.)) and rasters for two 
representative neurons. The horizontal green bars mark the window of analysis 
(100–500 ms from onset). sp, spikes. f, Left: confusion matrix illustrating the 

distribution of cells that exhibited selective responses to one or more semantic 
domains (P < 0.05, two-tailed rank-sum test, false discovery rate-adjusted). 
Spatiotemp., spatiotemporal.; sig. significant. Top right: numbers of cells that 
exhibited semantic selectivity. g, Left: SI of each neuron (n = 19) when compared 
across semantic domains. The SIs of two neurons are colour-coded to correspond 
to those shown in Fig. 1e. Upper right: mean SI across neurons when randomly 
selecting words from 60% of the sentences (mean SI = 0.33, CI = 0.32–0.33; 
across 100 iterations). Bottom right: probabilities of neurons exhibiting 
significant selectivity to their non-preferred semantic domains when randomly 
selecting words from 60% of the sentences (1.4 ± 0.5% mean ± s.e.m. different 
(diff.) domain). h, Relationship between increased meaning specificity (by 
decreasing the number of words on the basis of the words’ distance from  
each domain’s centroid) and response selectivity. The lines with error bars in 
d,g,h represent mean with 95% confidence limits.
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Next, to determine how the words optimally group into semantic 
domains, we used a spherical clustering and silhouette criterion 
analysis34,37,43,44 to reveal the following nine putative domains: actions 
(for example, ‘walked’, ‘ran’ and ‘threw’), states (for example, ‘happy’, 
‘hurt’ and ‘sad’), objects (for example, ‘hat’, ‘broom’ and ‘lampshade’), 
food (for example, ‘salad’, ‘carrots’ and ‘cake’), animals (for example, 
‘bunny’, ‘lizard’ and ‘horse’), nature (for example, ‘rain’, ‘clouds’ and 
‘sun’), people and family (for example, ‘son’, ‘sister’ and ‘dad’), names 
(for example, ‘george’, ‘kevin’ and ‘hannah’) and spatiotemporal rela-
tionships (for example, ‘up’, ‘down’ and ‘behind’; Fig. 1c right and 
Extended Data Tables 2 and 3). Purity and d′ measures confirmed the 
quality and separability of these word clusters (Fig. 1d and Extended  
Data Fig. 2a).

We observed that many of the neurons responded selectively to 
specific word meanings. The selectivity or ‘tuning’ of neurons reflects 
the degree to which they respond to words denoting particular mean-
ings (that is, words that belong to specific semantic domains). Thus, 
a selectivity index (SI) of 1.0 would indicate that a cell responded to 
words within only one semantic domain and no other, whereas an SI 
of 0 would indicate no selectivity (that is, similar responses to words 
across all domains; Methods (‘Evaluating the responses of neurons to 
semantic domains’)). Altogether, 14% (n = 19 of 133; microarray) of the 
neurons responded selectively to specific semantic domains indicat-
ing that their firing rates distinguished between words on the basis of 
their meanings (two-tailed rank-sum test comparing activity for each 
domain to that of all other domains; false discovery rate-corrected 
for the 9 domains, P < 0.05). Thus, for example, a neuron may respond 
selectively to ‘food’ items whereas another may respond selectively to 
‘objects’ (Fig. 1e). The domain that elicited the largest change in activity  
for the largest number of cells was that of ‘actions’, and the domain 
that elicited changes for the fewest cells was ‘spatiotemporal relations’ 
(Fig. 1f). The mean SI across all selective neurons was 0.32 (n = 19; 95% 
confidence interval (CI) = 0.26–0.38; Fig. 1g, left) and progressively 
increased as the semantic domains became more specific in meaning 
(that is, when removing words that lay farther away from the domain 
centroid; analysis of variance, F(3,62) = 8.66, P < 0.001; Fig. 1h and 
Methods (‘Quantifying the specificity of neuronal response’)). Find-
ings from the Neuropixels recordings were similar, with 19% (n = 29 of 
154; Neuropixels) of the neurons exhibiting semantic selectivity (mean 
SI = 0.42, 95% CI = 0.36–0.48; Extended Data Fig. 3a,b), in aggregate, 
providing a total of 48 of 287 semantically selective neurons across 
the 13 participants. Many of the neurons across the participants and 
recording techniques therefore exhibited semantic selectivity during 
language comprehension.

Most of the neurons that exhibited semantic selectivity responded 
to only one semantic domain and no other. Of the neurons that dem-
onstrated selectivity, 84% (n = 16; microarray) responded to one of 
the nine domains, with only 16% (n = 3) showing response selectivity 
to two domains (two-sided rank-sum test, P < 0.05; Fig. 1f, top right). 
The response selectivity of these neurons was also robust to analytic 
choice, demonstrating a similarly high degree of selectivity when 
randomly sub-selecting words (SI = 0.33, CI = 0.32–0.33, rank-sum 
test when compared to the original SI values, z value = 0.44, P = 0.66, 
Fig. 1g, top right, and Methods (‘Evaluating the responses of neurons 
to semantic domains’)) or when selecting words that intuitively fit 
within their respective domains (SI = 0.30; rank-sum test compared 
to the original SI values, z value = 0.60, P = 0.55; Extended Data Fig. 2b 
and Extended Data Table 2). Moreover, they exhibited a similarly 
high degree of selectivity when selecting nonadjacent content words 
(SI = 0.34, CI = 0.26–0.42; Methods), further confirming the consist-
ency of neuronal response.

Finally, given these findings, we tested whether the neurons dis-
tinguished real words from nonwords (such as ‘blicket’ or ‘florp’, 
which sound like words but are meaningless), as might be expected 
of cells that represent meaning. Here we found that many neurons 

distinguished words from nonwords (27 of 48 neurons; microarray, in 
7 participants for whom this control was carried out; two-tailed t-test, 
P < 0.05; Methods (‘Linguistic materials; Nonwords’)), meaning that 
they exhibited a consistent difference in their activities. Moreover, 
the ability to differentiate words from nonwords was not necessarily 
restricted to semantically selective neurons (Extended Data Fig. 3f, 
Neuropixels, and Extended Data Fig. 4, microarray), together reveal-
ing a broad mixture of response selectivity to word meanings within 
the cell population.

Generalizable and robust meaning representations
Meaning representations by the semantically selective neurons were 
robust. Training multi-class decoders on the combined response 
patterns of the semantically selective cells, we found that these cell 
ensembles could reliably predict the semantic domains of randomly 
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Fig. 2 | Decoding word meanings during language comprehension. a, Left: 
projected probabilities of correctly predicting the semantic domain to  
which individual words belonged over a representative sentence. Right: the 
cumulative decoding performance (±s.d.) of all semantically selective neurons 
during presentation of sentences (blue) versus chance (orange); see also 
Extended Data Fig. 4b. b, Decoding performances (±s.d.) across two 
independent embedding models (Word2Vec and GloVe). c, Left: the absolute 
difference in neuronal responses (n = 115) for homophone pairs that sounded 
the same but differed in meaning (red) compared to that of non-homophone 
pairs that sounded different but shared similar meanings (blue; two-sided 
permutation test). Right: scatter plot displaying each neuron’s absolute 
difference in activity for homophone versus non-homophone pairs (P < 0.0001, 
one-sided t-test comparing linear fit to identity line). d, Peri-stimulus spike 
histogram (mean ± s.e.m.) and raster from a representative neuron when 
hearing words within sentences (top) compared to words within random word 
lists (bottom). The horizontal green bars mark the window of analysis (100–
500 ms from onset). e, Left: SI distributions for neurons during word-list and 
sentence presentations together with the number of neurons that responded 
selectivity to one or more semantic domains (inset). Right: the SI for neurons 
(mean with 95% confidence limit, n = 9; excluding zero firing rate neurons) 
during word-list presentation. These neurons did not exhibit changes in mean 
firing rates when comparing all sentences versus word lists independently of 
semantic domains (rank-sum test, P = 0.16).
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selected subsets of words not used for training (31 ± 7% s.d.; chance: 
11%, permutation test, P < 0.01; Fig. 2a and Methods (‘Model decoding 
performance and the robustness of neuronal response’)). Moreover, 
similar decoding performances were observed when using a differ-
ent embedding model (GloVe45; 25 ± 5%; permutation test, P < 0.05; 
Fig. 2b) or when selecting different recorded time points within the 
sentences (that is, the first half versus the second half of the sen-
tences; Extended Data Fig. 5a). Similar decoding performances were 
also observed when randomly subsampling neurons from across the 
population (Extended Data Fig. 5c–e), or when examining multi-unit 
activities for which no spike sorting was carried out (permutation test, 
P < 0.05; Methods (‘Multi-unit isolation’) and Extended Data Fig. 5b). 
In tandem, these analyses therefore suggested that the words’ mean-
ings were robustly represented within the population’s response  
patterns.

