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From sequences of speech sounds'?or letters®, humans can extract rich and nuanced
meaning through language. This capacity is essential for human communication.
Yet, despite agrowing understanding of the brain areas that support linguistic and
semantic processing* ™2, the derivation of linguistic meaning in neural tissue at the

cellular level and over the timescale of action potentials remains largely unknown.
Here we recorded from single cells in the left language-dominant prefrontal cortex as
participants listened to semantically diverse sentences and naturalistic stories. By
tracking their activities during natural speech processing, we discover a fine-scale
cortical representation of semantic information by individual neurons. These
neurons responded selectively to specific word meanings and reliably distinguished
words from nonwords. Moreover, rather than responding to the words as fixed
memory representations, their activities were highly dynamic, reflecting the words’
meanings based on their specific sentence contexts and independent of their
phonetic form. Collectively, we show how these cell ensembles accurately predicted
the broad semantic categories of the words as they were heard in real time during
speech and how they tracked the sentences in which they appeared. We also show how
they encoded the hierarchical structure of these meaning representations and how
these representations mapped onto the cell population. Together, these findings
reveal afinely detailed cortical organization of semantic representations at the
neuronscalein humans and begin to illuminate the cellular-level processing of
meaning during language comprehension.

Humans are capable of communicating exceptionally detailed mean-
ings through language. How neurons in the human brain represent
linguistic meaning and what their functional organization may be, how-
ever, remain largely unknown. Initial perceptual processing of linguistic
input is carried out by regions in the auditory cortex for speech'? or
visual regions for reading®. From there, information flows to the amodal
language-selective’ left-lateralized network of frontal and temporal
regions that map word forms to word meanings and assemble theminto
phrase- and sentence-level representations*>*, Processing meanings
extracted from language also engages widespread areas outside this
language-selective network, with diverging evidence suggesting that
semantic processing may be broadly distributed across the cortex"
or that it may alternatively be concentrated in a few semantic ‘hubs’
that process meaning from language as well as other modalities”.
How linguistic and semantic information is represented at the basic
computational level of individual neurons during natural language
comprehension in humans, however, remains undefined.

Despite agrowing understanding of semantic processing fromimag-
ing studies, little is known about how neurons in humans process or
represent word meanings during language comprehension. Further,

although speech processing is strongly context dependent™, how con-

textualinformationinfluences meaning representations and how these
changes may be instantiated within sentences at a cellular scale remain
largely unknown. Finally, although our semantic knowledge is highly
structured®, little is understood about how cells or cell ensembles
represent the semantic relationships among words or word classes dur-
ing speech processing and what their functional organization may be.

Single-neuronal recordings have the potential to begin unravelling
some of the real-time dynamics of word and sentence comprehension at
acombined spatialand temporal resolution that haslargely beeninac-
cessible through traditional human neuroscience approaches'®?°. Here
we used a rare opportunity to record from single cells in humans'*%
and begin investigating the moment-by-moment dynamics of natural
language comprehension at the cellular scale.

Single-neuron recordings during speech processing

Single-neuronal recordings were obtained from the prefrontal
cortex of the language-dominant hemisphere in a region centred
along the left posterior middle frontal gyrus (Fig. 1a and Methods
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Fig.1|Semanticselectivity by single neurons during naturalisticspeech
processing. a, Left: single-neuron recordings were obtained from the left
language-dominant prefrontal cortex. Recording locations for the microarray
(red) and Neuropixels (beige) recordings (spm12; Extended Data Table 1) as well
asanapproximation of language-selective network areas (brown) areindicated.
Right: the action potentials of putative neurons. b, Action potentials (black
lines) and instantaneous firing rate (red trace) of each neuron were time-aligned
totheonsetofeach word.Freq., frequency. c, Word embedding approach for
identifying semanticdomains. Here eachwordis represented asa300-
dimensional (dim) vector.d, Silhouette criterion analysis (upper) and purity
measures (lower) characterized the separability and quality of the semantic
domains (Extended Data Fig. 2a). permut., permutations. e, Peri-stimulus spike
histograms (mean * standard error of the mean (s.e.m.)) and rasters for two
representative neurons. The horizontal green bars mark the window of analysis
(100-500 ms from onset). sp, spikes. f, Left: confusion matrix illustrating the

(‘Acute intraoperative single-neuronal recordings’) and Extended
Data Fig. 1a). This region contains portions of the language-selective
network together with several other high-level networks**%, and
has been shown to reliably represent semantic information during
language comprehension'?, Here recordings were performed in
participants undergoing planned intraoperative neurophysiology.
Moreover, all participants were awake and therefore capable of per-
forming language-based tasks, providing the unique opportunity to
study the action potential dynamics of individual neurons during
comprehension in humans.

Altogether, we recorded from 133 well-isolated single units (Fig. 1a,
right, and Extended Data Fig. 1a,b) in 10 participants (18 sessions; 8
maleand 2 femaleindividuals, age range 33-79; Extended Data Table 1)
using custom-adapted tungsten microelectrode arrays® % (microar-
ray; Methods (‘Single-unitisolation’)). To further confirm the consist-
ency and robustness of neuronal responses, an additional 154 unitsin
3 participants (3 sessions; 2 male individuals and 1 female individual;
agerange 66-70; Extended Data Table 1) were also recorded using
silicon Neuropixels arrays®***' (Methods (‘Single-unit isolation’) and
Extended Data Fig. 1c,d) that allowed for higher-throughput record-
ings per participant (287 units across 13 participants in total; 133 units
from the microarray recordings and 154 units from the Neuropixels
recordings). All participants were right-hand-dominant native English
speakers and were confirmed to have normal language function by
preoperative testing.

During recordings, the participantslistened to semantically diverse
naturalistic sentences that were played to theminarandomorder. This
amounted to an average of 459 + 24 unique words or 1,052 + 106 word

distribution of cells that exhibited selective responses to one or more semantic
domains (P<0.05, two-tailed rank-sum test, false discovery rate-adjusted).
Spatiotemp., spatiotemporal.; sig. significant. Top right: numbers of cells that
exhibited semantic selectivity. g, Left: Slof each neuron (n=19) when compared
across semantic domains. The Sls of two neurons are colour-coded to correspond
tothose showninFig.1le. Upper right: mean Slacross neurons whenrandomly
selecting words from 60% of the sentences (mean SI=0.33, CI=0.32-0.33;
across100iterations). Bottomright. probabilities of neurons exhibiting
significant selectivity to their non-preferred semantic domains when randomly
selecting words from 60% of the sentences (1.4 + 0.5% mean + s.e.m. different
(diff.) domain). h, Relationship between increased meaning specificity (by
decreasing the number of words on the basis of the words’ distance from

each domain’s centroid) and response selectivity. Thelines with errorbarsin
d,g,hrepresent mean with 95% confidence limits.

tokens (+ s.e.m) across 131 + 13 sentences per participant (Methods
(‘Linguistic materials’) and Extended Data Table 1). Additional controls
included the presentations of unstructured word lists, nonwords and
naturalistic story narratives (Extended Data Table1). Action potential
activities were aligned to each word or nonword using custom-made
software at millisecond resolution and analysed off-line (Fig. 1b). All
primary findings describe results for the tungsten microarray record-
ings unless stated otherwise for the Neuropixels recordings (Extended
DataFig.1).

Selectivity of neurons to specific word meanings

Along-standing observation* that lies at the core of all distributional
models of meaning® is that words that share similar meanings tend to
occur in similar contexts. Data-driven word embedding approaches
that capture these relationships through vectoral representations™>*
have been found to estimate word meanings quite well and to accu-
rately capture human behavioural semantic judgements*° and neural
responses to meaning through brain-imaging studies™2¢33%4,
Tofirstexamine whether and to what degree the activities of neurons
within the population reflected the words’ meanings during speech
processing, we used anembedding approach thatreplaced each unique
word heard by the participants with pretrained 300-dimensional
embedding vectors extracted from a large English corpus (Meth-
ods (‘Word embedding and clustering procedures’))*?**** Thus,
for instance, the words ‘clouds’ and ‘rain’, which are closely related
in meaning, would share a smaller vectoral cosine distance in this
embedding space when compared to ‘rain’ and ‘dad’ (Fig. 1c, left).

Nature | Vol 631 | 18 July 2024 | 61



Article

Next, to determine how the words optimally group into semantic
domains, we used a spherical clustering and silhouette criterion
analysis®**#* to reveal the following nine putative domains: actions
(for example, ‘walked’, ‘ran’ and ‘threw’), states (for example, ‘happy’,
‘hurt’and ‘sad’), objects (for example, ‘hat’, ‘broom’ and ‘lampshade’),
food (for example, ‘salad’, ‘carrots’ and ‘cake’), animals (for example,
‘bunny’, ‘lizard’ and ‘horse’), nature (for example, ‘rain’, ‘clouds’ and
‘sun’), people and family (for example, ‘son’, ‘sister’ and ‘dad’), names
(for example, ‘george’, ‘kevin’ and ‘hannah’) and spatiotemporal rela-
tionships (for example, ‘up’, ‘down’ and ‘behind’; Fig. 1c right and
Extended Data Tables 2 and 3). Purity and d’ measures confirmed the
quality and separability of these word clusters (Fig. 1d and Extended
DataFig. 2a).

We observed that many of the neurons responded selectively to
specific word meanings. The selectivity or ‘tuning’ of neuronsreflects
the degree towhich they respond to words denoting particular mean-
ings (thatis, words that belong to specific semantic domains). Thus,
aselectivity index (SI) of 1.0 would indicate that a cell responded to
words within only one semantic domain and no other, whereas an SI
of O would indicate no selectivity (that is, similar responses to words
across all domains; Methods (‘Evaluating the responses of neurons to
semantic domains’)). Altogether, 14% (n =19 of 133; microarray) of the
neurons responded selectively to specific semantic domains indicat-
ing that their firing rates distinguished between words on the basis of
their meanings (two-tailed rank-sum test comparing activity for each
domain to that of all other domains; false discovery rate-corrected
forthe 9 domains, P < 0.05). Thus, for example, aneuron may respond
selectively to food’items whereas another may respond selectively to
‘objects’ (Fig.1e). The domain that elicited the largest change in activity
for the largest number of cells was that of ‘actions’, and the domain
thatelicited changes for the fewest cells was ‘spatiotemporal relations’
(Fig.1f). The mean Sl across all selective neurons was 0.32 (n =19; 95%
confidence interval (ClI) = 0.26-0.38; Fig. 1g, left) and progressively
increased as the semantic domains became more specific in meaning
(thatis, when removing words that lay farther away from the domain
centroid; analysis of variance, F(3,62) = 8.66, P < 0.001; Fig. 1h and
Methods (‘Quantifying the specificity of neuronal response’)). Find-
ings from the Neuropixels recordings were similar, with 19% (n = 29 of
154; Neuropixels) of the neurons exhibiting semantic selectivity (mean
SI=0.42,95% Cl = 0.36-0.48; Extended Data Fig. 3a,b), in aggregate,
providing a total of 48 of 287 semantically selective neurons across
the 13 participants. Many of the neurons across the participants and
recording techniques therefore exhibited semantic selectivity during
language comprehension.

