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SUMMARY

There is substantial evidence that neuromodulatory systems critically influence brain state 

dynamics; however, most work has been purely descriptive. Here, we quantify, using data 

combining local inactivation of the basal forebrain with simultaneous measurement of resting-

state fMRI activity in the macaque, the causal role of long-range cholinergic input to the 

stabilization of brain states in the cerebral cortex. Local inactivation of the nucleus basalis of 

Meynert (nbM) leads to a decrease in the energy barriers required for an fMRI state transition in 

cortical ongoing activity. Moreover, the inactivation of particular nbM sub-regions predominantly 

affects information transfer in cortical regions known to receive direct anatomical projections. We 

demonstrate these results in a simple neurodynamical model of cholinergic impact on neuronal 

firing rates and slow hyperpolarizing adaptation currents. We conclude that the cholinergic system 

plays a critical role in stabilizing macroscale brain state dynamics.
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In brief

Taylor et al. found that the cholinergic system is important for stabilizing brain state dynamics, 

which builds upon a body of work emphasizing the importance of the ascending arousal system in 

modulating global brain state reconfigurations.

Graphical abstract

INTRODUCTION

Individual neurons in the cerebral cortex each have a vast number of structural connections, 

yet their firing patterns remain relatively flexible and context dependent across multiple 

time-scales.1–3 A popular means for characterizing these complex patterns is to use 

statistical techniques that estimate a low-dimensional state-space,4–7 which is a statistical 

approximation that permits the identification of brain states and the transitions between 

them.5,8–10 Within this state-space perspective, brain dynamics form smooth trajectories 

that tend toward locations, known as “attractors,” that appear as deepened “wells” along a 

distributed attractor landscape (Figure 1A). Through this lens, the computations required for 

perception, cognition, and action are proposed to emerge through the realization of specific 

trajectories across the attractor landscape.7

By way of analogy, we can conceptualize brain states evolving across an attractor landscape 

as a ball rolling along a hilly landscape (Figure 1A); the ball can easily roll across the 
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landscape if the topography is relatively flat, whereas the ball could get “stuck” within a 

deepened well.4,13 This approach affords a low-dimensional (topographic) representation of 

systems-level neural dynamics (Figure 1C). Extending the analogy, transitions to different 

brain states can be operationalized as the “activation energy” required to reach a particular 

state; e.g., the amount of energy that would need to be exerted to move a ball from one 

location to another along a hilly landscape (Figure 1A). Importantly, there are robust ways 

to quantify the amount of energy required to transition to a brain state; i.e., by calculating 

the inverse log probability of the likelihood of a particular transition at a given delay in 

time (Figure 1A). In this instance, energy is a descriptive term that does not refer to the 

metabolic energy required to enact a transition to a different brain state but rather describes 

the likelihood of a brain state occurring. Deep wells in the attractor landscape designate 

stable brain states, whereas a relatively flat landscape is associated with relatively easy 

shifting between states.

In previous work, we used this approach to confirm a theoretical prediction;14 namely, 

that the topography of the attractor landscape estimated from human resting-state fMRI 

data should be differentially modulated by distinct arms of the ascending neuromodulatory 

arousal system.13,14 Specifically, we showed that peaks in blood flow within the 

noradrenergic locus coeruleus were followed by a relative flattening of the attractor 

landscape,13 whereas peaks in blood flow within the cholinergic nucleus basalis of Meynert 

preceded deepening of the attractor landscape.13 While these results were well matched 

to the cognitive capacities typically linked to these two neuromodulatory systems,15–

19 the results were inherently descriptive. A more powerful test of our hypothetical 

framework requires causal intervention (Figure 1B), with the prediction that inhibition of 

the neuromodulatory system should shift the topography of the attractor landscape toward 

the opposite extreme (Figure 1D).

RESULTS

The cholinergic nucleus basalis of Meynert causally alters attractor landscape topography

To test for causal evidence of cholinergic attractor deepening, we leveraged macaque (n 
= 2) fMRI recordings in which the nucleus basalis of Meynert (nbM) was reversibly 

inactivated by unilateral injection of muscimol (agonist of GABAA receptors) into two 

different sub-regions: either Ch4AM (a subdivision of the nbM that contains magnocellular 

cholinergic cells that innervate medial cortical regions) or Ch4AL (a subdivision of the 

nbM with projections to the lateral cortex and visual areas; Turchi et al.). Sham trials in 

which no injections were performed were used as controls. Following injections (or sham 

trials), fMRI (cerebral blood volume) signals were recorded across the whole brain (the 

primary results of this study were published in Turchi et al.20), allowing us to quantify 

changes in brain state associated with cholinergic inhibition. In the original study, nbM 

inhibition caused a reduction in intra-hemispheric signal amplitude, with only minimally 

altered functional connectivity patterns observed at the whole brain level.20 However, the 

original analyses were limited to zero-lagged coordination between brain regions, whereas 

the attractor landscape perspective is concerned with how brain states change over short 

Taylor et al. Page 3

Cell Rep. Author manuscript; available in PMC 2024 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



windows of time, not the overall, time-averaged behavior of the system per se, suggesting 

that the two signatures might co-exist in the same data.

