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ABSTRACT: Pipeline risk assessment is crucial for pipeline safety manage-
ment and operation. The aim of this study is to develop a comprehensive
assessment model that accurately evaluates pipeline risks and ensures the safe
and reliable operation of the pipeline system. The model is based on
multisource spatial data and is primarily applicable to long-distance oil and gas
pipelines that traverse complex geological conditions in mountainous areas.
The research is conducted using the example of the Jinliwen natural gas
pipeline in Zhejiang Province, China. By analyzing the geological data of the
study area and the potential risks that the pipeline may encounter, a
comprehensive risk assessment indicator system for the pipeline was developed
using slope units to divide pipeline sections. The pipeline risk levels are
classified using the K-means clustering-entropy weighted-random forest
algorithm. The model is evaluated using accuracy (Acc), precision (Pre),
recall (R), F1-score, and the ROC curve. The results show that the model has an accuracy of 0.917, a precision of 0.92, a recall of
0.916, an F1-score of 0.914, and an AUC (Area Under Curve) of 0.93, indicating its strong predictive capability. The risk assessment
results demonstrate a strong consistency when compared with actual incident events. This indicates that the constructed model
effectively reflects the influencing factors of pipeline risk, providing a basis for pipeline risk assessment and disaster prevention and
mitigation efforts in similar regions.

1. INTRODUCTION
Long-distance oil and gas pipelines have the advantages of high
efficiency, low cost, and low energy consumption. They are an
extremely economical and efficient transportation method for
the transportation of oil, gas, and other resources.1,2 With the
continuous rise of socio-economic development, the petroleum
industry, and the increasing demand from the population,
human society’s consumption of oil, natural gas, and other
energy sources has reached unprecedented levels. As a result, an
increasing number of oil and gas pipelines have been put into
operation.3,4 However, long-distance oil and gas pipelines
generally have characteristics such as crossing vast territories,
shallow burial depths, complex external environments, and the
presence of flammable, explosive, and toxic substances. They are
susceptible to threats from third-party interference and
geological hazards. These pipelines have multiple potential
risks, and in the event of an accident, the consequences can be
difficult to estimate.5,6 Therefore, there is an urgent need for
research on the types of risks that long-distance pipelines may
encounter. It is important to consider the influencing factors of
various risks and develop an accurate and universally applicable
comprehensive risk assessment model for long-distance pipe-
lines.
There is no doubt that a comprehensive risk assessment is

critical to the safe operation of pipelines. The significance is

mainly reflected in the following aspects: improving pipeline
safety, optimizing resource allocation, formulating effective
pipeline safety policies, and promoting the sustainable develop-
ment of the pipeline industry.7 Therefore, in the absence of a
clear comprehensive risk assessment method for long-distance
oil and gas pipelines, this study focuses on researching risk types,
influencing factors, and method selection to construct a
comprehensive risk assessment model for long-distance pipe-
lines. The model is developed by combining professional
knowledge and practical experience.
Recently, there have been many studies on pipeline risk

assessment. These studies aim to enhance the safety and
reliability of long-distance pipeline systems, reduce accident
risks, and optimize risk management strategies. Cui et al.8

proposed a pipeline third-party damage risk assessment model
based on Bayesian networks and game theory. In their model,
effective analysis has been conducted on both inadvertent third-
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party harm and deliberate malicious behavior. Hong et al.9

conducted an analysis of geological hazard risks faced by long-
distance pipelines when crossing mountainous areas. They fully
considered the role of rainfall factors in the occurrence of water-
related geological hazards and constructed a meteorological
early warning model. This model improved the accuracy of
predicting such hazards. Mazumder et al.10 developed a feasible
alternative approach to computationally intensive analysis
methods for determining failure risks of steel oil and gas
pipelines based on the XGBoost algorithm. Although the
aforementioned studies have achieved significant results, they
primarily focus on specific risks faced by long-distance pipelines
(such as third-party damage, landslides, debris flows, earth-
quakes, and collapses). There is a lack of research on the
comprehensive risk assessment of long-distance pipelines in
mountainous areas.
Indeed, some scholars have begun to use machine learning

methods for pipeline risk assessment, such as artificial neural
networks,11,12 support vector machines,13,14 random forests,15,16

and XGBoost.17 While these methods can learn from large
amounts of data and extract patterns and features related to
pipeline risks, they do require substantial data support and rely
on prior data. For unsupervised classification problems,
clustering algorithms are currently the most commonly used
methods.18 Clustering algorithms aim to partition the samples in
a data set into groups or clusters based on their similar features,
without the need for pre-existing labels or specified category
information.19Among them, K-means clustering is a simple and
efficient clustering algorithm, with relatively low computational
complexity. In K-means clustering, each sample is assigned to a
cluster, and the center of each cluster is considered as the
representative of that cluster. This allows for an intuitive
understanding of the clustering results.20

Furthermore, when conducting risk assessment studies on
pipelines, researchers generally employ common methods for
segmenting the pipeline, including equal-length segmentation,
expert-based segmentation, and system node segmentation.21,22