Most of the neurons that exhibited semantic selectivity responded
to only one semantic domain and no other. Of the neurons that dem-
onstrated selectivity, 84% (n = 16; microarray) responded to one of
the nine domains, with only 16% (n = 3) showing response selectivity
to two domains (two-sided rank-sum test, P < 0.05; Fig. 1f, top right).
The response selectivity of these neurons was also robust to analytic
choice, demonstrating a similarly high degree of selectivity when
randomly sub-selecting words (SI=0.33, CI = 0.32-0.33, rank-sum
test when compared to the original Sl values, z value = 0.44, P=0.66,
Fig.1g, top right, and Methods (‘Evaluating the responses of neurons
to semantic domains’)) or when selecting words that intuitively fit
within their respective domains (SI = 0.30; rank-sum test compared
totheoriginal Slvalues, z value = 0.60, P = 0.55; Extended Data Fig. 2b
and Extended Data Table 2). Moreover, they exhibited a similarly
high degree of selectivity when selecting nonadjacent content words
(SI=0.34,Cl=0.26-0.42; Methods), further confirming the consist-
ency of neuronal response.

Finally, given these findings, we tested whether the neurons dis-
tinguished real words from nonwords (such as ‘blicket’ or ‘florp’,
which sound like words but are meaningless), as might be expected
of cells that represent meaning. Here we found that many neurons
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Fig.2|Decoding word meanings during language comprehension. a, Left:
projected probabilities of correctly predicting the semantic domain to
whichindividual words belonged over arepresentative sentence. Right: the
cumulative decoding performance (s.d.) of all semantically selective neurons
during presentation of sentences (blue) versus chance (orange); see also
Extended DataFig.4b.b, Decoding performances (+s.d.) across two
independent embedding models (Word2Vec and GloVe). ¢, Left: the absolute
difference in neuronal responses (n =115) for homophone pairs that sounded
thesamebut differed in meaning (red) compared to that of non-homophone
pairsthatsounded different but shared similar meanings (blue; two-sided
permutation test). Right: scatter plot displaying eachneuron’s absolute
differenceinactivity forhomophone versus non-homophone pairs (P<0.0001,
one-sided t-test comparing linear fit to identity line). d, Peri-stimulus spike
histogram (mean £s.e.m.) and raster from arepresentative neuron when
hearing words withinsentences (top) compared to words within random word
lists (bottom). The horizontal green bars mark the window of analysis (100~
500 msfromonset). e, Left: Sldistributions for neurons during word-list and
sentence presentations together with the number of neurons that responded
selectivity to one or more semantic domains (inset). Right: the Sl for neurons
(meanwith 95% confidence limit, n = 9; excluding zero firing rate neurons)
during word-list presentation. These neurons did not exhibit changes inmean
firingrates when comparingall sentences versus word listsindependently of
semantic domains (rank-sumtest, P=0.16).

distinguished words from nonwords (27 of 48 neurons; microarray, in
7 participants for whom this control was carried out; two-tailed ¢-test,
P<0.05; Methods (‘Linguistic materials; Nonwords’)), meaning that
they exhibited a consistent difference in their activities. Moreover,
the ability to differentiate words from nonwords was not necessarily
restricted to semantically selective neurons (Extended Data Fig. 3f,
Neuropixels, and Extended Data Fig. 4, microarray), together reveal-
ing a broad mixture of response selectivity to word meanings within
the cell population.

Generalizable and robust meaning representations

Meaning representations by the semantically selective neurons were
robust. Training multi-class decoders on the combined response
patterns of the semantically selective cells, we found that these cell
ensembles could reliably predict the semantic domains of randomly
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a, Differences in neuronal activity comparing homophone (for example, ‘son’
and ‘sun’; blue) to non-homophone (for example, ‘son”and ‘dad’; red) pairs
across participants using a participant-dropping procedure (two-sided paired
t-test, P<0.001for all participants). b, Left: decoding accuracies for words that
showed high versus low surprisal based on the preceding sentence contextsin

selected subsets of words not used for training (31 + 7% s.d.; chance:
11%, permutation test, P < 0.01; Fig.2a and Methods (‘Model decoding
performance and the robustness of neuronal response’)). Moreover,
similar decoding performances were observed when using a differ-
ent embedding model (GloVe*; 25 + 5%; permutation test, P < 0.05;
Fig. 2b) or when selecting different recorded time points within the
sentences (that is, the first half versus the second half of the sen-
tences; Extended Data Fig. 5a). Similar decoding performances were
also observed when randomly subsampling neurons from across the
population (Extended Data Fig. 5c-€), or when examining multi-unit
activities for which no spike sorting was carried out (permutation test,
P <0.05; Methods (‘Multi-unit isolation’) and Extended Data Fig. 5b).
Intandem, these analyses therefore suggested that the words’ mean-
ings were robustly represented within the population’s response
patterns.

We also examined whether the activities of the neurons could be gen-
eralized to anentirely new set of naturalistic narratives. Here, for three
of the participants, we additionally introduced short story excerpts that
were thematically and stylistically different from the sentences and
that contained new words (Extended Data Table 1; 70 unique words of
which 28 were shared with the sentences). We then used neuronal activ-
ity recorded during the presentation of sentences to decode semantic
domains for words heard during these stories (Methods (‘Linguistic
materials; Story narratives’)). We find that, even when using this limited
subset of semantically selective neurons (n=9; microarray), models
that were originally trained on activity recorded during the presenta-
tion of sentences could predict the semantic domains of words heard
during the narratives with significantaccuracy (28 + 5%; permutation
test, P<0.05; Extended Data Fig. 6).

Finally, to confirmthe consistency of these semantic representations,
we evaluated neuronal responses across the different participants and
recording techniques. Here we found similar results across individuals
(permutation test, P < 0.01) and clinical conditions (y*=2.33,P=0.31;
Methods (‘Confirming the robustness of neuronal response across par-
ticipants’) and Extended DataFig. 2c-f), indicating that the results were
not driven by any single participant or a small subset of participants.
We also evaluated the consistency of semantic representations in the
three participants who underwent Neuropixels recordings and found
thatthe activities of semantically selective neuronsin these participants
could be used to reliably predict the semantic domains of words not
used for model fitting (29 + 7%; permutation test, P < 0.01; Extended
DataFig.3c) and that they were comparable across embedding models
(GloVe; 30 + 6%). Collectively, decoding performance across the 13 par-
ticipants (48 of 287 semantically selective neuronsin total) was 36 + 7%
andsignificantly higher than expected from chance (permutation test,
P <0.01; Methods). These findings therefore together suggested that
these meaning representations by semantically selective neurons were
both generalizable and robust.

surprisal  surprisal Surprisal (percentile)

which they were heard. Words with lower surprisal were more predictable on
the basis of their preceding word sequence. Actual and chance decoding
performancesareshowninblue and orange, respectively (mean +s.d.,
one-sided rank-sumtest, zvalue =26, P < 0.001). Right: aregression analysis
ontherelationbetween decoding performance and surprisal.

Sentence context dependence of meaning encoding

An additional core property of language is our ability to interpret
words on the basis of the sentence contexts in which they appear*é*.
For example, hearing the sequences of words “He picked the rose...”
versus “He finally rose...” allows us to correctly interpret the meaning
of the ambiguous word ‘rose’ as anoun or a verb. It also allows us to
differentiate homophones—words that sound the same but differ in
meaning (such as ‘sun’ and ‘son’)—on the basis of their contexts.

Therefore, to first evaluate the degree to which the meaning repre-
sentations by neurons are sentence context dependent, seven of the
participants were presented with aword-list control that contains the
samewords as those heard in the sentences but were presentedinran-
domorder (for example, “to pirate with in bike took is one”; Extended
Data Table 1), thus largely removing the influence of context on lexi-
cal (word-level) processing. Here we find that, the SI of the neurons
thatexhibited semantic selectivity in the sentence condition dropped
from a mean of 0.34 (n =9 cells; microarray, Cl = 0.25-0.43) to 0.19
(CI=0.07-0.31) during the word-list presentation (signed-rank test,
2(17) =40, P=0.02;Fig.2d,e), in spite of similar mean population firing
rate*® (two-sided rank-sum test, z value = 0.10, P= 0.16). The results were
similar for the Neuropixels recordings, for the Sl dropped from 0.39
(CI=0.33-0.45) during the presentation of sentences to 0.29 (Cl = 0.19-
0.39) during word-list presentation (Extended Data Fig. 3e; signed-rank
test, z(41) =168, P= 0.035). These findings therefore suggested that the
response selectivity of these neurons was strongly influenced by the
word’s context and that these changes were independent of potential
variations in attentional engagement, as evidenced by similar overall
firing rates between the sentences and word lists*S.

Second, to test whether the neurons’ activity reflected the words’
meaningsindependently of their word-form similarity, we used homo-
phone pairs that are phonetically identical but differ in meaning (for
example, ‘sun’ versus ‘son’; Extended Data Table 1). Here we find that
neurons across the population exhibited alarger difference in activity
for words that sounded the same but had different meanings (that is,
homophones) compared to words that sounded different but belonged
to the same semantic domain (permutation test, P< 0.0001; n =115
cells; microarray, for which data were available; Figs. 2c and 3a and
Methods (‘Evaluating the context dependency of neuronal response
using homophone pairs’)). These neurons therefore encoded the words’
meanings independently of their sound-level similarity.

Last, we quantified the degree to which the words’ meanings could be
predicted fromthe sentencesinwhichthey appeared. Here we reasoned
that words that were more likely to occur on the basis of their preceding
word sequence and context should be easier to decode. Using along
short-term memory model to quantify eachword’s surprisal based on
its sentence context (Methods (‘Evaluating the context dependency of
neuronal response using surprisal analysis’)), we find that decoding
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accuracies for words that were more predictable were significantly
higher than for words that were less predictable (comparing top versus
bottom deciles; 26 + 14% versus 10 + 9% respectively, rank-sum test,
zvalue =26, P<0.0001; Fig. 3b). Similar findings were also obtained
from the Neuropixelsrecordings (rank-sumtest, z value = 25, P< 0.001;
Extended Data Fig. 3d), indicating that information about the sen-
tences was being tracked and that it influenced neuronal response.
These findings therefore together suggested that the activities of these
neurons were dynamic, reflecting processing of the words’ meanings
based on their specific sentence contexts and independently of their
phonetic form.

Organization of semantic representations

The above observations suggested that neurons within the population
encoded information about the words’ meanings during comprehen-
sion. How they may represent the higher-order semanticrelationships
amongwords, however, remained unclear. Therefore, to further probe
the organization of neuronal representations of meaning at the level of
the cell population, we regressed the responses of the neurons (n =133)
onto theembedding vectors of all wordsin the study vocabulary (that s,
amatrix of nwords x 300 embedding dimensions), resultingin aset of
model weights for the neurons (Fig. 4a, left, and Methods (‘Determining
therelation between the word embedding space and neural response’)).
These model weights were then concatenated (dimension =133 x 300)
todefine a putative neuronal-semantic space. Each model weight can
therefore beinterpreted asthe contribution of a particular dimension
intheembedding space to the activity of agiven neuron, such that the
resulting transformation matrix reflects the semantic relationships
among words as represented by the population™***,

Applying a principal component (PC) analysis to these weights, we
find that the first five PCs accounted for 46% of the variance in neu-
ral population activity (Fig. 4a right and Extended Data Fig. 7a) and
81% of the variance for the semantically selective neurons (Extended
Data Fig. 3g for the Neuropixels recordings). Moreover, when pro-
jecting words back into this PC space, we find that the vectoral dis-
tances between neuronal projections significantly correlated with the
dimensionally reduced word distances in the original word embed-
dings (258,121 possible word pairings; r = 0.04, permutation test,
P <0.0001; Extended Data Fig. 7b). Significant correlations between
word similarity and neuronal activity were also observed when using
anon-embedding approach based on the ‘synset’ similarity metric
(WordNet; r=-0.76, P=0.001; Extended Data Fig. 7d) as well as when
comparing the vectoral distances in the word embeddings to the raw
firing activities of the neurons (r = 0.17; permutation test, one-sided,
P=0.02, Fig. 4b and Extended Data Fig. 7c for microarray recordings
and r=0.21; Pearson’s correlation, P < 0.001; Extended Data Fig. 3h
for Neuropixels recordings). Our findings therefore suggested that
these cell populations reliably captured the semantic relationships
among words.