To test whether cholinergic inhibition flattened energy barriers, we required a means to 

characterize the dynamics of brain state transitions. Based on previous work,13 we estimated 

the amount of brain state change (mean-squared displacement [MSD] in 266 cortical region 

of interest [ROI] fMRI time series) for a series of pre-defined temporal delays (repetition 

time [TR]) at 30 randomly spaced points across the time series (results were replicated 

with 10–100 random time points). We next calculated the likelihood that each brain state 

occurred by estimating the probability of signal displacement at a specific time lag. We then 

estimated the energy of each brain state transition as the natural logarithm of the inverse 

probability of each brain state occurring at a particular displacement and temporal delay. In 

this framework, highly likely changes in fMRI signal correspond to lower-energy transitions.

Based on previous theoretical14 and empirical13 work, we predicted that inhibiting the 

nbM would impair the ability to deepen attractor wells (Figures 1D). That is, the attractor 

landscape should become “flatter” following nbM inhibition, in that it will become easier 

for the brain to shift into new states and not remain “stuck” in its previous configurations. 

Despite a lack of significant differences in zero-lagged inter-regional correlations (all p > 

0.05; STAR Methods; i.e., replicating the main result in Turchi et al.), we confirmed our 

hypothesis that inhibition of the nbM was associated with a decrease in energy barrier for 

large brain state transitions later in time relative to control scans (significant across all 

time bins except for TR = 6–7, MSD = 2; Figure 2A). In contrast to the intra-hemispheric 

effects observed in the original study,20 attractor landscape flattening was apparent in both 

hemispheres, irrespective of the hemisphere in which the nbM was inhibited (Figure S1), 

and also across inhibition sites in both monkeys (Figure S2), suggesting that the observed 

effects in attractor landscape topography may relate both to the primary effect of nbM 

inhibition as well as compensatory effects that can enact inter-hemispheric changes,14 

such as interhemispheric non-cholinergic projections between nbM cells,21 compensatory 

activation of other neuromodulatory systems,13,22–24 or a drop in bilateral inter-hemispheric 

cortical projections; however, the precise mechanism is outside the scope of this study.

To quantify the level of “flatness” in the attractor landscape, we calculated the gradient 

of the topography following nbM inhibition and control conditions. Due to the complex 

topography of the landscapes, results were represented as a difference in slopes per MSD 

and TR bin, which we then plotted onto an array (Figure S4). Inhibiting the nbM led to a 

marked reduction in the slope of the landscape following cholinergic inhibition compared to 

the control conditions (p < 0.05, permutation tested). These effects were particularly evident 

at medium-to-long delays (TR = 2–8, 9.7 × 10−3 ± 9.1 × 10−3 vs. 8.3 × 10−3 ± 7.1 × 10−3), 

with maximal slope reduction at MSD = 6 and TR = 8 s. We confirmed that these results 

were not due to chance by permuting data labels 5,000 times to estimate a null distribution; 

differences in landscape topography were considered significant if the original differences 

(between stimulation and sham) were more extreme than 99.9% of the null distribution. Our 

results therefore provide causal evidence of the hypothesis that cholinergic projections to the 

cerebral cortex from the nbM deepen energy wells in an attractor landscape representing 
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brain state transitions, potentially by facilitating inter-regional communication between 

target regions.13,14

Cholinergic inhibition interrupts information flow between cholinergic projection targets

The prediction that cholinergic mechanisms should deepen attractors is based in part on 

the relatively segregated (as opposed to diffuse) projections from the nbM to the cerebral 

cortex.14 That is, cholinergic axons from each nbM subnucleus project to a distributed, but 

constrained, set of regions that differs according to each nbM subnucleus;15 the Ch4AL 

projects to the primary visual cortex, anterior auditory association cortex, and medial 

pre-frontal cortex (among others), whereas the Ch4AM projects to the retrosplenial cortex, 

secondary somatosensory cortex, and subgenual cingulate cortex (among others; Figure 3A). 

As a specific sub-division of the nbM becomes active, the release of acetylcholine (ACh) 

to this set of regions should augment ongoing glutamatergic signaling in those targeted 

regions, particularly when considered relative to the remaining (non-targeted) regions that 

presumably did not receive a cholinergic boost in the same window. A key prediction is thus 

that communication between the cortical targets of nbM sub-regions should be selectively 

impaired during inhibition, relative to pairs of regions that are not within the downstream 

projections of the specific subnucleus of the nbM.

To test this hypothesis, we required a term that tracked inter-regional coupling while also 

accounting for time delays. To achieve this aim, we employed a technique from information 

theory, transfer entropy (TE), to estimate the amount of information flow between pairs 

of regions.25 Briefly, TE models the “information” transferred from a source process Y 
to the updates of a target process X by estimating the amount of information Y provides 

about the next state in the future of X in the context of the targets’ past (Figure 3B). Using 

the Java Information Dynamics toolkit (JIDT),26 TE is calculated as the expected mutual 

information from realizations of the source process Y over a delay u to a given target process 

X, conditional on the past of the target. In this way, TE can be calculated between all pairs 

of cortical time series for each source and target region.