However, these segmentation methods have certain limitations.
The equal-length segmentation method may not consider the
variations in characteristics between pipeline segments, while
the feature-based segmentation method may lead to significant
differences in segment lengths.23The commonly used pipeline
segmentation methods are often based on simplified assump-
tions, which overlook the complex correlations and interactions
between the pipeline and its surrounding environment.24 There
are various associations and interactions between the pipeline
system and its surrounding environment, such as geological
conditions and soil types. These factors can have a significant
impact on pipeline risks. Therefore, it is essential to take them

into account when segmenting the pipeline.25 Slope units are
divided based on geological conditions, using ridge lines and
valley lines as boundaries. This approach not only adheres to the
characteristics of river channel development but also has a
higher likelihood of preserving the integrity of geological
landforms.26 Therefore, segmenting the pipeline based on
slope units can lead to more accurate and effective analysis,
helping to identify and manage potential risks.
From the review of previous research, it is evident that studies

related to pipeline risk assessment have made significant
progress and have become more mature. Researchers have
developed various methods and models to assess the risks
associated with pipeline systems. These methods and models
include statistical-based approaches, machine learning-based
methods, and physical models. Researchers select and apply
appropriate methods and models for pipeline risk assessment
based on the specific requirements of the problem and the
availability of data. A detailed review of existing research is
shown in Table 1.
However, most of the aforementioned studies focus on

specific risks faced by pipelines, such as geological hazards, third-
party interference, and pipeline failures, lacking comprehensive
research on the integrated risks of long-distance pipelines in
mountainous areas. This single risk assessment approach may
not comprehensively consider the mutual interactions and
cumulative effects of multiple risk factors. To address this issue,
this study collects and consolidates information from various
data sources, including pipeline basic information, operational
data, environmental data, and more. Based on multisource
spatial data, this study considers the risks faced by long-distance
pipelines in mountainous areas and quantifies their impact on
the pipeline system. Subsequently, by establishing an appro-
priate indicator system and utilizing a multimethod fusion
model, the data related to various risk factors are integrated to
comprehensively assess the risks of the pipeline system.
Furthermore, most of the aforementioned studies use relatively
long pipeline segments as the unit for risk assessment,
overlooking the complex correlations and interactions between
the pipeline and its surrounding environment. When pipelines
traverse through flat terrain with minimal changes in the
surrounding environment, the impact on risk assessment may
not be as significant. However, when pipelines traverse through
mountainous areas, the topography and geological conditions
are typically more complex and diverse compared to flat terrain.
If long pipeline segments are used as the unit for risk assessment,
it would undoubtedly disrupt the integrity of natural slopes, and
long segments would not be conducive to the placement of
artificial defenses for high-risk units. So, when pipelines traverse
through areas with complex geological conditions, it is indeed

Table 1. Detailed Review of Existing Research

pipe segment division method

references research purposes
equal distance
division

expert experience
division

system node
division

division of geological
conditions

Cui8 Pipeline Third-Party Damage Risk Assessment √
Hong28 Pipeline water damage geological hazard

warning
√

Mazumder10 Pipeline Failure Risk Assessment √
Li21 Pipeline Failure Risk Assessment √
Wen23 Pipeline landslide risk assessment √
Xiong22 Pipeline landslide risk assessment √
this study Comprehensive Pipeline Risk Assessment √
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beneficial to divide the pipeline into shorter segments using
slope units. This allows for better consideration of variations in
topography and geological conditions along the pipeline route.27

This approach allows for a more detailed and accurate
assessment, enabling a more comprehensive capture of potential
risk factors.
Therefore, this study focuses on the risk assessment of long-

distance oil and gas pipelines in mountainous areas. It explores
the development of a pipeline risk assessment model based on
the fusion of multisource data. The aim is to establish a more
comprehensive and accurate risk assessment model that
provides valuable information to evaluate potential risks. This
research can assist decision-makers in formulatingmore effective
risk management strategies. The contributions of this article are
as follows:

• This study employed hydrological analysis methods and
curvature analysis methods to divide the slope units
around the pipeline in mountainous areas. Based on the
division results, the pipeline was segmented. This

segmentation method helps consider geological varia-
tions, improves assessment accuracy, facilitates main-
tenance, and supports the implementation of risk
management measures.

• A comprehensive pipeline risk assessment indicator
system was constructed, which includes 25 indicators
from four aspects: real-time fiber optic monitoring, risks
related to third-party interference, susceptibility to
geological hazards, and early warning for water-related
hazards. This multisource data-based comprehensive
pipeline risk assessment method offers advantages such
as comprehensiveness, accuracy, and timeliness. It can
integrate information from multiple data sources and
provide more comprehensive, accurate, and timely
pipeline risk assessment results.

• The proposed method utilizes K-means clustering for
sample data clustering, entropy weight method for weight
calculation, and random forest for model training and
prediction. This approach takes advantage of unsuper-

Figure 1. Pipeline comprehensive risk assessment process.
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vised clustering, entropy weight calculation, and the
random forest classifier, reducing reliance on prior
knowledge and improving classification accuracy. It
enables a more objective and accurate classification of
risk levels for pipeline segments, providing robust support
for pipeline risk assessment.

2. MATERIALS AND METHODS
The comprehensive pipeline risk assessment model constructed
in this study includes four key stages (Figure 1):

• Through detailed field investigations and high-resolution
satellite image analysis, data from various sources were
collected and integrated to gather research area
information, including pipeline basic information, opera-
tional data, and environmental data.

• Based on high-precision digital elevation model (DEM)
data of the research area, slope units were divided using
hydrological analysis methods and curvature analysis
methods. Any unreasonable units were corrected during
the process of dividing the slope units. Based on the well-
divided slope units, the segmentation of pipeline
segments was completed.