Finally, to evaluate whether and to what degree neuronal activity
reflected the hierarchical semantic relationship between words, we
compared differencesin firing activity for eachword pair to the cophe-
netic distances between those words**~*' in the 300-dimension word
embedding space (Methods (‘Estimating the hierarchical structure and
relation between word projections’)). Here the cophenetic distance
between a pair of words reflects the height of the dendrogram where
the two branches that include these two words merge into a single
branch. Using an agglomerative hierarchical clustering procedure,
we find that the activities of the semantically selective neurons closely
correlated with the cophenetic distances between words across the
study vocabulary (r=0.38, P=0.004; Fig. 4c). Therefore, words that
were connected by fewer links in the hierarchy and thus more likely to
share semantic features (for example, ‘ducks’ and ‘eggs’)*** elicited
smaller differences in activity than words that were connected by a
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Fig.4|Hierarchical semanticrelationship between word representations.
a, Left: the activity of each neuron was regressed onto 300-dimensional word
embedding vectors. APCanalysis was then used to dimensionally reduce this
space from the concatenated set model parameters such that the cosine
distance between each projection reflected the semantic relationship between
words asrepresented by the neural population. Right: PC space with arrows
highlighting two representative word projections. The explained variance and
correlationbetween cosine distances for word projections derived from the
word embedding space versus neural data (n=258,121 possible word pairs) are
showninExtended DataFig.7a,b.b, Left: activities of neurons for word pairs
based ontheir vectoral cosine distance within the 300-dimensional embedding
space (z-scored activity change over percentile cosine similarity, red regression
line; Pearson’s correlation, r=0.17). Right: correlation between vectoral cosine
distancesinthe word embedding space and difference in neuronal activity
across possible word pairs (orange) versus chance distribution (grey,n=1,000,
P=0.02; Extended DataFig. 7c). ¢, Left: scatter plot showing the correlation
between population-averaged neuronal activity and the cophenetic distances
betweenwords (n=100 bins) derived from the word embedding space (red
regression line; Pearson’s correlation, r= 0.36). Right: distribution of
correlations between cophenetic distances and neuronal activity across the
different participants (n=10).

larger number of links (for example, ‘eggs’ and ‘doorbell’; Fig. 5 and
Methods (‘t-stochastic neighbour embedding procedure’)). These
resultstherefore together suggested that these cell ensembles encoded
richly detailed information about the hierarchical semantic relation-
ship between words.

Discussion

Neurons are the most basic computational units by which informationis
encodedinthebrain. Yet, despite agrowing understanding of the neural
substrates of linguistic*? and semantic processing™**, understand-
ing how individual neurons represent semantic information during
comprehension in humans has largely remained out of reach. Here,
using single-neuronal recordings during natural speech processing,
we discover cells in the prefrontal cortex of the language-dominant
hemisphere that responded selectively to particular semantic domains
and that exhibited preferential responses to specific word meanings.
More notably, the combined activity patterns of these neurons could
beused toaccurately decode the semantic domain to which the words
belonged even when tested across entirely different linguistic materials
(thatis, story narratives), suggesting a process that could allow seman-
ticinformation to be reliably extracted during comprehension at the
cellular scale. Lastly, to understand language, the meanings of words
likely need to be robustly represented within the brain, entailing not
only similar representations for words that share semantic features (for
example, ‘mouse’ and ‘rat’) but also sufficiently distinct representations
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Fig.5|Organization of semantic representations within the cell
population. a, Anagglomerative hierarchical clustering procedure was
carried out on allword projectionsin PC space obtained from the neuronal
populationdata. The dendrogram shows representative word projections,
withthebranches truncated to allow for visualization. Words that were
connected by fewer links in the hierarchy have asmaller cophenetic distance.
b, At-stochastic neighbour embedding procedure was used to visualize all
word projections (ingrey) by collapsing them onto acommon two-dimensional
manifold. For comparison, representative words are further colour-coded on
the basis of their original semantic domain assignmentsin Fig. 1c.

for words that differ in meaning (for example, ‘mouse’ and ‘carrot’).
Here we find a putative cellular process that could support such robust
word meaning representations during language comprehension.

Collectively, these findingsimply that focal cortical areas such as the
onefromwhichwerecorded here may be potentially able to represent
complex meanings largely in their entirety. Although we sampled cells
fromarelatively restricted prefrontal region of the language-dominant
hemisphere, these cell populations were capable of decoding mean-
ings—at least at a relatively coarse level of semantic granularity—of
alarge set of diverse words and across independent sets of linguis-
tic materials. The responses of these cell ensembles also harboured
detailed information about the hierarchical relationship between words
across thousands of word pairs, suggesting a cellular mechanism that
could allow semanticinformation to be rapidly mapped onto the popu-
lation’s response patterns, in real time during speech.

Another notable observation fromthese recordingsis that the activi-
ties of the neurons were highly context dependent, reflecting the words’
meanings based on the specific sentences in which they were heard
evenwhen they were phonetically indistinguishable. Sentence context
isessential to our ability to honein onthe precise meaning or aspects of
meaning needed to infer complexideas fromlinguistic utterances, and
is proposed to play a key role in language comprehension*®#"*2, Here
we find that the neurons’ responses were highly dynamic, reflecting

the meaning of the words within their respective contexts, even when
the words were identical in form. Loss of sentence context or less pre-
dictive contexts, on the other hand, diminished the neurons’ ability
to differentiate among semantic representations. Therefore, rather
than simply responding to words as fixed stored memory representa-
tions, these neurons seemed to adaptively represent word meanings
ina context-dependent manner during natural speech processing.

Taken together, these findings reveal a highly detailed representa-
tion of semantic information within prefrontal cortical populations,
and a cellular process that could allow the meaning of words to be
accurately decoded inreal time during speech. As the present findings
focus onauditory language processing, however, it is also interesting
to speculate whether these semantic representations may be modality
independent, generalizing to reading comprehension®***, or even gen-
eralize tonon-linguistic stimuli, such as pictures or videos or nonspeech
sounds. Further, it remains to be discovered whether similar semantic
representations would be observed across languages, including in
bilingual speakers, and whether accessing word meaningsin language
comprehension and production would elicit similar responses (for
example, whether the representations would be similar when partici-
pants understand the word ‘sun’ versus produce the word ‘sun’). It is
also unknown whether similar semantic selectivity is present across
other parts of the brain such as the temporal cortex, how finer-grained
distinctions are represented, and how representations of specific words
are composed into phrase- and sentence-level meanings.

Our study provides aninitial framework for studying linguistic and
semantic processing during comprehension at the level of individual
neurons. It also highlights the potential benefit of using different
recording techniques, linguistic materials and analytic techniques to
evaluate the generalizability and robustness of neuronal responses. In
particular, our study demonstrates that findings from the two record-
ing approaches (tungsten microarray recordings and Neuropixels
recordings) were highly concordant and suggests a platform from
whichtobegin carrying out similar comparisons (especially inlight of
the increasing emphasis on robustness and replicability in the field).
Collectively, our findings provide evidence of single neurons that
encode word meanings during comprehension and a process that could
supportour ability to derive meaning from speech —opening the door
for addressing a multitude of further questions about human-unique
communicative abilities.
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Methods

Study participants

All procedures and studies were carried out in accordance with the
Massachusetts General Hospital Institutional Review Board and in
strict adherence to Harvard Medical School guidelines. All partici-
pantsincludedinthe study were scheduled to undergo planned awake
intraoperative neurophysiology and single-neuronal recordings for
deep brain stimulation targeting. Consideration for surgery was made
by a multidisciplinary team including neurologists, neurosurgeons
and neuropsychologists'®**5"%, The decision to carry out surgery was
made independently of study candidacy or enrolment. Further, all
microelectrode entry points and placements were based purely on
planned clinical targeting and were made independently of any study
consideration.

Once and only after a patient was consented and scheduled for sur-
gery, their candidacy for participationin the study was reviewed with
respect to the following inclusion criteria: 18 years of age or older,
right-hand dominant, capacity to provide informed consent for study
participation and demonstration of English fluency. To evaluate for
language comprehension and the capacity to participate in the study,
the participants were given randomly sampled sentences and were then
asked questions about them (for example, “Eva placed a secret message
inabottle” followed by “What was placed in the bottle?”). Participants
notable toanswer all questions on testing were excluded from consid-
eration. All participants gave informed consent to participate in the
study and were free to withdraw at any point without consequence to
clinical care. A total of 13 participants were enrolled (Extended Data
Table1). No participant blinding or randomization was used.

Neuronal recordings

Acute intraoperative single-neuronal recordings. Microelectrode
recording were performed in participants undergoing planned deep
brainstimulator placement'®, During standard intraoperative record-
ings before deep brain stimulator placement, microelectrode arrays are
used to record neuronal activity. Before clinical recordings and deep
brain stimulator placement, recordings were transiently made from
the cortical ribbonat the planned clinical placement site. These record-
ings were largely centred along the superior posterior middle frontal
gyrus within the dorsal prefrontal cortex of the language-dominant
hemisphere. Here each participant’s computed tomography scan was
co-registered to their magnetic resonance imagingscan, and asegmen-
tation and normalization procedure was carried out to bring native
brainsinto Montreal Neurological Institute space. Recording locations
were then confirmed using SPM12 software and were visualized on a
standard three-dimensional rendered brain (spm152). The Montreal
Neurological Institute coordinates for recordings are provided in
Extended Data Table1, top.

We used two mainapproaches to performsingle-neuronal recordings
fromthe cortex'®%, Altogether, ten participants underwent recordings
using tungsten microarrays (Neuroprobe, Alpha Omega Engineering)
and three underwent recordings using linear silicon microelectrode
arrays (Neuropixels, IMEC). For the tungsten microarray recordings,
we incorporated a Food and Drug Administration-approved, biode-
gradable, fibrin sealant that was first placed temporarily between the
cortical surface and theinner table of the skull (Tisseel, Baxter). Next, we
incrementally advanced anarray of up to five tungsten microelectrodes
(500-1,500 kQ; Alpha Omega Engineering) into the cortical ribbon at
10-100 pm increments to identify and isolate individual units. Once
putative units were identified, the microelectrodes were held in posi-
tion for a few minutes to confirm signal stability (we did not screen
putative neurons for task responsiveness). Here neuronal signals were
recorded using a Neuro Omega system (Alpha Omega Engineering)
thatsampled the neuronal data at 44 kHz. Neuronal signals were ampli-
fied, band-pass-filtered (300 Hz and 6 kHz) and stored off-line. Most

individuals underwent two recording sessions. After neural recordings
fromthe cortex were completed, subcortical neuronal recordings and
deep brain stimulator placement proceeded as planned.