As predicted, we found that GABAergic inhibition of the nbM led to a smaller relative TE 

between regions that were within each nbM sub-region’s projection targets, relative to pairs 

of regions outside the projections of each nbM sub-region (p = 0.0216; Figure 3C). This 

indicates that regions that are innervated by the nbM cannot interact with one another during 

epochs of inhibition of the nbM and thus refines the causal evidence for the role of the 

nbM in mediating dynamic brain state reconfigurations13,24 (see Figure S2 for additional 

comparisons).

Cholinergic modulation of the neural mass model drives deepened attractors

To further demonstrate the dynamical basis of our hypothesis for the action of ACh on 

stabilizing attractor landscapes while retaining pairwise correlations (original Turchi et al. 

results), we constructed a minimal dynamical system capable of reproducing the primary 

outcomes observed across both studies. The model consisted of two mutually inhibiting 

Wilson-Cowan-like27 neural masses (Figure 4) modulated by adaptation and excitability. 

The dynamics consisted of noisy excursions around two stable fixed points separated by a 
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saddle node with occasional noise-driven jumps between fixed points (STAR Methods). We 

tuned the adaptation variable so that it narrowed the basin of attraction of each fixed point 

but did not lead to a bifurcation; i.e., conserved the stability of all fixed points.

To model the action of ACh on these neural masses, we simulated two complimentary 

impacts of ACh on neural dynamics. The first effect involved a reduction in adaptation, 

which was intended to mimic the closure of hyperpolarizing potassium channels28); the 

second increased the excitability of targeted neurons, leading to greater inhibition through 

the mutual inhibitory connections of the competing neural masses, a process akin to 

cholinergic divisive normalization.29–31 Specifically, to model adaption, we reduced the 

contribution of the firing rate to the accumulation of adaptation (from d = 0.25 [Figure 

4D, gray] to d = 0.05 [Figure 4D, green]), which led to elongated dwell times. To model 

excitability, we implemented a simple form of divisive normalization by increasing the 

excitability of both masses (from a = 0.9 [gray] to a = 1.1 [green]; Figure 4F), which, 

through the (mutual) inhibitory connections between nodes, effectively led to greater 

inhibition of the competing mass whose strength scaled with the firing rate of the first 

node.

To demonstrate the utility of our attractor landscape framework, we subjected the time 

series outputs of our simple model to the same analysis used in the macaque resting 

state fMRI data. In keeping with our proposed mechanism, heightened cholinergic input 

led to a deepened and stabilized attractor landscape. The effect was consistent for both 

reduced adaptation and heightened excitability, suggesting that the main effect of ACh 

is to deepen the resultant energy landscape, making each fixed point more robust to 

adaptation. Consistent with the simultaneous impact of both reduced adaptation and 

increased excitability, the combination of reducing adaptation and increasing excitability 

(d = 0.25 and a = 0.9 [gray], d = 0.05 and a = 1.1 [green]; Figure 4H) also led to a similar 

deepening in attractor landscape topography. By direct implication, blocking ACh would 

have the opposite effect; i.e., flattening the energy barrier between attractors. Importantly, 

these effects were all evident despite no change in the zero-lagged correlation between the 

time series of the masses. Therefore, we conclude that this simply mechanistic model of 

ACh is able to permit both the key result of our study (namely, weakened attractor stability) 

while also recapitulating the main effect observed in the original study.20

DISCUSSION

In this study, we demonstrated causal evidence that the cholinergic system stabilizes 

macroscopic brain states, as direct GABAergic inhibition of the cholinergic system drove 

a flattening of the brain’s attractor landscape. We then mechanistically validated this finding 

in a bistable neural mass model. These results support previous work showing that phasic 

bursts in the cholinergic nbM lead to a deepened energy landscape (Figure 2). Together, our 

results advance our understanding of how the cholinergic forebrain constrains the formation 

of the brain state dynamics that form the basis of cognitive and affective brain states.8,11

The cholinergic system exhibits complex topographical projections to distributed sets of 

cortical populations, with the degree of overlap dependent upon the overall interconnectivity 
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among the same cortical regions.15,32 The dynamic topological sequelae of this organization 

are directly illustrated by our demonstration of a decrease in information flow (quantified 

using TE) among areas that are innervated by the nbM (Figure 3).33 Without the 

cholinergic system innervating these specific areas, the impact of incoming signals from 

other surrounding areas (i.e., “noise”) will likely have a greater influence, resulting in a 

decrease in shared information (i.e., information flow) between these specific areas. Thus, 

this result clarifies the role of the cholinergic system in facilitating complex and adaptive 

communication within segregated networks in the cerebral cortex.

To demonstrate the mechanistic validity of our hypothesis, we constructed a simple bistable 

neural mass model27,34 of the cholinergic deepening of the attractor landscape (Figure 4). 