• By utilizing various data sources and techniques, a
comprehensive assessment model was constructed. The
collected data was used to determine the susceptibility to

geological hazards, water-related hazard warning levels,
third-party interference vulnerability, and fiber optic
system warning levels for each pipeline segment. The
pipeline segments were classified and ranked using K-
means clustering and entropy weight method. The fusion
of multisource spatial data was accomplished by inputting
the attributes and risk levels of pipeline segments into the
Random Forest (RF) algorithm for training. This process
determined the comprehensive risk level of the pipeline
and completed the construction of the model.

The constructed pipeline risk assessment model in this study
was validated using metrics such as accuracy (Acc), precision
(Pre), recall (R), F1-score, and the Receiver Operating
Characteristic (ROC) curve. The trained model was then used
to perform a comprehensive risk assessment of all pipeline
segments.
2.1. Data Preparation. The risks faced by pipelines mainly

include geological hazards and third-party damage, where
geological hazards are influenced by multiple factors such as
meteorological conditions, topography, and previous rainfall.
The process is complex and characterized by high uncertainty.
Third-party damage accidents are sudden and random,making it
difficult to achieve early warning and prevention. Based on the
potential risks identified for the studied pipeline and the
geological characteristics of the research area, a comprehensive
review of the literature was conducted to extract evaluation

Table 2. Pipeline Comprehensive Risk Assessment Index System

first-level indicator secondary indicators
indicator
properties indicator source

geological hazard susceptibility level elevation + high-precision DEM
slope + high-precision DEM
aspect high-precision DEM
planar curvature + high-precision DEM
profile curvature +
Normalized difference vegetation index
(NDVI)

− Resource and Environmental Sciences and Data
Center

Topographic wetness index (TWI) + Resource and Environmental Sciences and Data
Center

rainfall + National Earth System Science Data Center
distance from the road − Resource and Environmental Sciences and Data

Center
distance from the river − Resource and Environmental Sciences and Data

Center
Water-related geological hazard warning
level

internal friction angle − National Geological Data Center

cohesion − National Geological Data Center
cumulative rainfall in 7 days + Meteorological department measured data
24-h rainfall forecast + Meteorological department measured data

Third-party damage vulnerability level pipeline identification + field survey data
patrol frequency + field survey data
pipe elevation + Pipeline construction parameters
burial depth + Pipeline construction parameters
service life − Pipeline construction parameters
wall thickness + Pipeline construction parameters
degree of modernization + Resource and Environmental Sciences and Data

Center
distribution station distance − Pipeline construction parameters
pipeline gas flow − field survey data
population density − World Population Organization Web site
exposure distance − field survey data

Fiber optic warning levels optical fiber real-time monitoring data + actual data

Note: “+” in the table represents a positive correlation with the first-level indicator, and “−” represents a negative correlation with the first-level
indicator.
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indicators used in risk assessments. After removing overlapping
and similarly worded indicators, this study selected a total of 25
indicators from four aspects: real-time fiber optic monitoring,
risks related to third-party interference, susceptibility to
geological hazards, and early warning for water-related hazards.
These indicators were used to construct the comprehensive
pipeline risk assessment indicator system (Table 2).
The selection criteria for each secondary indicator and their

positive or negative correlation with the primary indicators are as
follows:
(1) Elevation: Elevation refers to the vertical distance of a

point on the Earth’s surface relative to a reference
horizontal plane. It is commonly used to describe the
vertical position or altitude of a geographic location. In
high-altitude areas, the terrain is typically steep, climate
conditions are often harsh, and rock formations and soil
are generally weaker and less stable.29 Therefore, there is
usually a positive correlation between elevation and
susceptibility to geological hazards.

(2) Slope: Slope refers to the degree of inclination of the
ground or terrain in the horizontal direction. It is used to
describe the steepness or inclination of the ground.
Steeper slopes increase the self-weight pressure of soil and
rocks on the surface and also increase the force of gravity
acting on the soil mass, thereby increasing the risk of
geological hazards such as landslides and collapses.29

When the slope exceeds a certain threshold, the shear
strength of the soil or rock may not be able to resist the
force of gravity, leading to instability and collapse.
Therefore, there is generally a positive correlation
between slope and susceptibility to geological hazards.

(3) Aspect: Aspect refers to the direction of the slope or
terrain, i.e., the orientation of the slope. It describes the
inclination trend of the ground or the directional
characteristics on a horizontal plane. In certain cases,
the selection of aspect may have an adverse impact on the
collection of rainfall moisture and the path of runoff.29

Therefore, this aspect has some influence on the
formation and development of geological hazards.

(4) Planar curvature: Planar curvature describes the magni-
tude and direction of curvature of a surface at a particular
point. It is used to describe the degree of bending of the
surface on a plane near that point.30 Larger planar
curvature indicates a higher degree of curvature of the
terrain or surface at a specific point, making the soil or
rock more prone to instability under external forces and
potentially increasing the risk of landslides and collapses.
Therefore, there is usually a positive correlation between
planar curvature and susceptibility to geological hazards.

(5) Profile curvature: Profile curvature refers to the curvature
radius of a curve or surface along the tangent line at a
particular point. It is used to describe the degree of
curvature of a curve or surface near that point.30 In areas
with significant profile curvature, the stress distribution of
slopes may be uneven, leading to localized stress
concentration. This can make the soil or rock more
vulnerable to instability under external forces, increasing
the risk of sliding or collapsing. Therefore, there is usually
a positive correlation between profile curvature and
susceptibility to geological hazards.