For the silicon microelectrode recordings, sterile Neuropixels
probes™ (version 1.0-S, IMEC, ethylene oxide sterilized by BioSeal)
were advanced into the cortical ribbon with amanipulator connected
to aROSA ONE Brain (Zimmer Biomet) robotic arm. The probes (width:
70 pm, length: 10 mm, thickness: 100 um) consisted of 960 contact sites
(384 preselected recording channels) that were laid out in a chequer-
board pattern. A3B2 IMEC headstage was connected viaa multiplexed
cable to a PXle acquisition module card (IMEC), installed into a PXle
chassis (PXle-1071 chassis, National Instruments). Neuropixels record-
ings were performed using OpenEphys (versions 0.5.3.1and 0.6.0;
https://open-ephys.org/) onacomputer connected to the PXle acquisi-
tion module recording the action potential band (band-pass-filtered
from0.3t010 kHz, sampled at 30 kHz) as well as the local field potential
band (band-pass-filtered from 0.5 to 500 Hz, sampled at 2,500 Hz).
Once putative units wereidentified, the Neuropixels probe was held in
position briefly to confirm signal stability (we did not screen putative
neurons for speech responsiveness). Additional description of this
recording approach can be found in refs. 20,30,31. After completing
single-neuronal recordings fromthe cortical ribbon, the Neuropixels
probe was removed, and subcortical neuronal recordings and deep
brain stimulator placement proceeded as planned.

Single-unitisolation. For the tungsten microarray recordings, putative
units were identified and sorted off-line through a Plexon workstation.
To allow for consistency across recording techniques (thatis, with the
Neuropixels recordings), a semi-automated valley-seeking approach
was used to classify the action potential activities of putative neurons
and only well-isolated single units were used. Here, the action potentials
were sorted to allow for comparableisolation distances across record-
ing techniques® **and unit selection with previous approaches? 29645,
and tolimit theinclusion of multi-unit activity (MUA). Candidate clus-
ters of putative neurons needed to clearly separate from channel noise,
display a voltage waveform consistent with that of a cortical neuron,
and have 99% or more of action potentials separated by aninter-spike
interval of atleast 1 ms (Extended Data Fig.1b,d). Units with clear insta-
bility were removed and any extended periods (for example, greater
than 20 sentences) of little to no spiking activity were excluded from
the analysis. In total, 18 recording sessions were carried out, for an
average of 5.4 units per session per multielectrode array (Extended
DataFig.1a,b).

For the Neuropixels recordings, putative units were identified and
sorted off-line using Kilosort and only well-isolated single units were
used. We used Decentralized Registration of Electrophysiology Data
(DREDge; https://github.com/evarol/DREDge) software and an inter-
polation approach (https://github.com/williamunoz/InterpolationAf-
terDREDge) to motion correct the signal using an automated protocol
that tracked local field potential voltages using a decentralized cor-
relation technique that realigned the recording channels in relation
to brain movements®'“¢, Following this, we interpolated the continu-
ous voltage data from the action potential band using the DREDge
motion estimate to allow the activities of the recorded units to be stably
tracked over time. Finally, putative neurons were identified from the
motion-corrected interpolated signal using a semi-automated Kilosort
spike sorting approach (version 1.0; https://github.com/cortex-lab/
KiloSort) followed by Phy for cluster curation (version 2.0al; https://
github.com/cortex-lab/phy). Here, an n-trode approach was used to
optimize theisolation of single units and limit the inclusion of MUA®"¢8,
Units with clear instability were removed and any extended periods
(for example, greater than 20 sentences) of little to no spiking activity
were excluded fromanalysis. In total, 3 recording sessions were carried
out, for an average of 51.3 units per session per multielectrode array
(Extended DataFig.1c,d).
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Multi-unit isolation. To provide comparison to the single-neuronal
data, we also separately analysed MUA. These MUAs reflect the com-
bined activities of multiple putative neurons recorded from the same
electrodes asrepresented by their distinct waveforms®**’°, These MUAs
were obtained by separating all recorded spikes from their baseline
noise. Unlike for the single units, the spikes were not separated on the
basis of their waveform morphologies.

Audio presentation and recordings. The linguistic materials were
given to the participants in audio format using a Python script utiliz-
ing the PyAudio library (version 0.2.11). Audio signals were sampled
at 22 kHz using two microphones (Shure, PG48) that were integrated
into the Alpha Omega rig for high-fidelity temporal alignment with
neuronal data. Audio recordings were annotated in semi-automated
fashion (Audacity; version 2.3). For the Neuropixels recordings,
audio recordings were carried out at a 44 kHz sampling frequency
(TASCAM DR-40x% 4-channel 4-track portable audio recorder and USB
interface with adjustable microphone). To further ensure granular
time alignment for each word token with neuronal activity, the am-
plitude waveform of each session recording and the pre-recorded
linguistic materials were cross-correlated to identify the time offset.
Finally, for additional confirmation, the occurrence of each word
token and its timing was validated manually. Together, these meas-
ures allowed for the millisecond-level alignment of neuronal activ-
ity with each word occurrence as they were heard by the participants
during the tasks.

Linguistic materials

Sentences. The participants were presented with eight-word-long
sentences (for example, “The child bent down to smell the rose”;
Extended Data Table 1) that provided a broad sample of semantically
diverse words across a wide variety of thematic contents and contexts*.
To confirmthat the participants were paying attention, a brief prompt
was used every 10-15sentences asking them whether we could proceed
with the next sentence (the participants generally responded within
1-2 seconds).

Homophone pairs. Homophone pairs were used to evaluate for
meaning-specific changes in neural activity independently of pho-
netic content. All of the homophones came from sentence experiments
in which homophones were available and in which the words within
the homophone pairs came from different semantic domains. Homo-
phones (forexample, ‘sun’and ‘son’; Extended Data Table 1), rather than
homographs, were used as the word embeddings produce a unique
vector for each unique token rather than for each token sense.

Word lists. A word-list control was used to evaluate the effect that
sentence context had on neuronal response. These word lists (for
example, “to pirate with in bike took is one”; Extended Data Table 1)
contained the same words as those given during the presentation of
sentences and were eight words long, but they were giveninarandom
order, therefore removing any effect that linguistic context had on
lexico-semantic processing.

Nonwords. A nonword control was used to evaluate the selectivity
of neuronal responses to semantic (linguistically meaningful) versus
non-semantic stimuli. Here the participants were given a set of non-
wordssuchas ‘blicket’ or ‘florp’ (sets of eight) that sounded phonetically
like words but held no meaning.

Story narratives. Excerpts fromastory narrative were introduced at the
end of recordings to evaluate for the consistency of neuronal response.
Here, instead of the eight-word-long sentences, the participants were
givenabriefstoryabout thelife and history of Elvis Presley (for exam-
ple, “At ten years old, I could not figure out what it was that this Elvis

Presley guy had that the rest of us boys did not have”; Extended Data
Table1). This story was selected because it was naturalistic, contained
new words, and was stylistically and thematically different from the
preceding sentences.

Word embedding and clustering procedures

Spectral clustering of semantic vectors. To study the selectivity of
neurons to words within specific semantic domains, all unique words
heard by the participants were clustered into groups using a word
embedding approach®?*”***2, Here we used 300-dimensional vectors
extracted fromapretrained dataset generated using a skip-gram Word-
2Vec" algorithm on a corpus of 100 billion words. Each unique word
from the sentences was then paired with its corresponding vector in
a case-insensitive fashion using the Python Gensim library (version
3.4.0; Fig. 1c, left). High unigram frequency words (log probability
of greater than 2.5), such as ‘@, ‘an’ or “and’, that held little linguistic
meaning were removed.

Next, to group words heard by the participants into representative
semantic domains, we used a spherical clustering algorithm (v.0.1.7,
Python 3.6) that used the cosine distance between their representative
vectors. We then carried out a k-means clustering procedure in this new
space toobtain distinct word clusters. This approach therefore grouped
words on the basis of their vectoral distance, reflecting the semantic
relatedness between words**°, which has been shown to work well for
obtaining consistent word clusters®*”, Using pseudorandom initia-
tion cluster seeding, the k-means procedure was repeated 100 times
togenerate adistribution of values for the optimal number of cluster.
Foreachiteration, asilhouette criterion for cluster numberbetween 5
and 20 was calculated. The cluster with the greatest average criterion
value (as well as the most frequent value) was 9, which was taken as the
optimal number of clusters for the linguistic materials used>**+#,

Confirming the quality and separability of the semantic domains.
Purity measures and @’ analysis were used to confirm the quality and
separability of the semantic domains. To this end, we randomly sampled
from 60% of the sentences across 100 iterations. We then grouped all
words from these subsampled sentences into clusters using the same
spherical clustering procedure described above. The new clusters
were then matched to the original clusters by considering all possible
matching arrangements and choosing the arrangement with greatest
word overlap. Finally, the clustering quality was evaluated for ‘purity’,
whichis the percentage of the total number of words that were classi-
fied correctly’. This procedure is therefore a simple and transparent
measure that varies between O (bad clustering) to1(perfect clustering;
Fig. 1d, bottom). The accuracy of this assignment is determined by
counting the total number of correctly assigned words and dividing
by the total number of words in the new clusters:

k
X 1
purity(Q,C) = " Ei max; |@; N ¢l
P

in which nis the total number of words in the new clusters, k is the
number of clusters (thatis, 9), w;is a cluster from the set of new clusters
Q,and ;is the original cluster (from the set of original clusters C) that
has the maximum count for cluster w;. Finally, to confirm the separabil-
ity of the clusters, we used astandard @’ analysis. The d’ metric estimates
the difference between vectoral cosine distances for all words assigned
toaparticular cluster compared to those assigned to all other clusters
(Extended Data Fig. 2a).

The resulting clusters were labelled here on the basis of the pre-
ponderance of words near the centroid of each cluster. Therefore,
although not allwords may seem to intuitively fit within each domain,
the resulting semantic domains reflected the optimal vectoral cluster-
ing of words based on their semantic relatedness. To further allow for
comparison, we also introduced refined semantic domains (Extended



Data Table 2) in which the words provided within each cluster were
additionally manually reassigned or removed by two independent
study members on the basis of their subjective semantic relatedness.
Thus, for example, under the semantic domain labelled ‘animals’, any
word that did not refer to an animal was removed.

Neuronal analysis

Evaluating the responses of neurons to semantic domains. To evalu-
ate the selectivity of neurons to words within the different semantic
domains, we calculated their firing rates aligned to each word onset.
To determine significance, we compared the activity of each neuron
forwords thatbelonged to a particular semantic domain (for example,
‘food’) to that for words fromall other semantic domains (for example,
all domains except for ‘food’). Using a two-sided rank-sum test, we
then evaluated whether activity for words in that semantic domain was
significantly different from activity in all semantic domains, with the
Pvaluebeing false discovery rate-adjusted using aBenjamini-Hochberg
method to account for repeated comparisons across all of the nine
domains. Thus, for example, when stating that a neuron exhibited sig-
nificantselectivity to the domain of ‘food’, this meant thatit exhibited a
significant differenceinits activity for words within that domain when
comparedtoall other words (thatis, it responded selectively to words
thatdescribed food items).

Next we determined the Sl of each neuron, which quantified the
degreetowhichitresponded towords within specific semantic domains
compared to the others. Here Sl was defined by the cell’s ability to dif-
ferentiate words within a particular semantic domain (for example,
‘food’) comparedto all others and reflected the degree of modulation.
The SIfor each neuron was calculated as

_ [FRdomain ~ FRother!