Based on a wide array of cellular neuroscience findings, we proposed that the cholinergic 

system deepens the macroscale attractor landscapes through the closure of the slow 

hyperpolarizing potassium channels responsible for adaptation28 and through increasing 

the excitability of neurons, which, through the action of mutual inhibition, had an effect 

akin to divisive normalization.29–31 These effects modeled the action of the cholinergic 

reduction of adaptation for each mass, which, in turn, resulted in elongated dwell times. 

These changes can be understood in terms of attractor landscape as the increasing energy 

barrier separating the two stable fixed points (Figure 4), an effect that was replicated by 

increasing the excitability of each neural population and reducing adaptation and increasing 

excitability in tandem. Importantly, these dynamics occurred in the context of unaltered 

zero-lag correlations between nodes (by construction). In this way, we were able to create 

a simple model that recapitulated both our results and those of the original study.20 We 

therefore conclude that the cholinergic system is causally related to deepened energy wells 

within the context of attractor landscapes defined on whole-brain functional neuroimaging 

data. It is important to note that, while we proposed a microcircuit mechanism for the 

cholinergic system facilitating deepen attractor landscapes, we attempted to explicate the 

microcircuit mechanism through the lens of a neural mass model, which incorporates 

an average neural population activity. As such, the precise mechanism relating to blood-

oxygen-level-dependent-related changes observed in fMRI is underdetermined. Whether 

similar signatures will occur when interrogating the brain in finer detail, such as in layer-

specific or cell-type-specific brain networks, remains an important open question for future 

experiments.

Given the complex and diverse impacts of the cholinergic system, the precise microcircuit 

properties that mediate these cholinergic effects remain somewhat enigmatic, and often 

we rely upon inferred measures of brain activity that have been linked to cholinergic 

modulation to explicate its mechanisms of actions. For instance, divisive normalization29–31 

and temporal prolongation35,36 are measures that have been extensively linked to cholinergic 

modulation. We now briefly detail the role of ACh in each of these computational signatures.

Normalization arises when the amount of inhibition within a population of cells is 

proportional to the total activity in the population, so that, if the excitability of one subset 

of a population is increased, the others receive greater inhibition.37 This process has been 

suggested as a neural mechanism of focused attention.37 ACh has been shown to facilitate 

normalization by heterogeneous cholinergic receptor expression, which both promotes 
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excitability in one cortical layer and inhibits interneurons, causing nonlinear integration 

of output neural activity.38,39 While not entirely equivalent, we proposed that increasing 

excitability in subsets of neural populations (exemplified in our model through a microscale 

mechanism) would likely be an interpretable microcircuit mechanism that underlies cortical 

normalization.

Temporal prolongation instead refers to the augmentation of the intrinsic timescale of 

cortical neurons; i.e., the stabilization of cortical activity. Through the prolongation of 

NMDA dendritic spike generation, which shifts cortical pyramidal neurons into a “sustained 

depolarized state,” ACh is thought to facilitate shortening of membrane time constants, 

which further tunes temporal discrimination across distant synaptic inputs.35,36,40,41 In 

practice, temporal prolongation and normalization are likely inter-related in that any 

modulatory input that drives stabilization through either influencing the temporal scale of 

activity and/or the balance of excitation/inhibition (normalization) would lead to a stable 

attractor; which we have evidenced both through our experimental findings and our neural 

mass model.

Given the proposed importance of the cholinergic system in cognitive and adaptive 

behaviors,42–46 it is important that we design future experiments that investigate the 

interactions between the selective cholinergic manipulations in the nbM and sustained 

focus within cognitively challenging tasks47,48 as well as the encoding of contents into 

episodic memory.43 Based upon our findings, we anticipate that specific task-relevant 

networks (such as the ventral attention49 and default networks50) will be supported by 

patterns of cholinergic innervation and, thus, that these sub-networks should be recruited in 

distinct cognitive scenarios. Future work should attempt to characterize the distinct cognitive 

capacities in manipulating cholinergic tone so as to determine whether there are specific 

overlapping circuits that facilitate these different capacities.

Limitations of the study

The proposed mechanism of cholinergic attractor landscape deepening requires 

further interrogation through additional empirical experiments and more sophisticated 

computational modeling approaches. For instance, a potential limitation of our approach 

is that there are heterogeneous groups of cells within the nbM, each of which could have 

also been inactivated through muscimol injection, resulting in interaction of cholinergic 

and glutamatergic inhibition that could cloud the interpretation of our results.20 This 

concern could be mitigated by using more precise causal approaches, such as opto- or 

chemogenetics, that target specific populations of cells within a target region. In addition, 

there are other compensatory neuromodulatory mechanisms that could be contributing 

to the results of this study, and future work should attempt to modulate the multiple 

arms of the neuromodulatory system to further explicate their combined role in brain 

dynamics. To this end, more nuanced computational models would allow us to consider 

the influence of normalization and prolongation at a more fine-grained scale by building 

a model that incorporates the cellular structural complexity of a range of different 

cholinergic receptors,47,51,52 layer-specific modulation,47,53–55 and the summation of the 

cholinergic systems’ influence across these heterogeneous layer-specific modulations. Given 
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the heterogeneity of receptor expression across the neuroaxis, there is reason to expect 

that the impact of ACh on neural dynamics may be similarly heterogeneous.30,38,56 

Ultimately, we anticipate that models with these features will provide more robust fits to 

electrophysiological and functional neuroimaging data than simplified models, particularly 

in cognitive contexts that recruit cholinergic engagement.