(6) Normalized difference vegetation index (NDVI): NDVI
is an index used to assess vegetation condition and vitality.

Higher NDVI values typically indicate abundant vegeta-
tion coverage, which means that vegetation roots can
increase soil shear strength and inhibit soil erosion and
surface runoff, thereby reducing the risk of geological
hazard development.29 Therefore, there is usually a
negative correlation between NDVI and susceptibility to
geological hazards.

(7) Topographic wetness index (TWI): TWI is an index used
to describe the degree of surface or terrain wetness. It is
based on terrain features and calculates a value reflecting
the surface wetness by considering factors such as rainfall,
slope, and soil water-holding capacity.31 When the
topographic wetness index is higher, it may indicate
more surface water accumulation. Water saturation can
decrease the shear strength of soil, thereby increasing the
likelihood of geological hazards. Therefore, there is
usually a positive correlation between TWI and
susceptibility to geological hazards.

(8) Rainfall: Rainfall is typically measured as the amount of
water per unit area and is known as precipitation. Heavy
or continuous rainfall can lead to water accumulation and
soil saturation, reducing the shear strength of the soil and
increasing the risk of hazard occurrence.29 Especially in
steep slopes, loose soil, or areas affected by human
excavation and embankment, increased rainfall can
significantly increase the potential danger of landslides
and collapses. Therefore, there is usually a positive
correlation between rainfall and susceptibility to geo-
logical hazards.

(9) Distance to roads: Distance to roads refers to the straight-
line distance or actual path distance between a point or
area and the nearest road. It is used to measure the
distance relationship between a location and the road
network in geographic space.31 Being closer to roads may
increase the risk of geological hazard occurrence. Road
construction activities such as excavation, retaining walls,
and embankments may disrupt the stability of the original
geological formations, leading to geological hazards.
Additionally, the drainage systems of roads can cause
water infiltration into the soil, increasing soil saturation
and further exacerbating the development of geological
hazards. Therefore, there is usually a negative correlation
between distance to roads and susceptibility to geological
hazards.

(10) Distance to water system: Distance to water system refers
to the straight-line distance or actual path distance
between a point or area and the nearest water body, such
as rivers, lakes, or oceans. It is used to measure the
distance relationship between a location and water bodies
in geographic space.29 Areas closer to water systems may
be more affected by changes in groundwater levels, which
can lead to changes in soil moisture and stability, thereby
influencing the development of geological hazards.
Therefore, there is usually a negative correlation between
the distance to water systems and the susceptibility to
geological hazards.

(11) Internal friction angle: The internal friction angle refers to
the magnitude of the internal frictional resistance formed
between soil particles when subjected to shear forces. A
larger internal friction angle indicates a greater frictional
resistance between soil particles, indicating better shear
resistance and relatively higher stability of the soil.28 In
water-related geological hazards, the presence of water
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can have a certain influence on the internal friction angle
of the soil. When the soil contains an appropriate amount
of water, the water can lubricate the soil particles,
reducing the internal frictional resistance between them
and thereby decreasing the internal friction angle of the
soil. In this case, the shear resistance of the soil decreases,
making it prone to water-related geological hazards such
as landslides and debris flows. Therefore, there is usually a
negative correlation between the internal friction angle
and the warning level of water-related geological disasters.

(12) Cohesive strength of soil: The cohesive strength of soil
refers to the mutual adhesive force between soil particles
and is the soil’s ability to resist shear failure.28 When the
cohesive strength of the soil is high, there is a strong
adhesive force between the soil particles, resulting in good
cohesion and shear resistance of the soil. In this case,
when the soil is subjected to external forces, the
interaction between the particles is strong, maintaining
the stability of the soil and reducing the likelihood of
water-related geological hazards. Therefore, there is
usually a negative correlation between the cohesive
strength of the soil and the warning level of water-related
geological disasters.

(13) Cumulative rainfall in 7 days: The accumulated rainfall in
the preceding period has a significant impact on the
development of water-related geological hazards.28 When
there is a large amount of rainfall during this period, the
soil’s water content increases, leading to higher soil
saturation and a decrease in its shear strength. This makes
the soil unstable and susceptible to water-related
geological hazards such as landslides, debris flows, and
slope collapses. The majority of water-related geological
hazards in the study area occur on days with heavy rainfall,
with 83.9% of these hazards occurring within 3 days of
rainfall, indicating a high correlation between the
accumulated rainfall in the preceding 7 days and the
occurrence of geological hazards. Therefore, this study
uses the rainfall in the preceding 7 days as a secondary
indicator for water-related disaster warnings. There is
typically a positive correlation between the accumulated
rainfall in the preceding period and the warning level of
water-related geological disasters.

(14) Twenty-four hour forecasted rainfall: The forecasted
rainfall is closely related to the development of water-
related geological hazards. Accurate rainfall forecasts can
help in implementing appropriate disaster prevention and
emergency measures, thereby reducing or avoiding the
occurrence of water-related geological hazards.28 There-
fore, this study uses the 24-h forecasted rainfall as a
secondary indicator for water-related disaster warnings.
There is usually a positive correlation between the
forecasted rainfall and the warning level of water-related
geological disasters.

(15) Pipeline signage: Pipeline signage plays a crucial role in
preventing third-party damage and enhancing the disaster
resilience of pipelines. By promoting awareness and
recognition, improving inspection efficiency, and raising
public awareness, pipeline signage can reduce the
occurrence of destructive behaviors and facilitate timely
problem detection and mitigation measures, thereby
enhancing the safety and disaster resilience of pipelines.32

The more numerous and clearer the pipeline signage, the
stronger the capacity to withstand third-party damage.