We also examined whether the activities of the neurons could be gen-
eralized to an entirely new set of naturalistic narratives. Here, for three 
of the participants, we additionally introduced short story excerpts that 
were thematically and stylistically different from the sentences and 
that contained new words (Extended Data Table 1; 70 unique words of 
which 28 were shared with the sentences). We then used neuronal activ-
ity recorded during the presentation of sentences to decode semantic 
domains for words heard during these stories (Methods (‘Linguistic 
materials; Story narratives’)). We find that, even when using this limited 
subset of semantically selective neurons (n = 9; microarray), models 
that were originally trained on activity recorded during the presenta-
tion of sentences could predict the semantic domains of words heard 
during the narratives with significant accuracy (28 ± 5%; permutation 
test, P < 0.05; Extended Data Fig. 6).

Finally, to confirm the consistency of these semantic representations, 
we evaluated neuronal responses across the different participants and 
recording techniques. Here we found similar results across individuals 
(permutation test, P < 0.01) and clinical conditions (χ2 = 2.33, P = 0.31; 
Methods (‘Confirming the robustness of neuronal response across par-
ticipants’) and Extended Data Fig. 2c–f), indicating that the results were 
not driven by any single participant or a small subset of participants. 
We also evaluated the consistency of semantic representations in the 
three participants who underwent Neuropixels recordings and found 
that the activities of semantically selective neurons in these participants 
could be used to reliably predict the semantic domains of words not 
used for model fitting (29 ± 7%; permutation test, P < 0.01; Extended 
Data Fig. 3c) and that they were comparable across embedding models 
(GloVe; 30 ± 6%). Collectively, decoding performance across the 13 par-
ticipants (48 of 287 semantically selective neurons in total) was 36 ± 7% 
and significantly higher than expected from chance (permutation test, 
P < 0.01; Methods). These findings therefore together suggested that 
these meaning representations by semantically selective neurons were 
both generalizable and robust.

Sentence context dependence of meaning encoding
An additional core property of language is our ability to interpret 
words on the basis of the sentence contexts in which they appear46,47. 
For example, hearing the sequences of words “He picked the rose…” 
versus “He finally rose…” allows us to correctly interpret the meaning 
of the ambiguous word ‘rose’ as a noun or a verb. It also allows us to 
differentiate homophones—words that sound the same but differ in 
meaning (such as ‘sun’ and ‘son’)—on the basis of their contexts.

Therefore, to first evaluate the degree to which the meaning repre-
sentations by neurons are sentence context dependent, seven of the 
participants were presented with a word-list control that contains the 
same words as those heard in the sentences but were presented in ran-
dom order (for example, “to pirate with in bike took is one”; Extended 
Data Table 1), thus largely removing the influence of context on lexi-
cal (word-level) processing. Here we find that, the SI of the neurons 
that exhibited semantic selectivity in the sentence condition dropped 
from a mean of 0.34 (n = 9 cells; microarray, CI = 0.25–0.43) to 0.19 
(CI = 0.07–0.31) during the word-list presentation (signed-rank test, 
z(17) = 40, P = 0.02; Fig. 2d,e), in spite of similar mean population firing 
rate48 (two-sided rank-sum test, z value = 0.10, P = 0.16). The results were 
similar for the Neuropixels recordings, for the SI dropped from 0.39 
(CI = 0.33–0.45) during the presentation of sentences to 0.29 (CI = 0.19–
0.39) during word-list presentation (Extended Data Fig. 3e; signed-rank 
test, z(41) = 168, P = 0.035). These findings therefore suggested that the 
response selectivity of these neurons was strongly influenced by the 
word’s context and that these changes were independent of potential 
variations in attentional engagement, as evidenced by similar overall 
firing rates between the sentences and word lists48.

Second, to test whether the neurons’ activity reflected the words’ 
meanings independently of their word-form similarity, we used homo-
phone pairs that are phonetically identical but differ in meaning (for 
example, ‘sun’ versus ‘son’; Extended Data Table 1). Here we find that 
neurons across the population exhibited a larger difference in activity 
for words that sounded the same but had different meanings (that is, 
homophones) compared to words that sounded different but belonged 
to the same semantic domain (permutation test, P < 0.0001; n = 115 
cells; microarray, for which data were available; Figs. 2c and 3a and 
Methods (‘Evaluating the context dependency of neuronal response 
using homophone pairs’)). These neurons therefore encoded the words’ 
meanings independently of their sound-level similarity.

Last, we quantified the degree to which the words’ meanings could be 
predicted from the sentences in which they appeared. Here we reasoned 
that words that were more likely to occur on the basis of their preceding 
word sequence and context should be easier to decode. Using a long 
short-term memory model to quantify each word’s surprisal based on 
its sentence context (Methods (‘Evaluating the context dependency of 
neuronal response using surprisal analysis’)), we find that decoding 
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accuracies for words that were more predictable were significantly 
higher than for words that were less predictable (comparing top versus 
bottom deciles; 26 ± 14% versus 10 ± 9% respectively, rank-sum test, 
z value = 26, P < 0.0001; Fig. 3b). Similar findings were also obtained 
from the Neuropixels recordings (rank-sum test, z value = 25, P < 0.001; 
Extended Data Fig. 3d), indicating that information about the sen-
tences was being tracked and that it influenced neuronal response. 
These findings therefore together suggested that the activities of these 
neurons were dynamic, reflecting processing of the words’ meanings 
based on their specific sentence contexts and independently of their 
phonetic form.

Organization of semantic representations
The above observations suggested that neurons within the population 
encoded information about the words’ meanings during comprehen-
sion. How they may represent the higher-order semantic relationships 
among words, however, remained unclear. Therefore, to further probe 
the organization of neuronal representations of meaning at the level of 
the cell population, we regressed the responses of the neurons (n = 133) 
onto the embedding vectors of all words in the study vocabulary (that is, 
a matrix of n words × 300 embedding dimensions), resulting in a set of 
model weights for the neurons (Fig. 4a, left, and Methods (‘Determining 
the relation between the word embedding space and neural response’)). 
These model weights were then concatenated (dimension = 133 × 300) 
to define a putative neuronal–semantic space. Each model weight can 
therefore be interpreted as the contribution of a particular dimension 
in the embedding space to the activity of a given neuron, such that the 
resulting transformation matrix reflects the semantic relationships 
among words as represented by the population11,34,37.

Applying a principal component (PC) analysis to these weights, we 
find that the first five PCs accounted for 46% of the variance in neu-
ral population activity (Fig. 4a right and Extended Data Fig. 7a) and 
81% of the variance for the semantically selective neurons (Extended 
Data Fig. 3g for the Neuropixels recordings). Moreover, when pro-
jecting words back into this PC space, we find that the vectoral dis-
tances between neuronal projections significantly correlated with the 
dimensionally reduced word distances in the original word embed-
dings (258,121 possible word pairings; r = 0.04, permutation test, 
P < 0.0001; Extended Data Fig. 7b). Significant correlations between 
word similarity and neuronal activity were also observed when using 
a non-embedding approach based on the ‘synset’ similarity metric 
(WordNet; r = −0.76, P = 0.001; Extended Data Fig. 7d) as well as when 
comparing the vectoral distances in the word embeddings to the raw 
firing activities of the neurons (r = 0.17; permutation test, one-sided, 
P = 0.02, Fig. 4b and Extended Data Fig. 7c for microarray recordings 
and r = 0.21; Pearson’s correlation, P < 0.001; Extended Data Fig. 3h 
for Neuropixels recordings). Our findings therefore suggested that 
these cell populations reliably captured the semantic relationships 
among words.