In conclusion, we provided causal evidence of the cholinergic system mediating deep-

well attractor landscapes in brain state shifts. Our findings build upon a body of work 

highlighting the importance of the ascending arousal system in modulating global brain 

state reconfigurations.2,13,14,24,57 They further emphasize the importance of considering 

the influence of neuromodulatory systems in adaptive neural reconfigurations and their 

implication for overall brain function.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, A/Prof. James M. Shine 

(mac.shine@sydney.edu.au).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• All fMRI data recorded is accessible upon reasonable request from the lead 

contact. All neural mass model data is available within the following repository, 

https://doi.org/10.5281/zenodo.11324156

• All original code is publicly available through the following repository, https://

doi.org/10.5281/zenodo.11324156

• Any additional information required to reanalyse the data reported in this work 

paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Guidelines established by the Institute of Animal Research and approved by the National 

Institute of Mental Health (NIMH) Animal Care and Use Committee, were followed for all 

experimental procedures.

Two female rhesus monkeys (Macaca mulatta, 4–5 years old, 4.5–5.5-kgs at start of 

experiment) participated in the study. Both participants were socially housed, with a 

different female conspecific companion, in light (fixed 12hr light/dark cycle), humidity and 

temperature-controlled rooms. They received meals of nuts, fruits, and primate chow, and 

had access to water (ad libitum). Their healthy was consistently monitored by veterinary 

staff.
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METHOD DETAILS

MRI acquisitions—We acquired an existing dataset of two macaque monkeys that had 

unilateral injections of muscimol (agonist of GABAA receptors, with 18mM–44mM, 1.8–

2.46 μL) into either Ch4AM (centered on anterior-medial cluster of Ch4AM) or Ch4AL 

(targeted lateral regions of the Ch4AL); with no manipulation as controlled trials. The 

two monkeys underwent resting-state functional MRI scanning across the whole brain 

(we were provided with a sub-sample two monkeys, 21 scans of unilateral inactivation 

of Ch4AM (MonkeyF, left hemisphere 11 scans) and 33 scans of unilateral inactivation 

of Ch4AL (MonkeyZ, left hemisphere 15 scans), further 20 scans of no injection for 

control), obtaining cerebral blood volume as fMRI signal (4.7T/60cm vertical scanner, 

custom-built transmit-receiver RF coil, functional MRI acquired with EPI, TR = 2.5s, TE 

= 14ms, voxel = 1.5mm isotropic, 42 sagittal slices, FOV = 96mm, each scan acquisition 

of 30mins; the primary results of this study were published in Turchi et al. 2018). All 

fMRI scans underwent standardized pre-processing from Turchi et al., 2018 methods; which 

included slice-timing correction, correction of magnetic field inhomogeneities, motion co-

registration, 2mm spatial smoothing, skull-stripping and removal of the first seven time 

frames of the time-series (AFNI/SUMA package https://afni.nimh.nih.gov/afni), regions of 

interest were defined through the anatomical parcellation D99 atlas.58

Brain-state attractor landscape analysis—In order to evaluate the changes of 

fMRI signal activity in relation to inhibition of the nbM, we utilised the approach 

introduced in Munn et al., 2021 (code for this analysis available https://doi.org/10.5281/

zenodo.11324156). Briefly, this approach estimates the likelihood that a given brain state 

xt0 will changes into another distinct brain state xt0 + t, within a given time window t. We 

inferred the attractor landscape by examining the likelihood of changes in the instantaneous 

fMRI signal (brain-state) for a given temporal delay (TR = repetition time) for each of 

266 cortical ROIs at 30 random, equally-spaced starting time-points across the timeseries. 

Changes in fMRI signal were quantified using the fMRI signal mean-squared displacement 

(MSD) across varying time-lags t (30 randomly spaced start points). First, we calculated the 

mean squared displacement (MSD), which measures the average < >r deviation of the signal 

activity for r nodes

MSDt, t0 = ⟨ xt0 + t − xt0
2⟩r .

Then, we estimated the probability of a fMRI signal displacement at a time-lag t, P MSDt . 

The probability distribution was calculated from MSDt, t0 samplings by a Gaussian kernel 

density estimation K ,

P MSDt = 1
4n i = 1

n
K

MSDt, t0 i

4

and we calculated the probability distribution for t between 1 and 8 TR and MSD between 

0 and 5. We parameterised the MSD range by taking the maximal MSD value for the 
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histogram of all MSD values across the timeseries. We determined the TR range by taking 

the autocorrelation of the timeseries and taking the maximal time of the autocorrelation. We 

then calculated the energy, E, of fMRI signal MSD attractor state at a given time-lag t, as the 

natural logarithm of the inverse probability:

E = ln 1
P MSDt

This approach indicates that a highly probable relative change in fMRI signal (calculated by 

MSD) corresponds to a low energy (i.e., small E), and an unlikely change in fMRI signal 

requires a higher energy (i.e., large E).13 The attractor landscapes are represented as the 

energy for a given MSD at a given temporal displacement (TR).