Therefore, there is typically a positive correlation between
pipeline signage and the resilience against third-party
disruptions.

(16) Patrol frequency: Patrol frequency refers to the frequency
of pipeline inspections, indicating how often pipelines are
surveyed and examined within a certain period of time.32

A higher patrol frequency can enhance the pipeline’s
resistance to damage and its ability to withstand disasters.
By promptly identifying issues, reducing opportunities for
damage, and responding to incidents in a timely manner,
it effectively prevents third-party acts of sabotage and
ensures the safety of the pipeline. Therefore, there is
typically a positive correlation between patrol frequency
and the pipeline’s resilience against third-party damage.

(17) Pipeline elevation: Pipeline elevation refers to the vertical
distance between the centerline or top of the pipeline and
the sea level or ground surface.32 A higher pipeline
elevation can reduce the likelihood of unintentional third-
party damage to the pipeline, thereby enhancing the
pipeline’s resilience against third-party sabotage and
reducing the occurrence of accidents. Therefore, there is
typically a positive correlation between pipeline elevation
and the pipeline’s resilience against third-party damage.

(18) Burial depth: Pipeline burial depth refers to the vertical
distance between the bottom of the pipeline and the
ground surface when it is buried.32 When the pipeline is
buried at a greater depth, it becomes more difficult for
third parties to accidentally come into contact with the
pipeline or exert destructive forces upon it. Additionally,
deeper burial provides better protection against geological
and soil factors such as earthquakes, soil settlement,
erosion, and scour. Therefore, there is typically a positive
correlation between pipeline burial depth and the
pipeline’s resilience against third-party damage.

(19) Service life: Pipeline service life refers to the actual
duration of time that a pipeline is put into operation and
used. As the service life of a pipeline increases, it may
experience a certain degree of aging and wear, thereby
reducing its resilience and making it more susceptible to
third-party damage.32 Therefore, there is typically a
negative correlation between pipeline service life and its
resilience against third-party damage.

(20) Wall thickness: Pipeline wall thickness refers to the
thickness of the pipe’s walls, which is the distance between
the inner and outer walls of the pipe’s cross-section. A
greater wall thickness can increase the strength and
stiffness of the pipeline, making it more resistant to
external forces. Additionally, a larger wall thickness can
provide a better protective layer, reducing the impact of
corrosion, wear, and damage on the pipeline.33 Therefore,
there is typically a positive correlation between pipeline
wall thickness and its resilience against third-party
damage.

(21) Degree of modernization: The process of urbanization
and modernization is often accompanied by improve-
ments in the construction and management of related
infrastructure. Urban planning and pipeline layout tend to
become more scientific and standardized. With proper
planning and layout, pipelines can reduce risk factors
associated with third-party damage, such as construction
activities, excavation, and mechanical operations.33

Therefore, there is typically a positive correlation between
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the degree of modernization in the vicinity of pipelines
and their resilience against third-party damage.

(22) Distance to distribution stations: Distribution stations
typically enhance the management and security monitor-
ing of the pipeline’s surrounding environment. This
includes strengthening security patrols, installing mon-
itoring devices, and restricting activities around the
pipeline. These measures allow for the timely detection
of signs of pipeline damage, the implementation of
preventive and repair measures, and the reduction of risks
associated with third-party damage.32 Therefore, there is
typically a negative correlation between the distance of a
pipeline from distribution stations and its resilience
against third-party damage.

(23) Pipeline gas flow: Pipelines with high gas flow are often
associated with significant economic interests. When a
pipeline experiences failure, resulting in reduced or halted
gas flow, it can have a greater negative impact on the
related economic interests. Additionally, higher gas flow
can subject the pipeline system to greater transportation
pressure. If the pipeline is unable to withstand this
pressure or does not receive proper maintenance and
protection, it may increase the potential risk of damage to
the pipeline.34 Therefore, there is typically a negative
correlation between pipeline gas flow and its resilience
against third-party damage.

(24) Population density: Population density refers to the
number of people living or engaging in activities within a
given area. A higher population density implies more
frequent activities and a denser concentration of
individuals, which may increase the potential risk of
human-induced damage to pipelines. Additionally, higher
population density means that more people are affected in
the event of pipeline damage, increasing the likelihood of
injuries or fatalities.33 Therefore, there is typically a
negative correlation between population density and the
resilience of pipelines against third-party damage.

(25) Exposure distance: Pipeline exposure distance refers to
the length or distance of pipeline segments that are
exposed on the surface or in other visible locations within
the pipeline system. Longer exposure distances may
increase the potential risk of third-party damage to the
pipeline and reduce its resilience.33 Therefore, there is
typically a negative correlation between exposure distance
and the resilience of pipelines against third-party damage.

(26) Abnormal distribution count of COTDR: COTDR
(Coherent Optical Time Domain Reflectometry) is a
fiber optic sensing system based on coherent optical time
domain reflectometry technology, used for the detection
and monitoring of events or abnormal conditions within
the fiber optic cable.35 A higher count of abnormal
distributions may indicate a greater number of abnormal
conditions within the pipeline system, which may require
further inspection and maintenance. Conversely, a lower
count of abnormal distributions may indicate normal
operation of the pipeline system with no significant
abnormal conditions. Therefore, there is typically a
positive correlation between the count of abnormal
distributions of COTDR within a given time period and
the fiber optic alert level.

