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Abstract
Introduction Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the 
spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG18 is a rare, early-onset, complicated 
HSP, first reported as linked to biallelic ERLIN2 mutations. Recent cases of late-onset, pure HSP with monoallelic ERLIN2 
variants prompt inquiries into the zygosity of such genetic conditions. The observed relationship between phenotype and 
mode of inheritance suggests a potential dominant negative effect of mutated ERLIN2 protein, potentially resulting in a 
milder phenotype. This speculation suggests that a wider range of HSP genes could be linked to various inheritance patterns.
Purpose and background With documented cases of HSP loci exhibiting both dominant and recessive patterns, this study 
emphasizes that the concept of zygosity is no longer a limiting factor in the establishment of molecular diagnoses for HSP. 
Recent cases have demonstrated phenoconversion in SPG18, from HSP to an amyotrophic lateral sclerosis (ALS)-like 
syndrome.
Methods and results This report highlights two cases out of five exhibiting HSP-ALS phenoconversion, discussing an 
observed prevalence in autosomal dominant SPG18. Additionally, the study emphasizes the relatively high incidence of 
the c.502G>A variant in monoallelic SPG18 cases. This mutation appears to be particularly common in cases of HSPALS 
phenoconversion, indicating its potential role as a hotspot for a distinctive SPG18 phenotype with an ALS-like syndrome.
Conclusions Clinicians need to be aware that patients with HSP may show ALS signs and symptoms. On the other hand, 
HSP panels must be included in genetic testing methods for instances of familial ALS.

Keywords Hereditary spastic paraparesis · Amyotrophic lateral sclerosis · Negative dominance · Phenoconversion

Introduction

Hereditary spastic paraparesis (HSP) represents a group 
of genetically heterogeneous diseases that mainly involve 
the spinal portion of upper motor neurons [1]. HSPs show 

autosomal dominant, autosomal recessive, X-linked, or 
mitochondrial inheritance, with over 85 genes loci identi-
fied, multiple pathogenic mechanisms [2], and an ample 
array of neurological and extra neurological accompany-
ing clinical features [3, 4]. From a phenotypical point of 
view, they are classified into pure or complex [5, 6]. Usu-
ally, autosomal dominant HSP (AD-HSP) present with pure 
phenotypes and are more frequent than autosomal recessive 
HSP (AR-HSP) [7]. SPG18 stands out as one of the less 
common forms of HSP documented to date, resulting from 
either monoallelic or biallelic mutations in the ERLIN2 gene. 
ERLIN2 is a lipid-raft-associated protein situated within the 
endoplasmic reticulum (ER) featuring an SPFH domain [8], 
and it forms an ERLIN1/2 complex with the closely related 
ERLIN1 protein; the function of this complex is to bind 
RNF170, a ubiquitin ligase (E3), which targets activated 
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inositol 1,4,5-trisphosphate receptors (IP3R). These recep-
tors are subsequently ubiquitinated and degraded [8, 9].

SPG18 is in most cases inherited in an autosomal reces-
sive manner (AR-SPG18) [10–15], but few autosomal domi-
nant SPG18 have surfaced (AD-SPG18) [16–19]. The clini-
cal picture of AR-SPG18 usually displays early onset spastic 
paraparesis, complicated by intellectual disability, motor 
and speech development delay, multiple joint contractures, 
seizures [10–12, 14, 17], and in one case progressive juve-
nile primary lateral sclerosis [13]. AD-SPG18 shows upper 
motor neuron abnormalities and mild dorsal column abnor-
malities [16–19]. MRI alterations (i.e., thin corpus callo-
sum—TCC) have been reported in two families [10, 17]. No 
other laboratory of imaging characteristics has been found. 
Furthermore, it has been pointed out how some patients with 
SPG18, both AR and AD, could show phenoconversion to 
amyotrophic lateral sclerosis (ALS)-like syndromes [20].

Herein, we report two novel ERLIN2 pathogenic variants 
found in a series of Italian SPG18 patients. We also review 
genetic and clinical data from all SPG18 cases described in 
the existing literature, discussing about genetic variability, 
phenotypical features, and the importance of zygosity in 
genetic counselling.

Materials and methods

Patients

This multicentric case series study was performed in accord-
ance with the Declaration of Helsinki statements. Written 
informed consent and ethical approval (CE Lazio) were 
obtained. In the past 8 years, in a single laboratory, we tested 
944 patients with clinical evidence of HSP without a genetic 
diagnosis, using a multigene targeted resequencing panel 
(TRP, n = 710) or exome sequencing (ES, n = 234) or both 
(n = 114) and investigated the coding exons and flanking 
introns of the genes known to be associated with HSPs [6, 
21, 22]. Five patients (4 men; 1 woman) from four families 
were identified and recruited from three Italian neurology 
centers (University of Rome Sapienza, Azienda Ospedaliera 
San Camillo Forlanini, IRCCS Stella Maris Foundation in 
Pisa). These patients were enrolled in the study and under-
went further investigation and analysis. Family and clinical 
history were collected. All patients underwent neurological 
examination, clinical cognitive assessment through Mon-
treal Cognitive Assessment (MoCA) [23], and brain MRI 
(Table 1).