Finally, to evaluate whether and to what degree neuronal activity 
reflected the hierarchical semantic relationship between words, we 
compared differences in firing activity for each word pair to the cophe-
netic distances between those words49–51 in the 300-dimension word 
embedding space (Methods (‘Estimating the hierarchical structure and 
relation between word projections’)). Here the cophenetic distance 
between a pair of words reflects the height of the dendrogram where 
the two branches that include these two words merge into a single 
branch. Using an agglomerative hierarchical clustering procedure, 
we find that the activities of the semantically selective neurons closely 
correlated with the cophenetic distances between words across the 
study vocabulary (r = 0.38, P = 0.004; Fig. 4c). Therefore, words that 
were connected by fewer links in the hierarchy and thus more likely to 
share semantic features (for example, ‘ducks’ and ‘eggs’)50,51 elicited 
smaller differences in activity than words that were connected by a 

larger number of links (for example, ‘eggs’ and ‘doorbell’; Fig. 5 and 
Methods (‘t-stochastic neighbour embedding procedure’)). These 
results therefore together suggested that these cell ensembles encoded 
richly detailed information about the hierarchical semantic relation-
ship between words.

Discussion
Neurons are the most basic computational units by which information is 
encoded in the brain. Yet, despite a growing understanding of the neural 
substrates of linguistic4–12 and semantic processing11,37,41, understand-
ing how individual neurons represent semantic information during 
comprehension in humans has largely remained out of reach. Here, 
using single-neuronal recordings during natural speech processing, 
we discover cells in the prefrontal cortex of the language-dominant 
hemisphere that responded selectively to particular semantic domains 
and that exhibited preferential responses to specific word meanings. 
More notably, the combined activity patterns of these neurons could 
be used to accurately decode the semantic domain to which the words 
belonged even when tested across entirely different linguistic materials 
(that is, story narratives), suggesting a process that could allow seman-
tic information to be reliably extracted during comprehension at the 
cellular scale. Lastly, to understand language, the meanings of words 
likely need to be robustly represented within the brain, entailing not 
only similar representations for words that share semantic features (for 
example, ‘mouse’ and ‘rat’) but also sufficiently distinct representations 
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for words that differ in meaning (for example, ‘mouse’ and ‘carrot’). 
Here we find a putative cellular process that could support such robust 
word meaning representations during language comprehension.

Collectively, these findings imply that focal cortical areas such as the 
one from which we recorded here may be potentially able to represent 
complex meanings largely in their entirety. Although we sampled cells 
from a relatively restricted prefrontal region of the language-dominant 
hemisphere, these cell populations were capable of decoding mean-
ings—at least at a relatively coarse level of semantic granularity—of 
a large set of diverse words and across independent sets of linguis-
tic materials. The responses of these cell ensembles also harboured 
detailed information about the hierarchical relationship between words 
across thousands of word pairs, suggesting a cellular mechanism that 
could allow semantic information to be rapidly mapped onto the popu-
lation’s response patterns, in real time during speech.

Another notable observation from these recordings is that the activi-
ties of the neurons were highly context dependent, reflecting the words’ 
meanings based on the specific sentences in which they were heard 
even when they were phonetically indistinguishable. Sentence context 
is essential to our ability to hone in on the precise meaning or aspects of 
meaning needed to infer complex ideas from linguistic utterances, and 
is proposed to play a key role in language comprehension46,47,52. Here 
we find that the neurons’ responses were highly dynamic, reflecting 

the meaning of the words within their respective contexts, even when 
the words were identical in form. Loss of sentence context or less pre-
dictive contexts, on the other hand, diminished the neurons’ ability 
to differentiate among semantic representations. Therefore, rather 
than simply responding to words as fixed stored memory representa-
tions, these neurons seemed to adaptively represent word meanings 
in a context-dependent manner during natural speech processing.

Taken together, these findings reveal a highly detailed representa-
tion of semantic information within prefrontal cortical populations, 
and a cellular process that could allow the meaning of words to be 
accurately decoded in real time during speech. As the present findings 
focus on auditory language processing, however, it is also interesting 
to speculate whether these semantic representations may be modality 
independent, generalizing to reading comprehension53,54, or even gen-
eralize to non-linguistic stimuli, such as pictures or videos or nonspeech 
sounds. Further, it remains to be discovered whether similar semantic 
representations would be observed across languages, including in 
bilingual speakers, and whether accessing word meanings in language 
comprehension and production would elicit similar responses (for 
example, whether the representations would be similar when partici-
pants understand the word ‘sun’ versus produce the word ‘sun’). It is 
also unknown whether similar semantic selectivity is present across 
other parts of the brain such as the temporal cortex, how finer-grained 
distinctions are represented, and how representations of specific words 
are composed into phrase- and sentence-level meanings.

Our study provides an initial framework for studying linguistic and 
semantic processing during comprehension at the level of individual 
neurons. It also highlights the potential benefit of using different 
recording techniques, linguistic materials and analytic techniques to 
evaluate the generalizability and robustness of neuronal responses. In 
particular, our study demonstrates that findings from the two record-
ing approaches (tungsten microarray recordings and Neuropixels 
recordings) were highly concordant and suggests a platform from 
which to begin carrying out similar comparisons (especially in light of 
the increasing emphasis on robustness and replicability in the field). 
Collectively, our findings provide evidence of single neurons that 
encode word meanings during comprehension and a process that could 
support our ability to derive meaning from speech —opening the door 
for addressing a multitude of further questions about human-unique 
communicative abilities.
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Methods

Study participants
All procedures and studies were carried out in accordance with the 
Massachusetts General Hospital Institutional Review Board and in 
strict adherence to Harvard Medical School guidelines. All partici-
pants included in the study were scheduled to undergo planned awake 
intraoperative neurophysiology and single-neuronal recordings for 
deep brain stimulation targeting. Consideration for surgery was made 
by a multidisciplinary team including neurologists, neurosurgeons 
and neuropsychologists18,19,55–57. The decision to carry out surgery was 
made independently of study candidacy or enrolment. Further, all 
microelectrode entry points and placements were based purely on 
planned clinical targeting and were made independently of any study 
consideration.

Once and only after a patient was consented and scheduled for sur-
gery, their candidacy for participation in the study was reviewed with 
respect to the following inclusion criteria: 18 years of age or older, 
right-hand dominant, capacity to provide informed consent for study 
participation and demonstration of English fluency. To evaluate for 
language comprehension and the capacity to participate in the study, 
the participants were given randomly sampled sentences and were then 
asked questions about them (for example, “Eva placed a secret message 
in a bottle” followed by “What was placed in the bottle?”). Participants 
not able to answer all questions on testing were excluded from consid-
eration. All participants gave informed consent to participate in the 
study and were free to withdraw at any point without consequence to 
clinical care. A total of 13 participants were enrolled (Extended Data 
Table 1). No participant blinding or randomization was used.