We calculated an average attractor landscape for each condition (left hemisphere injection, 

right hemisphere injection and control) for each monkey. Then, we calculated the difference 

between the attractor landscapes by taking the difference between the nbM inhibition 

attractor landscape normalised by the control attractor landscape for each monkey. We 

ran paired t-tests to determine the significantly different points between the nbM inhibition 

compared to the control. To further investigate the attractor landscape, we also ran the above 

calculations by concatenating the time-series for all the same conditions (all runs for the 

left and right hemisphere injection, and control) and running the attractor landscape across 

the concatenated time-series, which reproduced the results. We established no significant 

difference in the attractor landscape when comparing between left and right hemisphere 

injection conditions (See Figure S2). In addition, we calculated the difference between 

ipsilateral and contralateral hemispheric attractor landscapes, by calculating the attractor 

landscape across ipsilateral (same hemisphere as inhibitory hemisphere injection) and 

contralateral ROIs (opposite hemisphere to inhibitory hemisphere injection) for both left 

and right hemisphere injection conditions. We ran a paired t test of the difference between 

hemispheric attractor landscape for either ipsilateral/contralateral ROIs and corresponding 

hemisphere control attractor landscape (i.e., ipsilateral left ROIs with left hemisphere 

control condition ROIs) (see Figure S3). We calculated whether there were differences 

between ipsilateral/contralateral left hemisphere inhibition versus ipsilateral/contralateral 

right hemisphere inhibition attractor landscapes (paired t test); and corrected for multiple 

comparisons with equivalent hemisphere control attractor landscapes (see Figure S3).

To determine the difference in the ‘flatness’ of the attractor landscape between nbM 

inhibition and control, we calculated the topography gradient for both nbM inhibition and 

control for each monkey. We used an inbuilt MATLAB (Version 2022b) ‘gradient’ function, 

which calculates the slope of a given vector field for f x1, … . xn  and separately f y1, … . yn , 

which in this case were the points of x, y on our attractor landscape plots:

∇xf(x) = δf
δx1

, δf
δx2

, … ⋅ δf
δxn

We then determined the maximal difference in the slope for the inhibition of the nbM 

compared to control.
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Information theoretic analysis—The information-theoretic measures we employed on 

this data are based upon a Shannon entropy model of information storage and transfer 

of information.60 This “information dynamics” approach considers how information in 

a variable Xn + 1 at a given time, n + 1, can be modeling by considering samples of this 

and other processes at the previous time points. Past information from a process X that 

contributes to its own future state is considered information storage, and information that 

contributes from other sources Y is considered information transfer between X and Y.

We were interested in how information transfer between different regions in the brain 

changed during cholinergic inhibition. More specifically, transfer entropy models the 

information transferred from a source process Y (one region of interest) to the updates 

of a target process X (another region of interest), by estimating the amount of information 

Y provides about the next state in the future X in the context of the targets’ past.25 This is 

quantified as the expected mutual information from realizations of the previous value Yn of 

the source process to realizations of the next value in the target process Xn + 1 conditioned on 

the previous state Xn
k, τ = Xn − k − 1 τ, …, Xn − τ, Xn  of the target:

TY x(k, τ) = I Yn; Xn + 1 ∣ Xn
k, τ

We used an auto-embedding function to set the (k, τ) parameters to maximize active 

information storage of the target with additional bias correction61,62 (with maximum 

allowed values of k = 10 and τ = 2). We obtained a TE value for each region-to-region 

edge across the runs for each condition (we computed a single TE using the time-series 

for all runs in the same condition) for each monkey. We calculated the difference in 

region-to-region specific TE by grouping the regions based of Ch4AL and Ch4AM projection 

patterns during inhibition and performed a paired t test between the region-to-region TE that 

had passed a statistical significance permutation test with a 0.05 threshold (1000 iterations 

for each TE edge). We also performed paired t test between the region-to-region TE for 

comparison between inhibition of acetylcholine and ‘sham’ injection (for which results are 

presented in Figure S2).

Excitatory-inhibitory neural mass model—To clarify the relationship between our 

hypothesised cholinergic mechanisms and the attractor landscape analysis we built a toy 

(bistable) system consisting of two Wilson-Cowan excitatory masses with mutual inhibition. 

In order to reduce our system to the phase plane we did not explicitly model inhibition. 

To capture the cholinergic effects on population level neuronal dynamics we added a 

slow adaptation variable to each mass leading to the following four dimensional system 

of equations.

