Skip to main content
. 2024 Jul 1;10(13):e33826. doi: 10.1016/j.heliyon.2024.e33826

Table 2.

Prediction (classification) results for presepsin groups (positive, negative) based on different artificial intelligence classifier algorithms without missing data.

Dataset (n = 173) Algorithm Precision Recall F1 Score ROC AUC Accuracy (Cross Validation, k = 5)
routine laboratory parameters
∼ presepsin
Classification
k-NN 0.77 0.77 0.77 0.81 0.80
Logistic Regression 0.93 0.92 0.93 0.98 0.91
Naive Bayes Classifier 0.93 0.92 0.93 0.95 0.92
Random Forest 0.95 0.94 0.94 0.97 0.91
XGBoost 0.95 0.94 0.94 0.97 0.94