SI
|FRdomain + l:Rother|

in which FR 4omain is the neuron’s average firing rate in response to
words within the considered domain and FR ., is the average firing
rateinresponse to words outside the considered domain. The Slthere-
forereflects the magnitude of effect based on the absolute difference
inactivity for each neuron’s preferred semantic domain compared to
others. Therefore, the output of the function is bounded by 0 and 1.
AnSlof 0 would mean that there is no difference in activity across any
of the semantic domains (that is, the neuron exhibits no selectivity)
whereas an Sl of 1.0 would indicate that a neuron changed its action
potential activity only when hearing words within one of the semantic
domains.

A bootstrap analysis was used to further confirm reliability of
each neuron’s Sl across linguistic materials in two parts. For the first
approach, the words were randomly splitinto 60:40% subsets (repeated
100 times) and the Sl of semantically selective neurons was comparedin
both subsets of words. For the second, instead of using the mean SI, we
calculated the proportion of times that aneuron exhibited selectivity
foranother category other thantheir preferred domain whenrandomly
selecting words from 60% of the sentences.

Confirming the consistency of neuronal response across analysis
windows. The consistency of neuronal response across analysis win-
dows was confirmed in two parts. The average time interval between
thebeginning of one word and the next was 341 + 5 ms. For all primary
analysis, neuronal responses were analysed in 400-ms windows, aligned
toeachword, with a100-ms time-lagto further account for the evoked
response delay of prefrontal neurons. To further confirm the consist-
ency of semantic selectivity, we first examined neuronal responses
using 350-ms and 450-ms time windows. Combining recordings across
all13 participants, asimilar proportion of cells exhibiting selectivity was
observed when varying the window size by £50 ms (17% and 15%, x*(1,
861) =0.43, P=0.81) suggesting that the precise window of analysis did

not markedly affect these results. Second, we confirmed that possible
overlap between words did not affect neuronal selectivity by repeating
our analyses but now evaluated only non-neighbouring content words
within each sentence. Thus, for example, for the sentence “The child
bentdownto smell the rose”, we would evaluate only non-neighbouring
words (for example, child, down and so on) per sentence. Using this
approach, we find that the SI for non-overlapping windows (that is,
every other word) was not significantly different from the original SIs
(0.41+0.03 versus 0.38 + 0.02, t = 0.73, P= 0.47); together confirm-
ing that potential overlap between words did not affect the observed
selectivity.

Model decoding performance and the robustness of neuronal
response. To evaluate the degree to which semantic domains could
be predicted from neuronal activity ona per-word level, we randomly
sampled words from 60% of the sentences and then used the remain-
ing40% for validation across 1,000 iterations. Only candidate neurons
that exhibited significant semantic selectivity and for which sufficient
words and sentences were recorded were used for decoding purposes
(43 of 48 total selective neurons). For these, we concatenated all of
the candidate neurons from all participants together with their firing
rates as independent variables, and predicted the semantic domains
of words (dependent variable). Support vector classifiers (SVCs) were
then used to predict the semantic domains to which the validation
words belonged. These SVCs were constructed to find the optimal
hyperplanes that best separated the data by performing

(1,2
mi jwec3 ¢
subject to
Yy (W) +b) 21-,

inwhich y € {1, -1}", corresponding to the classification of individual
words, x is the neural activity, and ;= max (0, 1 -, (wx; = b)). Thereg-
ularization parameter C was set to 1. We used a linear kernel and
‘balanced’ class weight to account for the inhomogeneous distribution
of words across the different domains. Finally, after the SVCs were
modelled on the bootstrapped training data, decoding accuracy for
the models was determined by using words randomly sampled and
bootstrapped from the validation data. We further generated a null
distribution by calculating the accuracy of the classifier after randomly
shuffling the cluster labels on 1,000 different permutations of the
dataset. These models therefore together determine the most likely
semantic domain from the combined activity patterns of all selective
neurons. An empirical Pvalue was then calculated as the percentage
of permutations for which the decoding accuracy from the shuffled
data was greater than the average score obtained using the original
data. The statistical significance was determined at P value < 0.05.

Quantifying the specificity of neuronal response. To quantify the
specificity of neuronal response, we carried out two procedures. First,
wereduce the number of words from each domain from100% to 25% on
thebasis of their vectoral cosine distance from each of their respective
domains’ centroid. Thus, for each domain, words that were closest to
its centroid, and therefore most similar in meaning, were kept whereas
words farther away were removed. The Sls of the neurons were then
recalculated as before (Fig. 1h). Second, we repeated the decoding pro-
cedure but now varied the number of semantic domains from 2 to 20.
Thus, a higher number of domains would mean fewer words per domain
(thatis, increased specificity of meaning relatedness) whereas a smaller
number of domains would mean more words per domain. These decod-
ersused 60% of words for model training and 40% for validation (200
iterations). Next, to evaluate the degree to which neuron and domain
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number led to improvement in decoding performance, models were
trained for all combinations of domain numbers (2 to 20) and neuron
numbers (1to 133) using a nested loop. For control comparison, we
repeated the decoding analysis but randomly shuffled the relation
between neuronal response and each word as above. The percentage
improvementin prediction accuracy (PA) for agiven domain number
(d) and neuronal size (n) was calculated as

[PAactual(dr n) - PAshufﬂe(dr n)]
PAactual(dr n)

improvement(d, n) =100 x

Evaluating the context dependency of neuronal response using
homophone pairs. We compared the responses of neurons to homo-
phone pairsto evaluate the context dependency of neuronal response
and to further confirm the specificity of meaning representations. For
example, if the neurons simply responded to differences in phonetic
input rather than meaning, then we should expect to see smaller dif-
ferences in firing rate between homophone pairs that sounded the
same but differed in meaning (for example, ‘sun’and ‘son’) compared
to non-homophone pairs that sounded different but shared similar
meaning (for example, ‘son’ and ‘sister’). Here, only homophones that
belonged to different semantic domains were included for analysis.
A permutation test was used to compare the distributions of the ab-
solute difference in firing rates between homophone pairs (sample
x) and non-homophone pairs (sample y) across semantically selec-
tive cells (P< 0.01). To carry out the permutation test, we first calcu-
lated the mean difference between the two distributions (sample x
andy) as the test statistic. Then, we pooled all of the measurements
from both samples into a single dataset and randomly divided itinto
two new samples x’ and y’ of the same size as the original samples.
We repeated this process 10,000 times, each time computing the
difference in the mean of x” and y’ to create a distribution of possi-
ble differences under the null hypothesis. Finally, we computed the
two-sided P value as the proportion of permutations for which the
absolute difference was greater than or equal to the absolute value
of the test statistic. A one-tailed ¢-test was used to further evaluate
for differences in the distribution of firing rates for homophones
versus non-homophone pairs (P < 0.001). To allow for comparison,
2 of the 133 neurons did not have homophone trials and were there-
fore excluded from analysis. An additional 16 neurons were also
excluded forlack of response and/or for lying outside (>2.5 times) the
interquartile range.

Evaluating the context dependency of neuronal response using
surprisal analysis. Information theoretic metrics such as ‘surprisal’
define the degree to which a word can be predicted on the basis of its
antecedent sentence context. To examine how the preceding context
of each word modulated neuronal response on a per-word level, we
quantified the surprisal of each word as follows:

surprisal(w;) = - logP(w; | w;...w;_y)

in which Prepresents the probability of the current word (w) at posi-
tion i within a sentence. Here, a pretrained long short-term memory
recurrent neural network was used to estimate P(w; | w,...w,_,)’>. Words
thatare more predictable on the basis of their preceding context would
therefore have alow surprisal whereas words that are poorly predict-
able would have a high surprisal.

Next we examined how surprisal affected the ability of the neurons
toaccurately predict the correct semantic domains on a per-word level.
To this end, we used SVC models similar to that described above, but
now divided decoding performances between words that exhibited
high versus low surprisal. Therefore, if the meaning representations
of words were indeed modulated by sentence context, words that are
more predictable on the basis of their preceding context should exhibit

a higher decoding performance (that is, we should be able to predict
their correct meaning more accurately from neuronal response).

Determining the relation between the word embedding space and
neural response. To evaluate the organization of semantic representa-
tions within the neural population, we regressed the activity of each
neuron onto the 300-dimensional embedded vectors. The normalized
firing rate of eachneuron was modelled as alinear combination of word
embedding elements such that

Fi,w = Uwei + gi

inwhich £; , is the firing rate of the ith neuron aligned to the onset of
eachwordw, ;is acolumn vector of optimized linear regression coef-
ficients, v, is the 300-dimensional word embedding row vector associ-
ated withword w, and ¢;is the residual for the model. On a per-neuron
basis, 6, was estimated using regularized linear regression that was
trained usingleast-squares error calculation with aridge penalization
parameter A= 0.0001. The model values, 8, of each neuron (dimen-
sion =1x300) were then concatenated (dimension =133 x 300) to
define a putative neuronal-semantic space 0. Together, these can
therefore beinterpreted as the contribution of a particular dimension
intheembedding spacetotheactivity of agiven neuron, such that the
resulting transformation matrix reflects the semantic space repre-
sented by the neuronal population.

Finally, a PC analysis was used to dimensionally reduce 0 along
the neuronal dimension. This resulted in an intermediately reduced
space (0,,) consisting of five PCs, each with dimension =300, together
accounting for approximately 46% of the explained variance (81% for
the semantically selective neurons). As this procedure preserved the
dimensionwith respect tothe embeddinglength, the relative positions
of words withinthis space could therefore be determined by projecting
word embeddings along each of the PCs. Last, to quantify the degree
to which the relation between word projections derived from this PC
space (neuronal data) correlated with those derived from the word
embeddingspace (Englishword corpus), we calculated their correlation
across allword pairs. Froma possible 258,121 word pairs (the availability
of specific word pairs differed across participants), we compared the
cosine distances between neuronal and word embedding projections.

Estimating the hierarchical structure and relation between word
projections. As word projections in our PC space were vectoral repre-
sentations, we could also calculate their hierarchical relations. Here we
carried out an agglomerative single-linkage (thatis, nearest neighbour)
hierarchical clustering procedure to construct adendrogram that rep-
resented the semantic relationships between allword projectionsin our
PCspace. Wealsoinvestigated the correlation between the cophenetic
distancein the word embedding space and difference in neuronal activ-
ity across allword pairs. The cophenetic distance between a word pair
isameasure ofinter-cluster dissimilarity and is defined as the distance
between the largest two clusters that contain the two words individu-
ally when they are merged into a single cluster that contains both* -,
Intuitively, the cophenetic distance between a word pair reflects the
height of the dendrogram where the two branches that include these
two words merge into a single branch. Therefore, to further evaluate
whether and to what degree neuronal activity reflected the hierarchi-
cal semantic relationship between words, as observed in English, we
also examined the cophenetic distances in the 300-dimension word
embedding space. For each word pair, we calculated the difference
in neuronal activity (that is, the absolute difference between average
normalized firing rates for these words across the population) and
then assessed how these differences correlated with the cophenetic
distances between words derived from the word embedding space.
These analyses were performed on the population of semantically selec-
tive neurons (n=19). For further individual participant comparisons,



the cophenetic distances were binned more finely and outliers were
excluded to allow for comparison across participants.

t-stochastic neighbour embedding procedure. To visualize the
organization of word projections obtained from the PC analysis at the
level of the population (n =133), we carried out a¢-distributed stochastic
neighbour embedding procedure that transformed each word projec-
tion into a new two-dimensional embedding space 0, (ref. 74). This
transformation utilized cosine distances between word projections as
derived from the neural data.