Neuronal recordings
Acute intraoperative single-neuronal recordings. Microelectrode 
recording were performed in participants undergoing planned deep 
brain stimulator placement19,58. During standard intraoperative record-
ings before deep brain stimulator placement, microelectrode arrays are 
used to record neuronal activity. Before clinical recordings and deep 
brain stimulator placement, recordings were transiently made from 
the cortical ribbon at the planned clinical placement site. These record-
ings were largely centred along the superior posterior middle frontal 
gyrus within the dorsal prefrontal cortex of the language-dominant 
hemisphere. Here each participant’s computed tomography scan was 
co-registered to their magnetic resonance imaging scan, and a segmen-
tation and normalization procedure was carried out to bring native 
brains into Montreal Neurological Institute space. Recording locations 
were then confirmed using SPM12 software and were visualized on a 
standard three-dimensional rendered brain (spm152). The Montreal  
Neurological Institute coordinates for recordings are provided in  
Extended Data Table 1, top.

We used two main approaches to perform single-neuronal recordings 
from the cortex18,19. Altogether, ten participants underwent recordings 
using tungsten microarrays (Neuroprobe, Alpha Omega Engineering) 
and three underwent recordings using linear silicon microelectrode 
arrays (Neuropixels, IMEC). For the tungsten microarray recordings, 
we incorporated a Food and Drug Administration-approved, biode-
gradable, fibrin sealant that was first placed temporarily between the 
cortical surface and the inner table of the skull (Tisseel, Baxter). Next, we 
incrementally advanced an array of up to five tungsten microelectrodes 
(500–1,500 kΩ; Alpha Omega Engineering) into the cortical ribbon at 
10–100 µm increments to identify and isolate individual units. Once 
putative units were identified, the microelectrodes were held in posi-
tion for a few minutes to confirm signal stability (we did not screen 
putative neurons for task responsiveness). Here neuronal signals were 
recorded using a Neuro Omega system (Alpha Omega Engineering) 
that sampled the neuronal data at 44 kHz. Neuronal signals were ampli-
fied, band-pass-filtered (300 Hz and 6 kHz) and stored off-line. Most 

individuals underwent two recording sessions. After neural recordings 
from the cortex were completed, subcortical neuronal recordings and 
deep brain stimulator placement proceeded as planned.

For the silicon microelectrode recordings, sterile Neuropixels 
probes31 (version 1.0-S, IMEC, ethylene oxide sterilized by BioSeal) 
were advanced into the cortical ribbon with a manipulator connected 
to a ROSA ONE Brain (Zimmer Biomet) robotic arm. The probes (width: 
70 µm, length: 10 mm, thickness: 100 µm) consisted of 960 contact sites 
(384 preselected recording channels) that were laid out in a chequer-
board pattern. A 3B2 IMEC headstage was connected via a multiplexed 
cable to a PXIe acquisition module card (IMEC), installed into a PXIe 
chassis (PXIe-1071 chassis, National Instruments). Neuropixels record-
ings were performed using OpenEphys (versions 0.5.3.1 and 0.6.0; 
https://open-ephys.org/) on a computer connected to the PXIe acquisi-
tion module recording the action potential band (band-pass-filtered 
from 0.3 to 10 kHz, sampled at 30 kHz) as well as the local field potential 
band (band-pass-filtered from 0.5 to 500 Hz, sampled at 2,500 Hz). 
Once putative units were identified, the Neuropixels probe was held in 
position briefly to confirm signal stability (we did not screen putative 
neurons for speech responsiveness). Additional description of this 
recording approach can be found in refs. 20,30,31. After completing 
single-neuronal recordings from the cortical ribbon, the Neuropixels 
probe was removed, and subcortical neuronal recordings and deep 
brain stimulator placement proceeded as planned.

Single-unit isolation. For the tungsten microarray recordings, putative 
units were identified and sorted off-line through a Plexon workstation. 
To allow for consistency across recording techniques (that is, with the 
Neuropixels recordings), a semi-automated valley-seeking approach 
was used to classify the action potential activities of putative neurons 
and only well-isolated single units were used. Here, the action potentials 
were sorted to allow for comparable isolation distances across record-
ing techniques59–63 and unit selection with previous approaches27–29,64,65, 
and to limit the inclusion of multi-unit activity (MUA). Candidate clus-
ters of putative neurons needed to clearly separate from channel noise, 
display a voltage waveform consistent with that of a cortical neuron, 
and have 99% or more of action potentials separated by an inter-spike 
interval of at least 1 ms (Extended Data Fig. 1b,d). Units with clear insta-
bility were removed and any extended periods (for example, greater 
than 20 sentences) of little to no spiking activity were excluded from 
the analysis. In total, 18 recording sessions were carried out, for an 
average of 5.4 units per session per multielectrode array (Extended 
Data Fig. 1a,b).

For the Neuropixels recordings, putative units were identified and 
sorted off-line using Kilosort and only well-isolated single units were 
used. We used Decentralized Registration of Electrophysiology Data 
(DREDge; https://github.com/evarol/DREDge) software and an inter-
polation approach (https://github.com/williamunoz/InterpolationAf-
terDREDge) to motion correct the signal using an automated protocol 
that tracked local field potential voltages using a decentralized cor-
relation technique that realigned the recording channels in relation 
to brain movements31,66. Following this, we interpolated the continu-
ous voltage data from the action potential band using the DREDge 
motion estimate to allow the activities of the recorded units to be stably 
tracked over time. Finally, putative neurons were identified from the 
motion-corrected interpolated signal using a semi-automated Kilosort 
spike sorting approach (version 1.0; https://github.com/cortex-lab/
KiloSort) followed by Phy for cluster curation (version 2.0a1; https://
github.com/cortex-lab/phy). Here, an n-trode approach was used to 
optimize the isolation of single units and limit the inclusion of MUA67,68. 
Units with clear instability were removed and any extended periods 
(for example, greater than 20 sentences) of little to no spiking activity 
were excluded from analysis. In total, 3 recording sessions were carried 
out, for an average of 51.3 units per session per multielectrode array 
(Extended Data Fig. 1c,d).

https://open-ephys.org/
https://github.com/evarol/DREDge
https://github.com/williamunoz/InterpolationAfterDREDge
https://github.com/williamunoz/InterpolationAfterDREDge
https://github.com/cortex-lab/KiloSort
https://github.com/cortex-lab/KiloSort
https://github.com/cortex-lab/phy
https://github.com/cortex-lab/phy


Article
Multi-unit isolation. To provide comparison to the single-neuronal 
data, we also separately analysed MUA. These MUAs reflect the com-
bined activities of multiple putative neurons recorded from the same 
electrodes as represented by their distinct waveforms57,69,70. These MUAs 
were obtained by separating all recorded spikes from their baseline 
noise. Unlike for the single units, the spikes were not separated on the 
basis of their waveform morphologies.

Audio presentation and recordings. The linguistic materials were 
given to the participants in audio format using a Python script utiliz-
ing the PyAudio library (version 0.2.11). Audio signals were sampled 
at 22 kHz using two microphones (Shure, PG48) that were integrated 
into the Alpha Omega rig for high-fidelity temporal alignment with 
neuronal data. Audio recordings were annotated in semi-automated 
fashion (Audacity; version 2.3). For the Neuropixels recordings, 
audio recordings were carried out at a 44 kHz sampling frequency 
(TASCAM DR-40× 4-channel 4-track portable audio recorder and USB 
interface with adjustable microphone). To further ensure granular 
time alignment for each word token with neuronal activity, the am-
plitude waveform of each session recording and the pre-recorded 
linguistic materials were cross-correlated to identify the time offset. 
Finally, for additional confirmation, the occurrence of each word 
token and its timing was validated manually. Together, these meas-
ures allowed for the millisecond-level alignment of neuronal activ-
ity with each word occurrence as they were heard by the participants  
during the tasks.

Linguistic materials
Sentences. The participants were presented with eight-word-long 
sentences (for example, “The child bent down to smell the rose”;  
Extended Data Table 1) that provided a broad sample of semantically 
diverse words across a wide variety of thematic contents and contexts4. 
To confirm that the participants were paying attention, a brief prompt 
was used every 10–15 sentences asking them whether we could proceed 
with the next sentence (the participants generally responded within 
1–2 seconds).