τEĖ1 = − E1 + 1 − E1 f aE1 − E2 − H1

τHḢ1 = − H1 + bE1
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τEĖ2 = − E2 + 1 − E2 f aE2 − E1 − H2

τHḢ2 = − H2 + bEE2

Where f(x) = 1 + e−α δ*x − θ −1
 is a sigmoidal activation function. The structure of this 

model is similar to a number of previous models of bistable neuronal phenomena and shares 

many of their dynamical properties.34,35,40,63 The parameters of the model are given in 

table. Following standard separation of timescales arguments64 we leveraged the fact that 

τE ≪ τH allowing us partition the dynamics of the system into two phases. In the first phase 

we treat adaptation as constant and allow the firing rates to (rapidly) converge to their 

equilibrium values given by the intersection of the nullclines Ė1 = Ė2 = 0. The nullclines had 

three intersections (see Figure S7) defining the fixed points (E1*, E2*) of the system. In the 

second slow phase, adaptation converged to its equilibrium value H1 = bE1*, H2 = bE2*. For 

all parameter settings included in the simulations the system had two stable fixed points 

separated by a saddle node (i.e., the value of the Jacobian at the two stable fixed points 

had a positive determinant and negative trace, separated by a fixed point with a negative 

determinant.65 Adaptation modulated the basin of attraction of each fixed point but did not 

change their stability. To study the dynamics of the system under noise converted the above 

system of ordinary differential equations into a system of stochastic differential equations 

with additive Gaussian noise dW = σ dtN 0, 1 . Because the fixed points did not change 

their stability, large jumps in state space were noise driven. To study the hypothesised 

role of acetylcholine of the attractor landscape of our model we swept the a (excitability) 

and b (adaptation) parameter between a range of 0.5–1.5 with low values for b parameter 

and high values a parameter mimicking a highly cholinergic state. All simulations were 

run in the Brain Dynamics Toolbox (Version 2022b., MATLAB, Version 2022b)59 using 

the Euler-Maruyama solver with a timestep of dt = 0.001. For computational efficiency we 

then down sampled the simulated time-series by an order of 1000 (into ~10ms time-bins) 

and ran the down sampled time-series for both neural populations (together) through the 

above-mentioned attractor landscape analysis (running standardized optimisation of the TRs 

bins and range of MSD for the following timeseries).

Table of parameters and corresponding values for the simple toy model of acetylcholine 

modulation of neural masses

Parameter Values

τE 1

τH 1000

a 0.9–1.1

d 0.05–0.25

σ 0.1
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Parameter Values

α 1.5

δ 6

QUANTIFICATION AND STATISTICAL ANALYSIS

We calculated an average attractor landscape for each condition (left hemisphere injection, 

right hemisphere injection and control) for each monkey. Then, we calculated the difference 

between the attractor landscapes by taking the difference between the nbM inhibition 

attractor landscape normalised by the control attractor landscape for each monkey. We 

ran paired t-tests to determine the significantly different points between the nbM inhibition 

compared to the control. To further investigate the attractor landscape, we also ran the above 

calculations by concatenating the time-series for all the same conditions (all runs for the 

left and right hemisphere injection, and control) and running the attractor landscape across 

the concatenated time-series, which reproduced the results. We established no significant 

difference in the attractor landscape when comparing between left and right hemisphere 

injection conditions (See Figure S2). In addition, we calculated the difference between 

ipsilateral and contralateral hemispheric attractor landscapes, by calculating the attractor 

landscape across ipsilateral (same hemisphere as inhibitory hemisphere injection) and 

contralateral ROIs (opposite hemisphere to inhibitory hemisphere injection) for both left 

and right hemisphere injection conditions. We ran a paired t test of the difference between 

hemispheric attractor landscape for either ipsilateral/contralateral ROIs and corresponding 

hemisphere control attractor landscape (i.e., ipsilateral left ROIs with left hemisphere 

control condition ROIs) (see Figure S3). We calculated whether there were differences 

between ipsilateral/contralateral left hemisphere inhibition versus ipsilateral/contralateral 

right hemisphere inhibition attractor landscapes (paired t test); and corrected for multiple 

comparisons with equivalent hemisphere control attractor landscapes (see Figure S3). We 

obtained a TE value for each region-to-region edge across the runs for each condition 

(we computed a single TE using the time-series for all runs in the same condition) for 

each monkey. We calculated the difference in region-to-region specific TE by grouping the 

regions based of Ch4AL and Ch4AM projection patterns during inhibition and performed 

a paired t test between the region-to-region TE that had passed a statistical significance 

permutation test with a 0.05 threshold (1000 iterations for each TE edge). We also 

performed paired t test between the region-to-region TE for comparison between inhibition 

of acetylcholine and ‘sham’ injection (for which results are presented in Figure S2).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• ACh inhibition impairs brain state transitions while preserving correlations

• ACh inhibition leads to flattened energy barriers between brain state attractors

• ACh inactivation decreases information flow between targeted cortical regions

• Cholinergic model of firing rates and adaptation currents reproduces findings
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Figure 1. The cholinergic system deepens attractor landscapes
(A) Graphical representation of the effects of acetylcholine (ACh) on facilitating attractor 

landscape topography, in which brain states are particular locations in a low-dimensional 

state space. Neuromodulatory neurotransmitters are proposed to alter the topography of the 

landscape;11,12 specifically, ACh has been linked to the deepening of attractors.13

(B) Sagittal graphical representation of a macaque brain with nbM subnuclei projection 

patterns (Ch4AM and Ch4AL) with inhibition injection from muscimol.