Non-embedding approach for quantifying the semantic relationship
between words. To further validate our results using anon-embedding
approach, we used WordNet similarity metrics”. Unlike embedding
approaches, which are based onthe modelling of vastlanguage corpora,
WordNet is a database of semantic relationships whereby words are
organizedinto ‘synsets’ on the basis of similarities in their meaning (for
example, ‘canine’ is a hypernym of ‘dog’ but ‘dog’ is also a coordinate
termof‘wolf’andsoon). Therefore, although synsets donot provide vec-
toral representations that can be used to evaluate neuronal response to
specific semantic domains, they do provide a quantifiable measure of
word similarity” that can be regressed onto neuronal activity.

Confirming the robustness of neuronal response across participants.
Finally, to ensure that our results were not driven by any particu-
lar participant(s), we carried out a leave-one-out cross-validation
participant-dropping procedure. Here we repeated several of the analy-
ses described above but now sequentially removed individual partici-
pants (thatis, participants1-10) across 1,000 iterations. Therefore, if
any particular participant or group of participants disproportionally
contributed to the results, their removal would significantly affect
them (one-way analysis of variance, P < 0.05). A x> test (P < 0.05) was
used to further evaluate for differences in the distribution of neurons
across participants.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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online at https://figshare.com/s/94962977e0cc8b405ef3. Details of
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Extended DataFig.1|Language-related activity, recording stability,
waveform morphology andisolation quality across recording techniques.
a, Example of waveform morphologies displaying mean waveform +3s.d and
associated PCdistributions used toisolate putative units from the tungsten
microarray recordings. The horizontal bar indicates a 500 psinterval for scale.
Thegray areasin PC spacerepresent noise. All single units recorded from the
sameelectrode were required to display a high degree of separationin PC
space. b, Isolation metrics of the single units obtained from the tungsten
microarray recordings. ¢, Left, waveform morphologies observed across
contactsinaNeuropixels array. Right, PC distributions used toisolate and
cluster single units. d, Isolation distance and nearest neighbor noise overlap
oftherecorded units obtained from the Neuropixels arrays.
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Extended DataFig.2|Cluster separability and consistency of neuronal
responses across participants. a, The d’(d-prime) indices measuring
separability between the distribution of the vectoral cosine distances among
allwords within a cluster (purple) and those among all words across clusters
(gray).Thed’indices wereall above 2.5 reflecting strong separability.

b, Selectivity index of neurons (mean with 95% CL, n =19) when semantic
domains were refined by moving or removing words whose meanings did not
intuitively fit with their respective labels (Extended Data Table 2). ¢, There was
nosignificantdifference (x*=2.33, p=0.31) inthe proportions of neurons that
displayed semantic selectivity based on the participants’ clinical conditions of
essential tremor (ET), Parkinson’s disease (PD) or cervical dystonia (CD).d, Left,
the proportional contribution per participant based on the total percentage of
neurons contributed. Right, the proportional contribution of semantically
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selective cells per participant based on the fraction contributed. Participants
withoutselective cells are notshown. e, A leave one out cross-validation
participant-dropping procedure demonstrated that population results
remained similar. Here, we sequentially removed individual participants (i.e.,
participants #1-10) and then repeated our selectivity analysis. Semantic
selectivity across neurons was largely unaffected by removal of any of the
participants (one-way ANOVA, F(9,44) = 0.11, p = 0.99). Here, the mean
selectivity indices (+ s.e.m.) are separately presented after removing each
participant.f, A cross-validation participant-dropping procedure was used to
determine whether any of the participants disproportionately contributed to
the population decoding. Average decoding results and comparisonto the
shuffled data are separately presented after removing each participant
(permutationtest, p < 0.01; #1-10).
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Extended DataFig. 3| Confirming consistency of
semanticrepresentations by neurons using Neuropixels
recordings. a, Coincidence matrixillustrating the
distribution of cells obtained from Neuropixels recordings
thatdisplayedselective responses to one or more semantic
domains (two-tailed rank-sumtest, p < 0.05, FDR adjusted).
Inset, proportions of cells that displayed selective responses
to one or more semantic domains. b, The distributions of Sls
areshown separately for semantically-selective (n =29,
orange) and non-selective (n =125, grey) cells. The mean SI
of cells that did not display semantic selectivity (n =125) was
0.16 (one-sided rank-sum test, z-value =7.2, p < 0.0001).
Inset, selectivity index (SI) of each neuron (n =29) when
compared across different semantic domains.c, The
cumulative decoding performance (+s.d.) of all semantically
selective neurons during sentences (blue) versus chance
(orange). Inset, decoding performances (+s.d.) across two
independent embedding models (Word2Vec and GloVe).

d, Decodingaccuracies for words that displayed high vs.
low surprisal based on the preceding sentence contextsin
which they were heard. Actual and chance decoding
performances are showninblue and orange, respectively
(meants.d., one-sided rank-sumtest z-value =25, p <0.001).
Theinsetshows aregression analysisonthe relationbetween
decoding performance and surprisal. e, Left, Sl distributions
forneurons during word list and sentence presentations
together with the number of neurons that responded
selectivity to one or more semantic domains (/nset). Right,
the SIfor neurons (meanwith 95% CL, n = 21; excluding zero
firingrate neurons) during word-list presentation. The SI
dropped from 0.39 (Cl = 0.33-0.45) during the sentences to
0.29 (CI1=0.19-0.39) during word list presentation (signed-
ranktest,z(41) =168, p = 0.035).f, The selectivity index of
neurons for which nonword lists presentation was performed
(n=260f153 cellswere selective) when comparing their
activities during sentences vs.nonwords (mean Sl = 0.34,
CI=0.28-0.40).Here, theselectivity of each neuronreflects
the degree towhichitdifferentiates any semantic
(meaningful) compared to non-semantic (nonmeaningful)
information. g, Contributionto the variance explainedin
PCspace for word projections across participantsusinga
participant-dropping procedure. h, Activities of neurons
for word pairsbased on their vectoral cosine distance
within the 300-dimensional embedding space (z-scored
activity change over percentile cosine similarity; Pearson’s
correlationr=0.21,p<0.001).
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Extended DataFig. 4 |Selectivity of neurons to linguistically meaningful
versus nonmeaningful information. a, The distributions of SIs are shown
separately for cells that displayed significance for semanticinformation
(n=19,orange) and those that did not (n =114, grey). The mean Sl of cells that
did not display semantic selectivity (n =114) was 0.14 (one-sided rank-sum test,
z-value=5.8,p <0.0001).b, Decoding performances (mean +s.d.) for cells that
were notsignificantly selective for any particular semantic domain but which
had anSlgreater than 0.2 (n=11) compared to that of shuffled data (21 + 6%;
permutationtest, p=0.046).c, Thesselectivity index of neurons for which
nonword lists presentation was performed (n =27 of 48 cells for which this

control was performed displayed asignificant differenceinactivity usinga
two-sided t-test) when comparing their responses to nonwords (i.e., that
carried no linguistic meaning) versus sentences (i.e., that carried linguistic
meaning; mean Sl =0.43, Cl=0.35-0.51). The semantically selective cells
(n=6,red) displayed a similar word vs. nonword SIwhen compared to the
non-semantically selective cells (n =21, orange; two-sided t-test, df=26,p =1.0).
d, Peristimulus histograms (mean +s.e.m.) and rasters of representative
neurons when the participants were given words heard within sentences (red)
orsetsof nonwords (gray). The horizontal green bars display the 400 ms
window of analysis.
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Extended DataFig. 5| Generalizability and robustness of word meaning
representations. a, Average decoding performances (+ s.d., purple,n=1000
iterations) were found to be slightly lower for words heard early (first 4 words)
vs. late (last 4 words) within their respective sentences (23 £ 7% vs.29 + 8%
decoding performance, respectively; One-sided rank sum test, z-value =17,
p<0.001)*"". The orange bars represent control accuracy with shuffling
neuronal activities. b, Cumulative mean decoding performance (ts.d., purple)
for multi-units (MUs) compared with chance (orange). The meandecoding
accuracy forallMUswas 23 + 6%s.d. (one-sided permutation test, p = 0.02)
andreflect the unsorted activities of units obtained through recordings
(Methods). c, Relationship between the number of neurons considered, the
number of word clusters modeled, and predictionaccuracy. Here, alower
number of clusters leads to more words per grouping and therefore domains

# word clusters

thatarenotasspecificin meaning (e.g., “sun”, “rain”, “clouds”, and “sky”,)
whereas ahigher number of clusters means fewer words and therefore domains
that are more specificin meaning (e.g., “rain” and “clouds”).d, The percent
improvementindecodingaccuracy (mean ts.e.m) corresponds todecoding
performance minus chance probability using 60% of randomly selected
sentences for modeling and 40% for decoding (n =200 iterations). /nset,
relation between log of odds probability (mean +s.e.m) of predicting the
correctsemanticdomains and number of clusters (i.e., not accounting for
chance probability). e, The relation between the number of word clusters
modeled and the percentimprovementin decodingaccuracy (mean +s.e.m)
when considering semantically selective (high SI) and non-selective (low SI)
cellsseparately.
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Extended DataFig.7|Populationorganization of semanticrepresentations. inneuronalactivities (n=19 neurons, p=0.048, two-sided paired t-test,

a, Contribution to percent variance explained in PC space for word projections t(18) =2.12) for word pairs whose vectoral cosine distances were far versus near
across participants using a participant-dropping procedure (first 5-15 PCs; intheword embeddingspace. d, Relation between neuronal activity and word
two-sided z-test; p>0.7).b, Correlation between the vectoral cosine distances meaning similarity usinganon-embeddingbased ‘synset’ approach (n=100
between PC-reduced word-projections derived from the neural dataand PC- bins, Pearson’s correlationr=-0.76, p = 0.001). Here, the degree of similarity
reduced vectors derived from the 300-dimensional word embedding space ranges from0to01.0, withavalue of 1.0 indicating that the words are highly

(n=258,121possible word-pairs; note that not all pairswere used for allrecordings ~ similarin meaning (e.g., “canine” and “dog”) and O indicating that their meanings
perneuronsince certain words were not heard by all participants). ¢, Difference arelargely distinct.



Extended Data Table 1| Demographic data of study participants and task materials

Demographics Analysis inputs
Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 Sentence Word list Non-word Homophone  Story
Age 79 44 71 59 33 66 68 67 70 58 66 68 70 Microarray
Sex M M M M M F M M F M M M F Participant 10 3 7 10 3
Diagnosis PD PD ET PD PD PD ET CD CD PD PD PD PD MPTE gtk GO0 ES . L -
MNI x na* 26 -31 -30 -39 35 -35 -35 -34 25 42 -23 -20 Neuropixels
v na 29 28 11 18 25 13 10 22 14 23 43 31 Participant 3 3 3 3 3
z na 59 54 67 63 54 63 60 59 66 50 43 55 Word count 1431 197 160 5* 90

PD = Parkinson’s disease; ET = Essential tremor; CD = Cervical dystonia

* Participant #1 did not have an MRI.

Sentence Examples

* Number of homophone pairs

The captain threw an anchor off the freighter.
The spider spun its web in the corner.

The girls run two miles on Tuesday mornings.
My aunt gave me a pair of jeans.