Homophone pairs. Homophone pairs were used to evaluate for 
meaning-specific changes in neural activity independently of pho-
netic content. All of the homophones came from sentence experiments 
in which homophones were available and in which the words within 
the homophone pairs came from different semantic domains. Homo-
phones (for example, ‘sun’ and ‘son’; Extended Data Table 1), rather than 
homographs, were used as the word embeddings produce a unique 
vector for each unique token rather than for each token sense.

Word lists. A word-list control was used to evaluate the effect that 
sentence context had on neuronal response. These word lists (for 
example, “to pirate with in bike took is one”; Extended Data Table 1) 
contained the same words as those given during the presentation of 
sentences and were eight words long, but they were given in a random 
order, therefore removing any effect that linguistic context had on 
lexico-semantic processing.

Nonwords. A nonword control was used to evaluate the selectivity 
of neuronal responses to semantic (linguistically meaningful) versus 
non-semantic stimuli. Here the participants were given a set of non-
words such as ‘blicket’ or ‘florp’ (sets of eight) that sounded phonetically 
like words but held no meaning.

Story narratives. Excerpts from a story narrative were introduced at the 
end of recordings to evaluate for the consistency of neuronal response. 
Here, instead of the eight-word-long sentences, the participants were 
given a brief story about the life and history of Elvis Presley (for exam-
ple, “At ten years old, I could not figure out what it was that this Elvis 

Presley guy had that the rest of us boys did not have”; Extended Data 
Table 1). This story was selected because it was naturalistic, contained 
new words, and was stylistically and thematically different from the 
preceding sentences.

Word embedding and clustering procedures
Spectral clustering of semantic vectors. To study the selectivity of 
neurons to words within specific semantic domains, all unique words 
heard by the participants were clustered into groups using a word 
embedding approach35,37,39,42. Here we used 300-dimensional vectors 
extracted from a pretrained dataset generated using a skip-gram Word-
2Vec11 algorithm on a corpus of 100 billion words. Each unique word 
from the sentences was then paired with its corresponding vector in 
a case-insensitive fashion using the Python Gensim library (version 
3.4.0; Fig. 1c, left). High unigram frequency words (log probability 
of greater than 2.5), such as ‘a’, ‘an’ or ‘and’, that held little linguistic 
meaning were removed.

Next, to group words heard by the participants into representative 
semantic domains, we used a spherical clustering algorithm (v.0.1.7, 
Python 3.6) that used the cosine distance between their representative 
vectors. We then carried out a k-means clustering procedure in this new 
space to obtain distinct word clusters. This approach therefore grouped 
words on the basis of their vectoral distance, reflecting the semantic 
relatedness between words37,40, which has been shown to work well for 
obtaining consistent word clusters34,71. Using pseudorandom initia-
tion cluster seeding, the k-means procedure was repeated 100 times 
to generate a distribution of values for the optimal number of cluster. 
For each iteration, a silhouette criterion for cluster number between 5 
and 20 was calculated. The cluster with the greatest average criterion 
value (as well as the most frequent value) was 9, which was taken as the 
optimal number of clusters for the linguistic materials used34,37,43,44.

Confirming the quality and separability of the semantic domains. 
Purity measures and d′ analysis were used to confirm the quality and 
separability of the semantic domains. To this end, we randomly sampled 
from 60% of the sentences across 100 iterations. We then grouped all 
words from these subsampled sentences into clusters using the same 
spherical clustering procedure described above. The new clusters 
were then matched to the original clusters by considering all possible 
matching arrangements and choosing the arrangement with greatest 
word overlap. Finally, the clustering quality was evaluated for ‘purity’, 
which is the percentage of the total number of words that were classi-
fied correctly72. This procedure is therefore a simple and transparent 
measure that varies between 0 (bad clustering) to 1 (perfect clustering; 
Fig. 1d, bottom). The accuracy of this assignment is determined by 
counting the total number of correctly assigned words and dividing 
by the total number of words in the new clusters:

C ∣ ∣∩∑n
ω cpurity(Ω, ) =

1
max

i

k

j i j
=1

in which n is the total number of words in the new clusters, k is the 
number of clusters (that is, 9), ωi is a cluster from the set of new clusters 
Ω, and cj is the original cluster (from the set of original clusters C) that 
has the maximum count for cluster ωi. Finally, to confirm the separabil-
ity of the clusters, we used a standard d′ analysis. The d′ metric estimates 
the difference between vectoral cosine distances for all words assigned 
to a particular cluster compared to those assigned to all other clusters 
(Extended Data Fig. 2a).

The resulting clusters were labelled here on the basis of the pre-
ponderance of words near the centroid of each cluster. Therefore, 
although not all words may seem to intuitively fit within each domain, 
the resulting semantic domains reflected the optimal vectoral cluster-
ing of words based on their semantic relatedness. To further allow for 
comparison, we also introduced refined semantic domains (Extended 



Data Table 2) in which the words provided within each cluster were 
additionally manually reassigned or removed by two independent 
study members on the basis of their subjective semantic relatedness. 
Thus, for example, under the semantic domain labelled ‘animals’, any 
word that did not refer to an animal was removed.

Neuronal analysis
Evaluating the responses of neurons to semantic domains. To evalu-
ate the selectivity of neurons to words within the different semantic 
domains, we calculated their firing rates aligned to each word onset. 
To determine significance, we compared the activity of each neuron 
for words that belonged to a particular semantic domain (for example, 
‘food’) to that for words from all other semantic domains (for example, 
all domains except for ‘food’). Using a two-sided rank-sum test, we 
then evaluated whether activity for words in that semantic domain was 
significantly different from activity in all semantic domains, with the 
P value being false discovery rate-adjusted using a Benjamini–Hochberg 
method to account for repeated comparisons across all of the nine 
domains. Thus, for example, when stating that a neuron exhibited sig-
nificant selectivity to the domain of ‘food’, this meant that it exhibited a 
significant difference in its activity for words within that domain when 
compared to all other words (that is, it responded selectively to words 
that described food items).

Next we determined the SI of each neuron, which quantified the 
degree to which it responded to words within specific semantic domains 
compared to the others. Here SI was defined by the cell’s ability to dif-
ferentiate words within a particular semantic domain (for example, 
‘food’) compared to all others and reflected the degree of modulation. 
The SI for each neuron was calculated as

∣ ∣
∣ ∣

SI =
FR − FR
FR + FR

domain other

domain other

in which FRdomain  is the neuron’s average firing rate in response to  
words within the considered domain and FRother is the average firing 
rate in response to words outside the considered domain. The SI there-
fore reflects the magnitude of effect based on the absolute difference 
in activity for each neuron’s preferred semantic domain compared to 
others. Therefore, the output of the function is bounded by 0 and 1. 
An SI of 0 would mean that there is no difference in activity across any 
of the semantic domains (that is, the neuron exhibits no selectivity) 
whereas an SI of 1.0 would indicate that a neuron changed its action 
potential activity only when hearing words within one of the semantic 
domains.

A bootstrap analysis was used to further confirm reliability of 
each neuron’s SI across linguistic materials in two parts. For the first 
approach, the words were randomly split into 60:40% subsets (repeated 
100 times) and the SI of semantically selective neurons was compared in 
both subsets of words. For the second, instead of using the mean SI, we 
calculated the proportion of times that a neuron exhibited selectivity 
for another category other than their preferred domain when randomly 
selecting words from 60% of the sentences.