2.2. K-Means Clustering Algorithm. The K-means
clustering algorithm was employed in this study to classify

pipeline segments. In the comprehensive risk assessment of
pipelines, the primary indicator data of each pipeline segment
were used as input, and the K-means algorithm was applied to
divide the pipeline segments into different categories, thereby
achieving segmentation of the pipeline. The K-means clustering
algorithm is a distance-based unsupervised and dynamic
clustering method.36 It is easy to describe, simple, efficient,
and suitable for handling large data sets. As a result, it is widely
used in various risk assessments.37−39 The calculation of
centroids in clustering algorithms provides a basis for risk factor
classification. Clustering algorithms determine the similarity of
data points based on the distances between them. The closer the
data points are, the more similar they are, while the farther apart
they are, the less similar they are. In cluster analysis, the
Euclidean distance is commonly used as a calculation method
for similarity. Its formula is as follows (eq 1)
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In the equation, d represents the Euclidean distance from a
sample point to a cluster center. bi refers to the i_th data point,
while aj represents the j_th cluster center.
The data processing flow of the K-means clustering algorithm

is as follows: First, specify the number of clusters, denoted as k.
Then, select k data points from the data set as the initial cluster
centers. Based on eq 1, calculate the distance between each data
point and the k cluster centers. Then, based on the principle of
minimizing distance, assign each data point to the nearest initial
cluster center. Repeat this process until all data points are
assigned to one of the k clusters. Calculate the mean of the new
clusters, obtaining the cluster centers for the k clusters. Iterate
this process until a certain termination condition is met. The
termination condition can minimize the sum of distances
between data points and their corresponding cluster centers,
reach the maximum number of iterations, or achieve
convergence of a criterion function. The criterion function
associated with the Euclidean distance is given by eq 2.
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In the equation, S represents the sum of squared errors (SSE), k
denotes the number of clusters, and zj represents the cluster
center of the j_th cluster.
The key factors that influence the effectiveness of the K-means

clustering algorithm are the number of clusters (k), the initial
cluster centers, and the maximum number of iterations (μ). The
selection of k significantly determines the performance of the
algorithm. It can be determined based on specific requirements,
prior knowledge, or through evaluation of clustering effective-
ness using clustering validity metrics. The clustering results of
the K-means algorithm can vary with different initial cluster
center inputs, and the algorithm can also get trapped in local
optima if the maximum number of iterations (μ) is set too small.
In this study, a number of clusters (k) equal to 5 were selected,
and a maximum of 100 iterations (μ) were set to stop the
iteration when the objective function reached its optimal value.
2.3. Entropy Weight Method. In this study, the entropy

weight method was used to rank the classified pipeline segments.
After K-means clustering, the pipeline segments were divided
into different categories. In order to further rank the pipeline

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c02086
ACS Omega 2024, 9, 30492−30507

30498

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c02086?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


segments within each category, which may have different
characteristics and risk levels, this study utilized the entropy
weight method to determine the weights of various indicators
and ranked the pipeline segments based on their respective
weight values. The entropy weight method is a way to determine
the weights of indicators based on the degree of variation
transfer. It reflects the practical value of the information entropy
of indicators, making the calculated indicator weights more
objective.40 Entropy is used in information theory to measure
the degree of stability in a structure. The larger the entropy
value, the greater the impact on the overall system, and
conversely, the smaller the entropy value, the smaller the
impact.41 The use of the entropy weight method allows for the
adjustment of subjective ratings of indicators, resulting in a more
reasonable determination of indicator weights. The steps for
calculating indicator weights based on the entropy weight
method are as follows:
Construct the evaluation matrix. Normalize the constructed

evaluation matrix R = [rij]m×n, and denote it as R′ = [r′ij]m×n.
Calculate the information entropy for each indicator. The

information entropy for the j_th evaluation indicator is given by
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In the equation, the value range of Hj is [0, 1], k = 1/lnm,
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Calculate the entropy values for each indicator. Compute the
information entropy for each indicator as H_1,H_2,···,H_n. Use
the information entropy to determine the weights of each
indicator as follows
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2.4. RandomForestModel.This paper utilizes the random
forest algorithm to construct a comprehensive risk assessment
model for pipelines based on existing pipeline classification data.
The random forest model is a classification model that uses
multiple decision trees as classifiers to train and predict
samples.42,43 The algorithm model is illustrated in Figure 2.
This model combines the bagging algorithm, which operates on
training samples, with the random subspace method, which
operates on feature sets. It combines multiple decision trees
together, randomly selects samples with replacements, and uses
a subset of features as outputs. The prediction result is generated
by voting based on the results of each tree. The final result is
determined by taking the class with the highest vote count or by
averaging the results. This approach achieves high accuracy and
stability.44,45

2.5. Model Verification. This paper evaluates the perform-
ance of the model using Acc, Pre, R, F1-score, and the ROC
curve. Acc represents the proportion of correctly predicted
samples to the total number of samples. Pre is the proportion of
true positive samples among the samples predicted as positive by
the model. R is the proportion of true positive samples among
the samples that are actually positive. The F1-score is a metric
that comprehensively evaluates the performance of a classi-
fication model. It is based on the weighted average of precision
and recall.46,47 The ROC curve is a comprehensive metric that
reflects specificity and sensitivity. The horizontal axis represents
the false positive rate (FPR), and the vertical axis represents the
true positive rate (TPR). The AUC value represents the area
under the curve, with a higher value indicating better accuracy of
the predictive model.