The child bent down to smell the rose.

Liz really wanted to get a little puppy.

Abby watched the waves crash on the sand.
The flock of sheep lived near the hillside.
Alex was tired so he took a nap.

Dan placed the dish with cherries near Brian.
The squirrel made a nest on the tree.

Charlie clapped for the actors as they bowed.
The sign says that we cannot pass here.

| am going to live by the bay.

The bear caught some fish in the stream.
Ron played a game with his little brother.
Frank did not mean to shatter the vase.
The king and queen put on their crowns.
The cat was watching the bird from afar.
Sally and Nick hopped over the picket fence.
Two swans walked along the edge of water.
Rosa took a hammer out of the shed.

A leader must know how to inspire others.
Eva placed a secret message in a bottle.

Water quickly spewed out of the mermaid fountain.

Lucas took out the broom and started sweeping.

The ants walked towards the red picnic blanket.
Michael enjoys watching the ducks at the park.
Liz packed her old clothes in a suitcase.
Leslie's earrings could be seen across the room.
The black and white photo rested close by.

The sailors onshore stared out at the sea.

The wooden doll lay near the teddy bears.

The white bunny ate a plate of carrots.

The witch rode on the broomstick at midnight.
If you work hard it will pay off.

Dad was tired so he took a nap.

The nearest town is larger than this one.

Word List Examples

Bottle flying sisters the dad Emma’s shells.
To pirate with in bike took is one.

A cake filled some during early filled pile.
Ball the wrapped the Ali of a mermaid.
Salad the was at ride room was his.

Behind photo to on his queen the a.

Birthday nap found bake for to girl dog.

The a Anna’s sold Josh doorbell the rang.

Know a counter the glare writing the square.

Hat childhood body a down Oscar touch planner.

Past the Paul coffee without the shaved across.
Eggplant cannon her a old in during on.
White captain fire avoid and wind to I.

Story Excerpt Examples

At ten years old, | could not figure out what it was that this Elvis Presley guy had that the rest of us boys did not have.

He seemed to be no different from the rest of us.

He was simply a man who had a head, two arms, and two legs.

It must have been something pretty superlative that he had hidden away, because he had every young girl at the orphanage wrapped around his little finger.

At about nine o'clock on Saturday morning | figured a good solution was to ask Eugene Correthers, who was one of the older and smarter boys, what it was that
made this Elvis guy so special.

He told me that it was not anything about Elvis’s personality, but his wavy hair, and the way he moved his body.

Homophone Examples

(ant,aunt) (ate, eight)  (beats, beets) (hair, hare)  (knew, new) (night, knight)  (one, won) (pair,pear) (read, red) (rose, rows)
(scene, seen)  (sea, see)  (soar,sore) (soared, sword)  (sun, son) (tail, tale) (too,two)  (wear, where)
Nonword Examples

gruss, phol, narsh, spaubed, enge, plooing, phelped, efune, vigree, yuthed, vaple, goz, destry, snum, nephed, smasp, grawn, clisy, kulp, rooptise, horted, dap

For demographics, the participants were recruited for participation in the study independently of underlying neuropathology, age, or sex. The corresponding recording coordinates for each
participant are provided in MNI space (spm12). Participants 1-10 underwent tungsten microarray recordings and participants 11-13 underwent Neuropixels recordings. For the linguistic materials
that were provided, the participants were given 8-word sentences that were made to be semantically diverse and were randomly interleaved over the course of recordings. Homophone pairs
(i.e., word pairs with different spelling and meaning but with the same pronunciation) were interspersed throughout the sentences. The word lists contained the same words as those given
during sentences and were 8 words long but, instead, were given in random order. The story excerpts were distinct in content and theme from that of the sentences and varied in length.

The nonwords (i.e., elements that sound like words but hold no meaning) were given in sets of 8. The analysis inputs table provides the exact number of words used in each analysis across
participants for the tungsten microarray (above) and Neuropixels (below) recordings.
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Extended Data Table 2 | Semantic domains and word labels

Original semantic domains

Refined semantic domains

squirrel, bird, squirrels, lizard, birds, cat, spider, swans, bunny, dog, bees, ducks,

squirrel, bird, squirrels, lizard, birds, cat, spider, swans, bunny, dog, bees,

» puppy, hamster, sheep, fish, ants, orca, cub, whales, hare, ant, witch, mermaid, bee, ducks, puppy, hamster, sheep, fish, ants, orca, whales, hare, ant, bee,

g kite, nest, eagle, horse, bears, camel, knight, bear, tail, balloon, clown, sword, mice, eagle, horse, bears,camel, bear, mice, bats

‘£ pirate, flock, ghosts, airplane, queen, cannon, bats, flying, freighter, ships, magic,

< enemies, sailors, king, tricks, pilot, spy, armored, soar, crash, prize, crowns, heights,
merchant, leader
cherries, salad, pear, pumpkin, beets, eggplant, carrots, apple, noodles, flower, cherries, salad, pear, pumpkin, beets, eggplant, carrots, apple, noodles,

o flowers, crunchy, cake, chicken, flour, bread, eggs, corn, popcorn, cookies, ketchup,  cake, chicken, flour, bread, eggs, corn, popcorn, cookies, ketchup, oats,

8 oats, sandwich, garden, dish, ham, vase, milk, coffee, sugar, baked, lily, pizza, sandwich, dish, ham, milk, coffee, sugar, pizza, vines, mustard, tea,

W floral, daisies, bake, moist, vines, mustard, tea, seeds, hay, tree, trees, picnic, seeds, nut
juicy, nut, bowl, farmer, frozen, shells, brewed, fresh, leaves, branch
lampshade, sweater, clothes, shirt, hat, shoes, broom, velvet, couch, birdcage, lampshade, sweater, clothes, shirt, hat, shoes, broom, couch, birdcage,
brown, jeans, drawer, boots, hair, earrings, satin, doll, teddy, suitcase, wooden, hats, jeans, drawer, boots, earrings, doll, teddy, suitcase, hats, fridge, bed,

o fridge, bed, blanket, mittens, bottle, blue, dryer, ribbon, kitchen, boxes, window, blanket, mittens, bottle, dryer, ribbon, boxes, window, broomstick, door,

g white, legs, broomstick, door, candle, pens, pen, ears, baloons, hallway, cute, candle, pens, pen, baloons, pencils, button, doorbell, guitar, wagon,

‘o orange, teeth, eyes, pencils, beard, wear, button, bald, hand, doorbell, wool, stain, brush, table, bike, car, screen, chair, paper, ball, flag, shelf, plate, fence,

O red, room, house, toes, guitar, pile, wagon, black, brush, table, piece, bike, rows, carriage, hammer, photo
mike, car, rusty, screen, chair, paper, ball, flag, shelf, plate, bent, fence, store,
carriage, hammer, body, patches, photo, soft, stores, design, brand
Eddie, Becky, Kevin, Alex, Susan, Steve, Andrew, Paul, Joseph, Tommy, Jessie, Eddie, Becky, Kevin, Alex, Susan, Steve, Andrew, Paul, Joseph, Tommy,

o Larry, Rachel, Ashley, George, Charlie, Michael, Liz, Alice, Amy, James, Sam, Jessie, Larry, Rachel, Ashley, George, Charlie, Michael, Liz, Alice, Amy,

g Hannah, Jamie, Adam, Beth, Fred, John, Ron, Brian, Sophie, Felix, Jenny, Anna’s, Frank, Sadie, Tasha, James, Sam, Hannah, Jamie, Adam, Beth, Fred,

© Lucas, Jonah, Abby, Noah, Joanne, Jill, Anne, Josh, Ali, Timmy, Eva, Judy, John, Ron, Brian, Sophie, Felix, Jenny, Lucas, Jonah, Abby, Noah,

Z Mondays, Ann, Phil, Lenny, Maggie, Tuesday, Dan, Oscar, Rosa, Peter, Sally, Nick, Joanne, Jill, Anne, Josh, Ali, Timmy, Mike, Eva, Judy, Mondays, Ann,
Ella, Jack, John's, web, Maxime’s, website Phil, Lenny, Maggie, Dan, Oscar, Rosa, Peter, Sally, Nick, Ella, Jack
dad, dad’s, girl, son, mom, aunt, kid, kids, parents, uncle, grandma, grandson, dad, girl, son, mom, aunt, kid, kids, parents, uncle, grandma, grandson,
child, sister, grandpa, brother, children, sisters, boys, girls, woman, Sadie, she, her, child, sister, grandpa, brother, children, sisters, boys, girls, woman, baby,

2 baby, friends, teacher, brothers, Emmas, childhood, man, Tasha, grown-up, old, brothers, man

£ school, dancer, mom'’s, student, shyly, birthday, soldier, Laurens, ballet, actresses,

o neighbor, Michelles, adulthood, drummer, movie, Grace’s, music, tennis, soccer,

Zach’s, baseball, Leslies, actors, his, boxing, tale, Matthews, oldest, captain, concert,

follower, grades, book, solo, talents, class, novel, planner

really, not, know, going, always, it, something, but, if, here, good, get, too, good, afraid, happy, great, mean, hard, right, able, hates, horrible, big,
because, there, afraid, little, wanted, see, you, knew, knowing, happy, great, all, did, tired, well, truth, long, neat, feelings, poorly, unable, messy, sore,
how, everyone, very, need, could, us, mean, hard, some, say, right, telling, able, discourage, secret, hyper, stable

@ hates, this, horrible, clearly, make, big, tired, no, keep, must, kinds, goes, likes,

w about, hurt, well, watching, playing, work, says, far, without, truth, long, decide,

& neat, people, read, will, feelings, game, others, inspire, poorly, live, most, touch,
unable, told, messy, sore, being, pay, beats, words, frank, discourage, buy, sign,
message, tries, team, team’s, writing, ticking, enjoys, sell, secret, hyper,
present, cannot, public, stable, market
came, went, pulled, ran, stood, walked, sat, drove, threw, stared, moved, blew, came, went, pulled, ran, stood, walked, sat, drove, threw, stared, moved,
grabbed, stayed, jumped, hopped, rode, hid, chased, fell, looked, took, hung, saw, blew, grabbed, stayed, jumped, hopped, rode, hid, chased, fell, looked,
landed, got, rang, danced, poured, slammed, dripped, wore, smiled, watched, put,  took, hung, saw, landed, rang, danced, poured, slammed, dripped, wore,
ate, had, struck, sparkled, wrapped, bowed, melted, clapped, opened, gave, smiled, watched, put, ate, struck, sparkled, wrapped, bowed, melted,

o descended, returned, froze, curled, awoke, lived, sucked, finished, started, clapped, opened, gave, descended, returned, froze, curled, awoke, lived,

S caught, soared, grew, carved, bought, played, bumed, perched, rose, searched, sucked, finished, started, caught, soared, grew, carved, bought, played,

G sang, nibbled, ended, rested, placed, barked, slipping, sent, painted, filled, found, burned, perched, rose, searched, sang, nibbled, ended, rested, placed,