Confirming the consistency of neuronal response across analysis 
windows. The consistency of neuronal response across analysis win-
dows was confirmed in two parts. The average time interval between 
the beginning of one word and the next was 341 ± 5 ms. For all primary 
analysis, neuronal responses were analysed in 400-ms windows, aligned 
to each word, with a 100-ms time-lag to further account for the evoked 
response delay of prefrontal neurons. To further confirm the consist-
ency of semantic selectivity, we first examined neuronal responses 
using 350-ms and 450-ms time windows. Combining recordings across 
all 13 participants, a similar proportion of cells exhibiting selectivity was 
observed when varying the window size by ±50 ms (17% and 15%, χ2(1, 
861) = 0.43, P = 0.81) suggesting that the precise window of analysis did 

not markedly affect these results. Second, we confirmed that possible 
overlap between words did not affect neuronal selectivity by repeating 
our analyses but now evaluated only non-neighbouring content words 
within each sentence. Thus, for example, for the sentence “The child 
bent down to smell the rose”, we would evaluate only non-neighbouring 
words (for example, child, down and so on) per sentence. Using this 
approach, we find that the SI for non-overlapping windows (that is, 
every other word) was not significantly different from the original SIs 
(0.41 ± 0.03 versus 0.38 ± 0.02, t = 0.73, P = 0.47); together confirm-
ing that potential overlap between words did not affect the observed 
selectivity.

Model decoding performance and the robustness of neuronal  
response. To evaluate the degree to which semantic domains could 
be predicted from neuronal activity on a per-word level, we randomly 
sampled words from 60% of the sentences and then used the remain-
ing 40% for validation across 1,000 iterations. Only candidate neurons 
that exhibited significant semantic selectivity and for which sufficient 
words and sentences were recorded were used for decoding purposes 
(43 of 48 total selective neurons). For these, we concatenated all of 
the candidate neurons from all participants together with their firing 
rates as independent variables, and predicted the semantic domains 
of words (dependent variable). Support vector classifiers (SVCs) were 
then used to predict the semantic domains to which the validation 
words belonged. These SVCs were constructed to find the optimal 
hyperplanes that best separated the data by performing
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in which y ∈ {1, − 1} n, corresponding to the classification of individual 
words, x is the neural activity, and y wx bζ = max(0, 1 − ( − ))i i i . The reg
ularization parameter C was set to 1. We used a linear kernel and  
‘balanced’ class weight to account for the inhomogeneous distribution 
of words across the different domains. Finally, after the SVCs were 
modelled on the bootstrapped training data, decoding accuracy for 
the models was determined by using words randomly sampled and 
bootstrapped from the validation data. We further generated a null 
distribution by calculating the accuracy of the classifier after randomly 
shuffling the cluster labels on 1,000 different permutations of the 
dataset. These models therefore together determine the most likely 
semantic domain from the combined activity patterns of all selective 
neurons. An empirical P value was then calculated as the percentage 
of permutations for which the decoding accuracy from the shuffled 
data was greater than the average score obtained using the original 
data. The statistical significance was determined at P value < 0.05.

Quantifying the specificity of neuronal response. To quantify the 
specificity of neuronal response, we carried out two procedures. First, 
we reduce the number of words from each domain from 100% to 25% on 
the basis of their vectoral cosine distance from each of their respective 
domains’ centroid. Thus, for each domain, words that were closest to 
its centroid, and therefore most similar in meaning, were kept whereas 
words farther away were removed. The SIs of the neurons were then 
recalculated as before (Fig. 1h). Second, we repeated the decoding pro-
cedure but now varied the number of semantic domains from 2 to 20. 
Thus, a higher number of domains would mean fewer words per domain 
(that is, increased specificity of meaning relatedness) whereas a smaller 
number of domains would mean more words per domain. These decod-
ers used 60% of words for model training and 40% for validation (200 
iterations). Next, to evaluate the degree to which neuron and domain 
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number led to improvement in decoding performance, models were 
trained for all combinations of domain numbers (2 to 20) and neuron 
numbers (1 to 133) using a nested loop. For control comparison, we 
repeated the decoding analysis but randomly shuffled the relation 
between neuronal response and each word as above. The percentage 
improvement in prediction accuracy (PA) for a given domain number 
(d) and neuronal size (n) was calculated as

d n
d n d n

d n
improvement( , ) = 100 ×

[PA ( , ) − PA ( , )]
PA ( , )

actual shuffle

actual

Evaluating the context dependency of neuronal response using  
homophone pairs. We compared the responses of neurons to homo-
phone pairs to evaluate the context dependency of neuronal response 
and to further confirm the specificity of meaning representations. For 
example, if the neurons simply responded to differences in phonetic 
input rather than meaning, then we should expect to see smaller dif-
ferences in firing rate between homophone pairs that sounded the 
same but differed in meaning (for example, ‘sun’ and ‘son’) compared 
to non-homophone pairs that sounded different but shared similar 
meaning (for example, ‘son’ and ‘sister’). Here, only homophones that 
belonged to different semantic domains were included for analysis. 
A permutation test was used to compare the distributions of the ab-
solute difference in firing rates between homophone pairs (sample 
x) and non-homophone pairs (sample y) across semantically selec-
tive cells (P < 0.01). To carry out the permutation test, we first calcu-
lated the mean difference between the two distributions (sample x 
and y) as the test statistic. Then, we pooled all of the measurements 
from both samples into a single dataset and randomly divided it into 
two new samples x′ and y′ of the same size as the original samples. 
We repeated this process 10,000 times, each time computing the 
difference in the mean of x′ and y′ to create a distribution of possi-
ble differences under the null hypothesis. Finally, we computed the 
two-sided P value as the proportion of permutations for which the 
absolute difference was greater than or equal to the absolute value 
of the test statistic. A one-tailed t-test was used to further evaluate 
for differences in the distribution of firing rates for homophones 
versus non-homophone pairs (P < 0.001). To allow for comparison, 
2 of the 133 neurons did not have homophone trials and were there-
fore excluded from analysis. An additional 16 neurons were also  
excluded for lack of response and/or for lying outside (>2.5 times) the  
interquartile range.

Evaluating the context dependency of neuronal response using 
surprisal analysis. Information theoretic metrics such as ‘surprisal’ 
define the degree to which a word can be predicted on the basis of its 
antecedent sentence context. To examine how the preceding context 
of each word modulated neuronal response on a per-word level, we 
quantified the surprisal of each word as follows:

∣w P w w wsurprisal( ) = − log ( … )i i i1 −1

in which P represents the probability of the current word (w) at posi-
tion i within a sentence. Here, a pretrained long short-term memory 
recurrent neural network was used to estimate P(wi | w1…wi−1)

73. Words 
that are more predictable on the basis of their preceding context would 
therefore have a low surprisal whereas words that are poorly predict-
able would have a high surprisal.

Next we examined how surprisal affected the ability of the neurons 
to accurately predict the correct semantic domains on a per-word level. 
To this end, we used SVC models similar to that described above, but 
now divided decoding performances between words that exhibited 
high versus low surprisal. Therefore, if the meaning representations 
of words were indeed modulated by sentence context, words that are 
more predictable on the basis of their preceding context should exhibit 

a higher decoding performance (that is, we should be able to predict 
their correct meaning more accurately from neuronal response).

Determining the relation between the word embedding space and 
neural response. To evaluate the organization of semantic representa-
tions within the neural population, we regressed the activity of each 
neuron onto the 300-dimensional embedded vectors. The normalized 
firing rate of each neuron was modelled as a linear combination of word 
embedding elements such that

F v θ ε= +i w w i i,

in which Fi w,  is the firing rate of the ith neuron aligned to the onset of 
each word w, θi is a column vector of optimized linear regression coef-
ficients, vw is the 300-dimensional word embedding row vector associ-
ated with word w, and εi is the residual for the model. On a per-neuron 
basis, θi was estimated using regularized linear regression that was 
trained using least-squares error calculation with a ridge penalization 
parameter λ = 0.0001. The model values, θi, of each neuron (dimen-
sion = 1 × 300) were then concatenated (dimension = 133 × 300) to 
define a putative neuronal–semantic space θ. Together, these can 
therefore be interpreted as the contribution of a particular dimension 
in the embedding space to the activity of a given neuron, such that the 
resulting transformation matrix reflects the semantic space repre-
sented by the neuronal population.