Figure 2. Schematic diagram of random forest model.
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3. CASE STUDY
3.1. Overview of the Study Area. This paper selects the

Jinliwen pipeline, which is a branch line of the operating West-
East Gas Pipeline Phase II, as a case study. The study area is
defined as a 1 km range along the pipeline route for conducting a
comprehensive risk assessment of the pipeline. The Jinliwen
natural gas pipeline has a total length of 219 km. It starts from
the Jinhua Distribution Station and passes through counties and
cities such as Wuyi, Yongkang, Jinyun County in Lishui, and
LianduDistrict. The pipeline finally reaches its destination at the
terminal station in Wenzhou, where it connects with the
Yongtaiwen pipeline. The specific location of the pipeline is
shown in Figure 3. The pipeline in the study area exhibits the
following risk characteristics:

• Frequent geological hazards: The study area is charac-
terized by mountainous and hilly terrain. The soil mainly
consists of fine-grained clay, which is prone to natural
hazards such as landslides, collapses, and mudslides.

• Temporal concentration: The study area is situated in the
monsoon zone, where rainfall is significantly influenced
by the monsoon. Rainfall is mainly concentrated during

the flood season, and water-related hazards caused by
precipitation occur primarily from June to September.

• Severity of damage: The study area has a long history of
agriculture and robust industrial development. In the
event of a pipeline leakage accident caused by third-party
activities, it could result in resource wastage and
environmental pollution and potentially lead to fire and
explosion accidents, causing economic losses and human
casualties.

3.2. Pipe Segmentation. Due to the relatively long length
of pipelines in mountainous areas, the risk conditions along the
pipeline may vary, and the allocation of relevant safety resources
should also consider the actual risks of different pipeline
segments. Therefore, it is necessary to divide the pipeline into
segments to assess and manage the risks of the pipeline
accurately. The slope units play a significant role in traversing
the terrain and landforms of mountainous areas, providing
effective control over geological hazards such as landslides and
collapses. Therefore, this study adopts an analysis method
combining hydrology and curvature to divide the slope units, as

Figure 3. Study of pipeline location.

Figure 4. Slope unit division.
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shown in Figure 4. Based on the well-defined slope units, the
pipeline is segmented into 2340 sections.
3.3. Pipeline Index Evaluation. 3.3.1. Geological Hazard

Susceptibility Level. Geological hazards pose significant
destructive risks to pipelines in mountainous areas, often
resulting in severe casualties and property losses.48 Therefore,
various indicator data are collected and analyzed in advance in
this study. A neural network is used to obtain the weights of each
evaluation indicator. By weighting and combining all of the
evaluation indicators, the susceptibility of geological hazards in
the vicinity of the pipeline is determined. The susceptibility was
classified into five categories: low, relatively low, moderate,
relatively high, and high. A susceptibility zoning map was
generated, and the geological hazard susceptibility levels for each
pipeline segment are shown in Figure 5.

3.3.2. Water-Related Geological Hazard Warning Level.
Based on the historical disaster data of the study area, it has been
found that the most frequent type of disaster is water-related
geological hazards. This is related to the geological and
meteorological conditions of the study area. The predominant
soil type within the area is fine-grained clay, and the
characteristics of this type of soil, such as cohesion and internal
friction angle, decrease with increasing moisture content. This
makes the soil more susceptible to landslides, mudslides, and soil
loosening hazards.49 In fact, for complex mountainous slopes,
the depth of damage caused by geological hazards varies, and it
would be a significant challenge to fully consider the impact of
different depths of damage on pipelines. The challenges are
reflected in the following two aspects: a large-scale research area
will double the workload, and the depth of disaster damage is
difficult to define. Therefore, this study only considers the
impact of damage at the depth of pipeline burial, which is
uniformly set at 1.5 m. By referring to geotechnical exploration
reports along the pipeline route, data on soil characteristics such
as internal friction angle, cohesive strength, and soil density at
burial depths have been collected. The corresponding soil
characteristic data are then inputted into the pipeline segments
divided based on slope units.
Based on meteorological statistics, the annual average rainfall

is around 1100 mm, with rainfall being more concentrated
during the flood season. Therefore, for water-related geological
hazards with clear triggering factors and periodicity, the stability
of each slope is calculated using the SHALSTAB model in this
study. The stability levels are then coupled with rainfall data to

calculate the warning index, resulting in the prediction of water-
related geological hazard warning levels in the study area. For
detailed calculation procedures, please refer to the article by
Hong.28 The warning levels for water-related geological hazards
in each pipeline segment are shown in Figure 6.