< wagged, navigated, spun, won, were, planted, removed, died, held, packed, barked, slipping, sent, painted, filled, found, wagged, navigated, spun,
shaved, unpacked, spewed, sold, destroyed, seen, lay, reached, dreamt, made, won, planted, removed, died, held, packed, shaved, unpacked, spewed,
echoed, puts, overslept, saved, torn, arranged, set, described, hidden, used, sold, destroyed, lay, reached, dreamt, made, echoed, puts, overslept,
shed, sharpened, wrote, shatter, stored, organized, presents saved, torn, arranged, set, described, used, shed, sharpened, wrote,

shatter, stored, organized
sun, sunny, breeze, darkness, cloudless, sky, warm, cloudy, clouds, cold, beach, snow, sun, sunny, breeze, darkness, cloudless, sky, warm, cloudy, clouds, cold,
mornings, night, wind, outdoors, sea, indoors, water, nap, moon, stormy, morning, beach, snow, mornings, night, wind, outdoors, sea, indoors, water, moon,
© hillside, nights, sand, desert, midnight, canyon, shining, ice, bright, asleep, bay, stormy, morning, hillside, nights, sand, desert, midnight, canyon, ice, bay,

% waves, smell, shaded, park, tide, crawling, glare, shore, brightly, flame, buzzing, waves, shaded, park, tide, shore, flame, fountain, fire, scene, town,

=z fountain, crowd, walk, fire, dimly, ride, shouts, scene, weekday, afar, parking, loudly, stream, onshore
town, stream, amused, energized, onshore, alarm, rhythms, creaky, anger, onboard,
truce, picket, anchor, channel, update

© before, back, in, where, out, after, off, away, down, over, when, outside, into, up, before, back, where, out, after, off, away, down, over, when, outside, into,

G inside, one, on, near, close, three, five, next, two, at, last, behind, eight, onto, up, inside, near, close, next, last, behind, onto, across, early, day, nearby,

g‘ across, early, day, nearby, until, closest, along, past, home, quickly, slowly, during, until, closest, along, past, home, quickly, slowly, during, week, nearest,

© week, nearest, corner, their, between, soon, edge, late, miles, top, times, farthest, corner, between, soon, edge, late, miles, top, times, farthest, opening,

S stop, run, opening, towards, weekend, fast, spot, than, bottom, mark, line, hours, towards, weekend, fast, spot, bottom, hours, year, blocks, today, counter

g avoid, year, blocks, smaller, clock, field, new, pair, pass, larger, square, face,

o today, lock, counter, sweeping, twelve, gather, battle, private, bid, construction, data

Left, grouping of words into semantic domains based on their 300-dimensional embeddings was performed through a spherical clustering and silhouette criterion analysis (Fig. 1c,d). Here, the
labels were selected based on the preponderance of words within each grouping and were ordered based on the proximity of each word to their respective cluster centroid. Words obtained
from the linguistic materials given to the participants optimally grouped into nine putative semantic domains. Right, to further confirm the selectivity of neuronal response (Extended Data

Fig. 2b), words that were not intuitively related in meaning prima facie were either moved or removed to produce the following refined semantic domains.



Extended Data Table 3 | Grouping words into smaller word clusters

salad, cherries, pear, pumpkin, beets, eggplant, carrots, noodles, apple, chicken, cake, bread, flour, flower, crunchy, ketchup, corn, popcorn, flowers,
Domain 1  sandwich, eggs, cookies, dish, oats, milk, pizza, ham, coffee, baked, sugar, bake, garden, tea, vase, mustard, lily, floral, daisies, hay, seeds,
picnic, juicy, nut, bowl, frozen, farmer, brewed, plate

squirrels, squirrel, bird, birds, cat, bees, lizard, swans, spider, ants, ducks, bunny, dog, ant, cub, puppy, nest, bee, hamster, sheep, fish, hare,

Domain 2 bears, tree, trees, mice, bear vines, eagle flock bats ghosts, crawllng

day, night, morning, nights, hours, mornings, week, weekend, weekday, midnight, nap, overslept, year, game, ride, spot, team, team’s, times, today,

Domain 3 grades, class, truce

cloudy, sun, brown, sunny, clouds, blue, bright, sky, warm, moist, shining, cold, cloudless, red, white, darkness, breeze, shaded, orange,
Domain 4 melted, glare, rusty, snow, sand, stormy, brightly, black, moon, brush, eyes, soft, smell, wind, stain, desert, patches, ice, baloons, painted, bald,
dimly, flame, water, tide, fresh, flying, messy, pile, sore, leaves, sweeping, shed, creaky

ships, sea, sailors, whales, freighter, pirate, shore, orca, onboard, beach, waves, shells, onshore, cannon, captain, anchor, merchant, pilot,

Domain 5 channel, spy, enemies, data

music, ballet, dancer, guitar, drummer, tennis, concert, actors, soccer, boxing, playing, sang, rhythms, actresses, solo, movie, baseball,

Domain 6 talents, outdoors, beats, enjoys, brand

moved, came, went, fell, jumped, soared, landed, returned, stayed, rose, opened, grew, lived, started, finished, bought, descended, ended,
Domain 7  sent, placed, found, searched, won, reached, played, seen, carved, slipping, sold, removed, navigated, filled, planted, made, destroyed, saved,
goes, dreamt, unpacked, used, set, soar, echoed, described

really, not, always, something, it, too, everyone, good, all, here, great, how, very, little, you, clearly, us, hard, some, right, knowing, horrible, this,

Domain & happy, big, hates, no, kinds, well, far, must, truth, poorly, Ilkes feellngs people, most, others, being, message, tries, hyper, anger, cannot

fridge, kitchen, window, drawer, door, couch, bed, room, dryer, house, hallway, doorbell, suitcase, boxes, bottle, store, table, shelf, candle,

Domain 9 car, asleep, button, screen, alarm, fountain, chair, carriage, counter, airplane, stores, lock, branch, market

sweater, hat, teddy, doll, hats, earrings, jeans, lampshade, shirt, clothes, shoes, velvet, boots, hair, satin, mittens, birdcage, cute, wear, mermaid,
Domain 10 beard, wool, ribbon, kite, clown, camel, wooden, blanket, knight, legs, tail, horse, balloon, witch, ears, flag, queen, wagon, bike, king, crowns,
photo, prize

pen, pens, pencils, broom, broomstick, sword, piece, writing, book, hand, paper, read, magic, words, teeth, hammer, tricks, touch, novel,

Domain 11 sharpened, tale, wrote

dad, dad’s, son, mom, aunt, parents, uncle, grandma, grandpa, sister, brother, kids, grandson, girl, children, kid, child, sisters, boys, baby,

Domain 12 brothers, friends, childhood, girls, neighbor, she, grown-up, her, teacher, school, birthday, mom’s, shyly, adulthood, planner

Eddie, Becky, Kevin, Susan, Alex, Steve, Andrew, Tommy, Paul, Joseph, Larry, Jessie, Rachel, Ashley, George, Charlie, Michael, Liz, Alice, Amy,
James, Sam, Jamie, Hannah, Adam, Beth, Fred, John, Brian, Ron, Jenny, Sophie, Felix, Lucas, Anna’s, Jonah, Abby, Noah, Jill, Joanne, Josh,
Anne, Timmy, Ali, Judy, Eva, Mondays, Ann, Phil, Lenny, Maggie, Tuesday, Dan, Oscar, Rosa, Peter, Sally, Nick, Mike, Ella, Jack, John’s, web,
website

Domain 13

Domain 14 organized, present, arranged, held, private, gather, public, presents, frank

away, back, out, into, off, down, onto, slowly, up, towards, quickly, along, across, without, avoid, stop, soon, fast, tired, farthest, nearest, their,

Domain 15 home, discourage, afar, long, toes, heights, stream
stared, walked, threw, sat, ran, pulled, stood, grabbed, hopped, drove, chased, blew, smiled, clapped, rode, hung, danced, looked, hid, slammed,

Domain 16 dripped, rang, took, saw, got, wore, curled, bowed, barked, watched, struck, ate, wagged, poured, put, sparkled, nibbled, awoke, gave,
wrapped, sucked, froze, perched, caught, rested, burned, spun, lay, shaved, shouts, spewed, walk, bent, loudly, puts, amused, torn, ticking,
pass, shatter

Domain 17 know, going, see, if, get, wanted, afraid, but, because, could, knew, able, say, need, did, there, make, mean, telling, decide, hurt, keep, will,
says, told, work, pay, watching, buy, inspire, about, sell, unable, live, face, sign, smaller, larger, energized, stable, update

Domain 18 Emma’s, Tasha, Lauren’s, Sadie, Michelle’s, Matthew’s, Leslie’s, woman, Zach’s, man, old, Grace’s, soldier, died, student, Maxime’s, follower,
body, crash, oldest, leader

Domain 19 three, last, after, before, two, five, eight, in, during, when, over, early, one, next, had, late, past, until, at, close, opening, on, between, twelve,

were, pair, than, mark, run, his, new, bid

inside, nearby, outside, corner, near, where, hillside, park, fence, edge, rows, miles, behind, bay, canyon, field, square, parking, blocks,
Domain 20 town, ball, packed, neat, fire, closest, line, scene, indoors, crowd, buzzing, hidden, bottom, clock, top, armoured, picket, stored, construction,
battle, secret, design

To further evaluate the selectivity of neuronal response, words were grouped into 20 rather than 9 clusters. As in Extended Data Table 2, the words were grouped using a spherical clustering
and silhouette criterion analysis. Here, however, the words within each domain were closer in meaning since there were fewer words per cluster. Extended Data Fig. 4c-e provides further
illustration of the relation between the number of clusters and neuronal decoding performance.
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Sample size A total of 13 participants underwent single-neuronal recordings. Our main neuronal analysis is based on data from 287 neurons. The sample
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Data exclusions  No subjects were excluded from analysis. For neuronal analysis, prospective units that did not demonstrate sufficient waveform stability over
the course of the experiment were excluded from the analysis based on standard criteria for off-line single unit sorting. For Neuropixels
recordings, units that displayed overlap with neighboring across channels were excluded as well.

Replication Primary results of the study were replicated across participants, linguistic materials and recording techniques. For recording techniques, we
used tungsten microarrays and Neuropixels probes in different participants performing the same language tasks. Additional analyses were
also used to confirm generalizability of the findings across analytic techniques and through data sub-sampling. Other analyses were
performed at the population level whereby semantic information was decoded from neuronal activity not used for model training. Finally,
variability in results is shown through the plotting of individual data points or data ranges in the figures as applicable.

Randomization  There was no randomization procedure for subject selection/enrollment since all participants performed the same task.

Blinding Blinding of analysis was not relevant since all subjects underwent similar task design. Blinding to clinical condition was performed.
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Population characteristics The participants were recruited for the study independently of underlying neuropathology, age or sex. The participants were
drawn from the same population undergoing planned intraoperative neurophysiology for deep brain stimulator placement.

Recruitment All procedures and studies were performed in accordance with the Massachusetts General Hospital Institutional Review
Board (IRB) and were held in strict adherence to Harvard Medical School guidelines. All participants included in the study
were scheduled to undergo planned awake intraoperative neurophysiology and single-neuronal recordings for deep brain
stimulation targeting. Consideration for surgery was made by a multidisciplinary team including neurologists, neurosurgeons,
and neuropsychologists. The decision to perform surgery was made independently of study candidacy or enroliment. Further,
all microelectrode entry points and placements were based purely on planned clinical targeting and were made
independently of any study consideration.
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Once and only after a patient was consented and scheduled for surgery, their candidacy for participation in the study was
reviewed with respect to the following inclusion criteria: 18 years of age or older, right-hand dominant, capacity to provide
informed consent for study participation and demonstration of English fluency. All participants gave informed consent to
participate in the study and were free to withdraw at any point without consequence to clinical care.
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