Finally, a PC analysis was used to dimensionally reduce θ along 
the neuronal dimension. This resulted in an intermediately reduced 
space (θpca) consisting of five PCs, each with dimension = 300, together 
accounting for approximately 46% of the explained variance (81% for 
the semantically selective neurons). As this procedure preserved the 
dimension with respect to the embedding length, the relative positions 
of words within this space could therefore be determined by projecting 
word embeddings along each of the PCs. Last, to quantify the degree 
to which the relation between word projections derived from this PC 
space (neuronal data) correlated with those derived from the word 
embedding space (English word corpus), we calculated their correlation 
across all word pairs. From a possible 258,121 word pairs (the availability 
of specific word pairs differed across participants), we compared the 
cosine distances between neuronal and word embedding projections.

Estimating the hierarchical structure and relation between word 
projections. As word projections in our PC space were vectoral repre-
sentations, we could also calculate their hierarchical relations. Here we 
carried out an agglomerative single-linkage (that is, nearest neighbour) 
hierarchical clustering procedure to construct a dendrogram that rep-
resented the semantic relationships between all word projections in our 
PC space. We also investigated the correlation between the cophenetic 
distance in the word embedding space and difference in neuronal activ-
ity across all word pairs. The cophenetic distance between a word pair 
is a measure of inter-cluster dissimilarity and is defined as the distance 
between the largest two clusters that contain the two words individu-
ally when they are merged into a single cluster that contains both49–51. 
Intuitively, the cophenetic distance between a word pair reflects the 
height of the dendrogram where the two branches that include these 
two words merge into a single branch. Therefore, to further evaluate 
whether and to what degree neuronal activity reflected the hierarchi-
cal semantic relationship between words, as observed in English, we 
also examined the cophenetic distances in the 300-dimension word 
embedding space. For each word pair, we calculated the difference 
in neuronal activity (that is, the absolute difference between average 
normalized firing rates for these words across the population) and 
then assessed how these differences correlated with the cophenetic 
distances between words derived from the word embedding space. 
These analyses were performed on the population of semantically selec-
tive neurons (n = 19). For further individual participant comparisons, 



the cophenetic distances were binned more finely and outliers were 
excluded to allow for comparison across participants.

t-stochastic neighbour embedding procedure. To visualize the  
organization of word projections obtained from the PC analysis at the 
level of the population (n = 133), we carried out a t-distributed stochastic 
neighbour embedding procedure that transformed each word projec-
tion into a new two-dimensional embedding space θtsne (ref. 74). This 
transformation utilized cosine distances between word projections as 
derived from the neural data.

Non-embedding approach for quantifying the semantic relationship 
between words. To further validate our results using a non-embedding 
approach, we used WordNet similarity metrics75. Unlike embedding  
approaches, which are based on the modelling of vast language corpora, 
WordNet is a database of semantic relationships whereby words are 
organized into ‘synsets’ on the basis of similarities in their meaning (for  
example, ‘canine’ is a hypernym of ‘dog’ but ‘dog’ is also a coordinate 
term of ‘wolf’ and so on). Therefore, although synsets do not provide vec-
toral representations that can be used to evaluate neuronal response to  
specific semantic domains, they do provide a quantifiable measure of 
word similarity75 that can be regressed onto neuronal activity.

Confirming the robustness of neuronal response across participants.  
Finally, to ensure that our results were not driven by any particu-
lar participant(s), we carried out a leave-one-out cross-validation 
participant-dropping procedure. Here we repeated several of the analy-
ses described above but now sequentially removed individual partici-
pants (that is, participants 1–10) across 1,000 iterations. Therefore, if 
any particular participant or group of participants disproportionally 
contributed to the results, their removal would significantly affect 
them (one-way analysis of variance, P < 0.05). A χ2 test (P < 0.05) was 
used to further evaluate for differences in the distribution of neurons 
across participants.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All primary data supporting the findings of this study are available 
online at https://figshare.com/s/94962977e0cc8b405ef3. Details of 
the participants’ demographics and task conditions are provided in 
Extended Data Table 1.

Code availability
All primary Python codes supporting the findings of this study are 
available online at https://figshare.com/s/94962977e0cc8b405ef3. 
Software packages used in this study are listed in the Nature Portfolio 
Reporting Summary along with their versions.
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Extended Data Fig. 1 | Language-related activity, recording stability, 
waveform morphology and isolation quality across recording techniques. 
a, Example of waveform morphologies displaying mean waveform ± 3 s.d and 
associated PC distributions used to isolate putative units from the tungsten 
microarray recordings. The horizontal bar indicates a 500 µs interval for scale. 
The gray areas in PC space represent noise. All single units recorded from the 
same electrode were required to display a high degree of separation in PC 
space. b, Isolation metrics of the single units obtained from the tungsten 
microarray recordings. c, Left, waveform morphologies observed across 
contacts in a Neuropixels array. Right, PC distributions used to isolate and 
cluster single units. d, Isolation distance and nearest neighbor noise overlap  
of the recorded units obtained from the Neuropixels arrays.



Extended Data Fig. 2 | Cluster separability and consistency of neuronal 
responses across participants. a, The d’ (d-prime) indices measuring 
separability between the distribution of the vectoral cosine distances among 
all words within a cluster (purple) and those among all words across clusters 
(gray). The d’ indices were all above 2.5 reflecting strong separability.  
b, Selectivity index of neurons (mean with 95% CL, n = 19) when semantic 
domains were refined by moving or removing words whose meanings did not 
intuitively fit with their respective labels (Extended Data Table 2). c, There was 
no significant difference (χ2 = 2.33, p = 0.31) in the proportions of neurons that 
displayed semantic selectivity based on the participants’ clinical conditions of 
essential tremor (ET), Parkinson’s disease (PD) or cervical dystonia (CD). d, Left, 
the proportional contribution per participant based on the total percentage of 
neurons contributed. Right, the proportional contribution of semantically 

selective cells per participant based on the fraction contributed. Participants 
without selective cells are not shown. e, A leave one out cross-validation 
participant-dropping procedure demonstrated that population results 
remained similar. Here, we sequentially removed individual participants (i.e., 
participants #1-10) and then repeated our selectivity analysis. Semantic 
selectivity across neurons was largely unaffected by removal of any of the 
participants (one-way ANOVA, F(9, 44) = 0.11, p = 0.99). Here, the mean 
selectivity indices (± s.e.m.) are separately presented after removing each 
participant. f, A cross-validation participant-dropping procedure was used to 
determine whether any of the participants disproportionately contributed to 
the population decoding. Average decoding results and comparison to the 
shuffled data are separately presented after removing each participant 
(permutation test, p < 0.01; #1-10).
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Extended Data Fig. 3 | Confirming consistency of 
semantic representations by neurons using Neuropixels 
recordings. a, Coincidence matrix illustrating the 
distribution of cells obtained from Neuropixels recordings 
that displayed selective responses to one or more semantic 
domains (two-tailed rank-sum test, p < 0.05, FDR adjusted). 
Inset, proportions of cells that displayed selective responses 
to one or more semantic domains. b, The distributions of SIs 
are shown separately for semantically-selective (n = 29, 
orange) and non-selective (n = 125, grey) cells. The mean SI 
of cells that did not display semantic selectivity (n = 125) was 
0.16 (one-sided rank-sum test, z-value = 7.2, p < 0.0001). 
Inset, selectivity index (SI) of each neuron (n = 29) when 
compared across different semantic domains. c, The 
cumulative decoding performance (± s.d.) of all semantically 
selective neurons during sentences (blue) versus chance 
(orange). Inset, decoding performances (± s.d.) across two 
independent embedding models (Word2Vec and GloVe).  
d, Decoding accuracies for words that displayed high vs.  
low surprisal based on the preceding sentence contexts in 
which they were heard. Actual and chance decoding 
performances are shown in blue and orange, respectively 
(mean ± s.d., one-sided rank-sum test z-value = 25, p < 0.001). 
The inset shows a regression analysis on the relation between 
decoding performance and surprisal. e, Left, SI distributions 
for neurons during word list and sentence presentations 
together with the number of neurons that responded 
selectivity to one or more semantic domains (Inset). Right, 
the SI for neurons (mean with 95% CL, n = 21; excluding zero 
firing rate neurons) during word-list presentation. The SI 
dropped from 0.39 (CI = 0.33-0.45) during the sentences to 
0.29 (CI = 0.19-0.39) during word list presentation (signed-
rank test, z(41) = 168, p = 0.035). f, The selectivity index of 
neurons for which nonword lists presentation was performed 
(n = 26 of 153 cells were selective) when comparing their 
activities during sentences vs. nonwords (mean SI = 0.34, 
CI = 0.28-0.40). Here, the selectivity of each neuron reflects 
the degree to which it differentiates any semantic 
(meaningful) compared to non-semantic (nonmeaningful) 
information. g, Contribution to the variance explained in  
PC space for word projections across participants using a 
participant-dropping procedure. h, Activities of neurons 
for word pairs based on their vectoral cosine distance  
within the 300-dimensional embedding space (z-scored 
activity change over percentile cosine similarity; Pearson’s 
correlation r = 0.21, p < 0.001).