Molecular and database search

DNA extraction was carried out using peripheral blood 
lymphocytes obtained from the patients and modalities Ta
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of next-generation sequencing (NGS) analysis for TRP 
and ES using methodologies already reported [22, 24]. 
Search for variants of ERLIN2 was done using population 
databases (dbSNP, 1000genome, EVS) and local data-
bases, and their pathogenicity was assessed according to 
the American College of Medical Genetics and Genomics 
(ACMG) guidelines [25]. Literature was reviewed using 
PubMed and Google Scholar, and findings were collected 
in Table 2.

Results

Cases clinical reports

Clinical, imaging, and laboratory features are summarized 
in Table 1. Pedigrees are shown in Fig. 1. All families had 
Italian descent with no reported consanguinity. Three of 
five individuals had disease onset between 25 and 50 years, 
while two had juvenile onset (< 10 years). The overall initial 
manifestation was spastic paraparesis (5/5), with mild dor-
sal column signs and symptoms (3/5). In one case (BII.1), 
at the time of the last neurological examination and after 
20 years from HSP onset, bulbar and appendicular lower 
motor neuron signs were identified, suggesting an ALS-
like syndrome. Patient AI.2 (mother of AII.1) showed first 
signs of spastic paraparesis at the age of 50, and her disorder 
evolved into a rapidly progressive ALS-like syndrome after 
27 years (77 years old). She died of ab ingestis pneumonia 
12 months later. In one proband, we found maculopathy, 
while in another one, we observed congenital cataract. No 
one showed intellectual disability (ID) or extraneurological 
complications. They all underwent brain MRI: one patient 
had white matter alterations (WMA). Disease course was 
slowly progressive (mean 26.4 y at the time of the last 
examination).

Molecular findings

Gene testing identified five ERLIN2 variants, one of which 
was a compound heterozygous (Fig. 1). The c.502G > A 
[p.Val168Met], c.866 T > C [p.Ile289Thr], and c.374A > G 
[p.Asn125Ser] pathogenic variants have already been 
reported [19, 20, 26]. The other two variants, i.e., the 
heterozygous c.615G > C [p.Lys205Asn] (CADD score 
is 24.1) and c.481C > A [p.Pro161Thr] (CADD score is 
27.2—found in compound heterozygosis with c.866 T > C 
[p.Ile289Thr], previously reported [26]) were absent in 
our in-house databases as well as in population databases 
(dbSNP, 1000genome, gnomAD) and were classified ini-
tially as “hot” VUS and then revised as likely pathogenic 

according to the ACMG guidelines. Missense variants were 
indicated as “probably damaging” and “damaging” by mul-
tiple in silico predictors (including PolyPhen-2 and SIFT).

Discussion

We present five previously unreported Italian patients 
with SPG18. These patients harbored already published 
disease-associated variants in ERLIN2, and in two cases, 
we detected novel, likely pathogenic variants. This is the 
14th report about ELRIN2-related motor neuron disease 
(Table 2). Thus far, a total of 80 cases from 23 SPG18 
families (14 biallelic, 9 monoallelic-3 cases presented as 
sporadic) have been described worldwide [10–19, 26, 27] 
(Table 2) since the original description by Al-Yahyaee et al. 
in 2006 [10]. In their work, patients showed complicated 
AR-HSP (6 cases with intellectual disability and thin cor-
pus callosum, 3 with seizures). ERLIN2 mutation as causa-
tive of SPG18 was first mapped in an AR Turkish family 
with early onset intellectual disability, motor impairment, 
and multiple joint contractures in 2011 [11]. Meanwhile, 
a Saudi family with a mutation in the same locus (flanking 
the D8S532 marker) received a formal diagnosis. After-
wards, other ERLIN2 pathogenic variants were identified 
in additional AR-SPG18 [13–15, 17, 26, 27] families. Data 
showed a rather uniform phenotype characterized by early 
onset, complicated and severe spastic paraparesis, usually 
with a short disease duration. Shortly after, five families 
with pure HSP harboring monoallelic ERLIN2 missense 
mutations had been separately described [16–19]. The 
clinical manifestation in those families manifests a late 
onset, progressive and pure spastic paraparesis, with mild 
dorsal column abnormalities, bearing a strong resemblance 
to that of other AD-HSP cases. The comparison between 
AR-SPG18 and AD-SPG18 forms led to the hypothesis that 
the clinical phenotype of SPG18 may depend on the mode 
of inheritance, with AD-SPG18 manifesting as a juvenile-
adolescent onset pure HSP, whereas AR-SPG18 being a 
complicated form with earlier onset and more severe course 
as the likely consequence of a complete loss of function 
[14]. Presumably, the underlying molecular mechanism in 
AD-SPG18 is different. Identification of domain-specific 
mutations in cases from both European and Asian popu-
lations makes possible that monoallelic pathogenic vari-
ants induce a site-specific dominant negative effect, by 
disrupting the ERLIN2/ERLIN1 complex, which leads to 
the more pure and less severe phenotype [28]: functional 
studies would be required to clarify such issue. To date, 
only a limited number of HSP loci have been documented 
to potentially have both AD and AR inheritance patterns, 
like REEP2/SPG72, ALDH18A1/SPG9, KIF1A/SPG30, and 
ATL1/SPG3A [29–32]. This emphasizes the conundrum in 
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categorizing HSPs solely based on their observable charac-
teristics and that the notion of zygosity no longer serves as 
a constraining factor when determining a molecular diag-
nosis in HSP. Indeed, a broader range of HSP genes might 
be associated with different inheritance patterns, thus hav-
ing implications for the diagnostic success rate and poten-
tially indicate variations in disease-related characteristics. 
The existence of different inheritance modes per single 
disease clearly has implications for genetic counselling, 
ousting the classic division into AD, AR, X-linked, or mito-
chondrial patterns. In our series, 4 out of 5 patients have 
a monoallelic pathogenic variant, and they show a pure 
HSP. Considering our cases, it appears that AD-SPG18 is 
as prevalent as AR-SPG18 worldwide. This consideration 
has implication for counselling and prognosis.