(C) Time series extracted from symmetric ROIs following inactivation of the left nbM 

(recreated from original Turchi et al. data).

(D) Graphical representation of the influence of the cholinergic system on MSD and 

“activation energy” required to move; given that ACh acts to deepen the wells of the 

attractors and stabilize brain states, we predict that inhibition of the nbM will lead to a 

relative flattening of the energy landscape estimated from fMRI data.
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Figure 2. Lesions of the cholinergic nbM lead to energy landscape flattening
(A) Plot of an example time series across control sessions for both monkeys for 50 regions.

(B) Plot of an example time series across inhibition sessions for both monkeys for 50 

regions.

(C) Plot of the average (both monkeys) attractor landscape (changes in fMRI signal activity 

being measured in relation to MSD value and time represented by TRs) during no inhibition.

(D) Plot of the average (both monkeys) attractor landscape (changes in fMRI signal activity 

being measured in relation to MSD value and time represented by TRs) during nbM 

inhibition.

(E) 2D plot of the average difference (of both monkeys) in attractor landscape (changes in 

fMRI signal activity being measured in relation to MSD value and time represented by TRs) 

between the nbM being inhibited vs. no inhibition; significantly (p < 0.05, paired t test) 

different MSD energy values are represented on the colored 2D plot beneath the difference 

in the attractor plot.

(F) 2D plot of the average difference (both monkeys) in attractor landscape between the nbM 

inhibition versus no inhibition; energy is represented on the y axis, with the time represented 

on the x axis (across all MSD). Differences in MSD energy are represented on the color bar.
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Figure 3. Decreased information transfer between targets of lesioned cholinergic projections
(A) Midline and lateral sagittal graphical representation of the distinct regions to which 

the Ch4AL and Ch4AM sub-regions of the nucleus basalis of Meynert (nbM) project, with 

dashed lines representing the regions that had a relative decrease in TE between other 

regions in the brain (p < 0.05, paired t test).

(B) Graphical representation of information theoretical analysis; TE (orange arrow) 

describes information on the next instance Xn + 1 (gray) of a target region that is provided 

by the past (Yn + 1, orange) of another time series Y in the context of the target’s history.

(C) Decreased TE between pairs of regions with targeted projections from Ch4AL and 

Ch4AM when compared to pairs not targeted by Ch4AL and Ch4AM [gray dots] (p = 0.0216, 

paired t test).
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Figure 4. Computational evidence for cholinergic deepening of attractor wells
(A) Graphical representation of the neural mass model with adaptation manipulation.

(B) Plot of the down-sampled time series of the two neural mass populations.

(C) Graphical representation of role of the cholinergic system in facilitating deepened 

attractor landscapes.

(D) A plot of attractor landscape averaged across time as adaptation is decreased (the dashed 

line represents d = 0.25, and green represents d = 0.05).

(E) A plot of attractor landscape averaged across time as excitability is increased (the dashed 

line represents a = 0.9, and green represents a = 1.1).

(F) A plot of attractor landscape averaged across time as excitability is increased and 

adaptation is decreased (the dashed line represents a = 0.9, d = 0.25, and green represents a 

= 1.1, d = 0.05).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Rhesus macaque (Macaca mulatta) NIMH/NIH N/A

Deposited data

Raw and pre-processed data Turchi et al.20 N/A

Atlas-based regions of interest Reveley et al.58 N/A

Analyzed data This paper https://doi.org/10.5281/zenodo.11324156

Model data This paper: Github data https://doi.org/10.5281/zenodo.11324156

Software and algorithms

MATLAB MathWorks https://mathworks.com/products/matlab.html

Brain Dynamics Toolbox Heitmann et al.59 https://bdtoolbox.org/

Java Information Dynamics Toolkit (jidt) Lizier26 https://github.com/jlizier/jidt

Cell Rep. Author manuscript; available in PMC 2024 July 18.

https://mathworks.com/products/matlab.html
https://bdtoolbox.org/
https://github.com/jlizier/jidt

	SUMMARY
	In brief
	Graphical abstract
	INTRODUCTION
	RESULTS
	The cholinergic nucleus basalis of Meynert causally alters attractor landscape topography
	Cholinergic inhibition interrupts information flow between cholinergic projection targets
	Cholinergic modulation of the neural mass model drives deepened attractors

	DISCUSSION
	Limitations of the study

	STAR★METHODS
	RESOURCE AVAILABILITY
	Lead contact
	Materials availability
	Data and code availability

	EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
	METHOD DETAILS
	MRI acquisitions
	Brain-state attractor landscape analysis
	Information theoretic analysis
	Excitatory-inhibitory neural mass model


	Table T2
	QUANTIFICATION AND STATISTICAL ANALYSIS

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	KEY RESOURCES TABLE