Extended Data Fig. 4 | Selectivity of neurons to linguistically meaningful 
versus nonmeaningful information. a, The distributions of SIs are shown 
separately for cells that displayed significance for semantic information  
(n = 19, orange) and those that did not (n = 114, grey). The mean SI of cells that 
did not display semantic selectivity (n = 114) was 0.14 (one-sided rank-sum test, 
z-value = 5.8, p < 0.0001). b, Decoding performances (mean ± s.d.) for cells that 
were not significantly selective for any particular semantic domain but which 
had an SI greater than 0.2 (n = 11) compared to that of shuffled data (21 ± 6%; 
permutation test, p = 0.046). c, The selectivity index of neurons for which 
nonword lists presentation was performed (n = 27 of 48 cells for which this 

control was performed displayed a significant difference in activity using a 
two-sided t-test) when comparing their responses to nonwords (i.e., that 
carried no linguistic meaning) versus sentences (i.e., that carried linguistic 
meaning; mean SI = 0.43, CI = 0.35-0.51). The semantically selective cells  
(n = 6, red) displayed a similar word vs. nonword SI when compared to the 
non-semantically selective cells (n = 21, orange; two-sided t-test, df = 26, p = 1.0). 
d, Peristimulus histograms (mean ± s.e.m.) and rasters of representative 
neurons when the participants were given words heard within sentences (red) 
or sets of nonwords (gray). The horizontal green bars display the 400 ms 
window of analysis.
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Extended Data Fig. 5 | Generalizability and robustness of word meaning 
representations. a, Average decoding performances (± s.d., purple, n = 1000 
iterations) were found to be slightly lower for words heard early (first 4 words) 
vs. late (last 4 words) within their respective sentences (23 ± 7% vs. 29 ± 8% 
decoding performance, respectively; One-sided rank sum test, z-value = 17, 
p < 0.001)76,77. The orange bars represent control accuracy with shuffling 
neuronal activities. b, Cumulative mean decoding performance (±s.d., purple) 
for multi-units (MUs) compared with chance (orange). The mean decoding 
accuracy for all MUs was 23 ± 6% s.d. (one-sided permutation test, p = 0.02)  
and reflect the unsorted activities of units obtained through recordings 
(Methods). c, Relationship between the number of neurons considered, the 
number of word clusters modeled, and prediction accuracy. Here, a lower 
number of clusters leads to more words per grouping and therefore domains 

that are not as specific in meaning (e.g., “sun”, “rain”, “clouds”, and “sky”,) 
whereas a higher number of clusters means fewer words and therefore domains 
that are more specific in meaning (e.g., “rain” and “clouds”). d, The percent 
improvement in decoding accuracy (mean ± s.e.m) corresponds to decoding 
performance minus chance probability using 60% of randomly selected 
sentences for modeling and 40% for decoding (n = 200 iterations). Inset, 
relation between log of odds probability (mean ± s.e.m) of predicting the 
correct semantic domains and number of clusters (i.e., not accounting for 
chance probability). e, The relation between the number of word clusters 
modeled and the percent improvement in decoding accuracy (mean ± s.e.m) 
when considering semantically selective (high SI) and non-selective (low SI) 
cells separately.



Extended Data Fig. 6 | Semantic selectivity during naturalistic story 
narratives. a, Comparison of average decoding performances (± s.d., blue, n = 200 
iterations) for sentences and naturalistic story narratives, matched based on 
the number of neurons (left: 2 neurons, right: 5 neurons). b, Comparison of 

average decoding performances (± s.d., blue, n = 200 iterations) for sentences, 
matched based on the number of single-units or multi-units (left: 2 units, right: 
5 units). Chance decoding performances are given in gray.
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Extended Data Fig. 7 | Population organization of semantic representations. 
a, Contribution to percent variance explained in PC space for word projections 
across participants using a participant-dropping procedure (first 5-15 PCs; 
two-sided z-test; p > 0.7). b, Correlation between the vectoral cosine distances 
between PC-reduced word-projections derived from the neural data and PC- 
reduced vectors derived from the 300-dimensional word embedding space 
(n = 258,121 possible word-pairs; note that not all pairs were used for all recordings 
per neuron since certain words were not heard by all participants). c, Difference 

in neuronal activities (n = 19 neurons, p = 0.048, two-sided paired t-test, 
t(18) = 2.12) for word pairs whose vectoral cosine distances were far versus near 
in the word embedding space. d, Relation between neuronal activity and word 
meaning similarity using a non-embedding based ‘synset’ approach (n = 100 
bins, Pearson’s correlation r = −0.76, p = 0.001). Here, the degree of similarity 
ranges from 0 to 1.0, with a value of 1.0 indicating that the words are highly 
similar in meaning (e.g., “canine” and “dog”) and 0 indicating that their meanings 
are largely distinct.



Extended Data Table 1 | Demographic data of study participants and task materials

For demographics, the participants were recruited for participation in the study independently of underlying neuropathology, age, or sex. The corresponding recording coordinates for each 
participant are provided in MNI space (spm12). Participants 1-10 underwent tungsten microarray recordings and participants 11-13 underwent Neuropixels recordings. For the linguistic materials 
that were provided, the participants were given 8-word sentences that were made to be semantically diverse and were randomly interleaved over the course of recordings. Homophone pairs 
(i.e., word pairs with different spelling and meaning but with the same pronunciation) were interspersed throughout the sentences. The word lists contained the same words as those given  
during sentences and were 8 words long but, instead, were given in random order. The story excerpts were distinct in content and theme from that of the sentences and varied in length.  
The nonwords (i.e., elements that sound like words but hold no meaning) were given in sets of 8. The analysis inputs table provides the exact number of words used in each analysis across 
participants for the tungsten microarray (above) and Neuropixels (below) recordings.
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Extended Data Table 2 | Semantic domains and word labels

Left, grouping of words into semantic domains based on their 300-dimensional embeddings was performed through a spherical clustering and silhouette criterion analysis (Fig. 1c,d). Here, the 
labels were selected based on the preponderance of words within each grouping and were ordered based on the proximity of each word to their respective cluster centroid. Words obtained 
from the linguistic materials given to the participants optimally grouped into nine putative semantic domains. Right, to further confirm the selectivity of neuronal response (Extended Data 
Fig. 2b), words that were not intuitively related in meaning prima facie were either moved or removed to produce the following refined semantic domains.



Extended Data Table 3 | Grouping words into smaller word clusters

To further evaluate the selectivity of neuronal response, words were grouped into 20 rather than 9 clusters. As in Extended Data Table 2, the words were grouped using a spherical clustering 
and silhouette criterion analysis. Here, however, the words within each domain were closer in meaning since there were fewer words per cluster. Extended Data Fig. 4c–e provides further  
illustration of the relation between the number of clusters and neuronal decoding performance.
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