Amador et al. [20] described four pedigrees with an ALS 
form: two families with monoallelic pathogenic variants 
(c.502G > A [p.Val168Met] and c.926C > T [p.Ala309Val]), 
one family with the biallelic pathogenic variant c.899A > T 
[p.Asp300Val], and a sporadic case with monoallelic 
pathogenic variant c.374A > G [p.Asn125Ser]. Except for 
one of the AD families (c.926C > T [p.Ala309Val]), which 
showed an ALS onset and course without HSP signs, the 
other cases all exhibited pure HSP-ALS phenoconversion 
after 20–39 years. After developing ALS-like syndrome, 

four patients died after a rapidly evolving disease in about 
12–18  months. Indeed, from our series, we report two 
cases of pure HSP-ALS evolution. Patient AI.2, mother 
of AII.1 with monoallelic pathogenic variant c.502G > A 
[p.Val168Met], and BII.1 with monoallelic pathogenic 
variant c.615G > C [p.Lys205Asn], after a long duration of 
slowly progressive pure HSP (27 years in AI.2, 20 years in 
BII.1), showed a phenoconversion to an ALS-like syndrome. 
In one case (AI.2), this condition was rapidly progressive, 
ultimately leading to death in less than 1 year. To date, nine 
SPG18 patients with HSP-ALS have been described world-
wide. Despite the few cases, we can observe that HSP-ALS 
conversion is more frequent in AD cases than in AR ones 
(seven versus two—Tables 1 and 2). Also, phenoconversion 
seems to occur only in phenotypically pure SPG18 cases 
(both AD and AR).

A last comment deserves the incidence of the c.502G > A 
variant, occurring in 11 cases worldwide [19, 20], and only 
found as a monoallelic gene change. We cannot exclude this 
variant as a hotspot for a peculiar phenotype of SPG18 with 
ALS-like syndrome, whereas the multiple genetic back-
ground of reported patients makes it unlikely a common 
ancestor. However, further research is needed to elucidate 
the disease mechanisms of ERLIN2-related disorders, as 
well as improved genotype–phenotype correlations.

Fig. 1  Families’ pedigree. 
Roman numerals represent the 
generation. Arabic numerals 
identify individuals. Arrows 
indicate the probands. Muta-
tions on the bottom of each ped-
igree. (Fig. 1 should be placed 
before the section “Result”)
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Conclusion

We report a large series of Italian SPG18 patients, confirm-
ing the prevalence uniformity of both AD and AR forms, as 
previously described. Phenoconversion of SPG18 into ALS-
like syndrome seems to be more frequent in AD-SPG18. 
We expand the mutational scenario, adding new c.502G > A 
[p.Val168Met] AD cases with HSP-ALS phenoconversion, 
thus pointing out the predictive value of this pathogenic vari-
ant. The link between HSP and ALS is well known [33–35]. 
Several HSPs may show ALS-like syndrome during their 
course, like SPG7 [36], 10 (allelic with Charcot-Marie-
Tooth type 2) [37, 38], 11 (allelic with Charcot-Marie-Tooth 
type 2X) [39, 40], 15 (Kjellin S.) [41], 17 (Silver S.) [42], 
20 (Troyer S.) [43]. On the other hand, a few familial ALSs 
are caused by HSP mutations. The possibility of HSP-ALS 
phenoconversion has significant clinical implications. Clini-
cians should be aware of the potential for ALS-like symp-
toms in individuals with HSP, especially those with muta-
tions in genes that are shared between the two disorders. On 
the contrary, it is important to bear in mind that, in cases 
of familial ALS [40], genetic testing should include HSP 
panels. Recognition of phenoconversion is crucial, as it can 
inform prognosis, management, counselling, and treatment 
decisions.
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