3.3.3. Third-Party Damage Vulnerability Level. Third-party
damage to pipelines primarily refers to actions by nonpipeline
carriers or outsourced carrier units, resulting in damage or even
destruction of pipeline facilities due to factors such as
construction equipment, machinery, vehicles, intentional
damage, and other reasons.50 Long-distance pipelines traverse
through complex natural environments, including urban and
wilderness areas. The geological and geomorphological
conditions along the pipeline route are intricate. These regions
are prone to various construction and agricultural activities.
Additionally, the increasing urbanization and associated illegal
activities, such as unauthorized excavations and mechanical
damage, pose a growing threat to the safe operation of the
pipelines.51 Therefore, the vulnerability of pipelines to third-
party damage is assessed based on relevant parameters of
pipeline construction and on-site survey patrol data in this study.
Expert knowledge and experience are used to score and classify
the pipelines’ susceptibility to third-party damage, with five
levels ranging from low to high vulnerability. For detailed
calculation procedures, please refer to the article by Hong.5 The
vulnerability levels of each pipeline segment are shown in Figure
7.
3.3.4. Fiber Optic System Warning Levels. Compared to the

traditional manual patrol inspection method used in routine
maintenance of long-distance pipelines, fiber optic-based
pipeline safety warning technology offers real-time monitoring
over long distances and provides accurate fault location
capabilities. When incidents such as third-party construction
events, manual mechanical excavation events, natural disaster
damage, or oil and gas theft occur, coherent optical time domain
reflectometry (COTDR) can be used to analyze the distribution
characteristics in different monitoring environments. This
allows for the identification of alarm types and accurate
localization of the incident location.52,53 According to the
frequency of abnormal distribution observed in the COTDR
data within a month, this study classified the warning levels for
each segment of the fiber optic system. The higher the frequency
of abnormalities, the more frequent the occurrence of third-

Figure 5. Susceptibility level of geological hazards in pipeline segments.

Figure 6. Early warning levels of water-related geological hazards in the
pipeline segment.
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party damage activities during that period, resulting in a higher
warning level. The warning level of the fiber optic system can, to
some extent, measure the risk of the pipeline. A higher alert level
typically indicates a greater number of abnormal conditions or
potential risks, requiring further inspection and maintenance to
ensure the safe operation of the pipeline. Conversely, a lower
warning level indicates that the pipeline system is in a normal
state with lower risks. For detailed calculation procedures, please
refer to the article by Lou.35 The warning levels for each segment
of the fiber optic system are shown in Figure 8.

3.4. Comprehensive Segment Risk Assessment.
3.4.1. Cluster Analysis. By aggregating the levels of various
indicators from Section 3.3, the geological hazard susceptibility
level, water damage warning level, third-party damage
vulnerability level, and fiber optic system warning level were
determined for each pipeline segment. K-means clustering was
applied to all pipeline segments that included these indicator
levels for cluster analysis. The clustering results can be seen in
Figure 9, and the number of segments in each cluster is listed in
Table 3.
3.4.2. Objective Weighting. By performing cluster analysis

on all pipeline segments, they were divided into five categories.
However, this alone cannot determine the overall risk level of the
pipelines. Therefore, this paper utilizes the entropy weight
method to objectively assign weights to each indicator and
calculate the risk index for each pipeline segment.

″Information entropy” is used to characterize the degree of
disorder in an information system. After the concept of
information entropy was introduced, it was widely applied in
various industries due to its strong objectivity. It has been
particularly utilized in the suitability or hazard assessment of
engineering disasters and various multicriteria decision-making
cases. The heterogeneous evaluation of comprehensive pipeline
risk is represented by the degree of disorder in the distribution of
various evaluation indicators. Therefore, it is feasible to use the
entropy weight method to determine the heterogeneity that
affects pipeline risk. The heterogeneity can be measured by the
geological hazard susceptibility level, water-related disaster
warning level, third-party damage vulnerability level, and fiber
optic system warning level of different pipeline sections. If the
discrete values of the above indicators are large, the entropy
value will be smaller, indicating a larger weight. Conversely, if the
discrete values of the parameters are small, the entropy value will
be larger, indicating a smaller weight. Therefore, the
determination of the corresponding indicator weights can be
achieved by studying the differences in the geological hazard
susceptibility level, water-related disaster warning level, third-
party damage vulnerability level, and fiber optic system warning
level among different pipeline sections.
In this study, the entropy weight method is used to objectively

assign weights to various indicators and calculate the risk index
for each pipeline section. During the process of using the
entropy weight method to determine the weights of primary
indicators, the positive and negative correlations of the
indicators were taken into consideration. The geological hazard
susceptibility level, water-related disaster warning level, and fiber
optic system warning level are positively correlated with the

Figure 7.Third-party damage vulnerability levels for pipeline segments.

Figure 8. Fiber optic system segment warning levels.

Figure 9. K-means clustering diagram.

Table 3. Risk Levels of Each Clustering Category

cluster
category

number of
clusters

average risk
index

comprehensive risk
level

1 356 0.4778 4
2 483 0.865 5
3 370 0.383 3
4 492 0.311 2
5 639 0.276 1
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overall risk of pipelines and are defined as positive indicators.
The third-party damage vulnerability level is negatively
correlated with the overall risk of pipelines and is defined as a
negative indicator. Through validation with actual accident
events, it has been found that most accidents occur in pipeline
sections with higher risk indices. The results calculated using the
entropy weight method provide reasonable and feasible support
for further research.
By comparing the average risk index of all pipeline segments

within each clustering category, the risk level of that category can
be determined. Based on the comparison, the risk levels of each
clustering category are shown in Table 3.
3.4.3. Model Building. In this study, the entropy weight

method is used to determine the comprehensive risk levels of
pipeline segments, and some pipeline segments are used as
training samples for the random forest model. The levels of
various indicators and the comprehensive risk levels associated
with these pipeline segments are considered important factors
for training the random forest model. Once the model training is
completed, it can be used to perform a comprehensive analysis
and evaluation of all pipeline segments. This leverages the
advantages of the random forest model, which can automatically
learn and capture the relationships between different indicators
and handle more complex data patterns. This improves the
accuracy of risk assessment and the robustness against
anomalous data.
The paper randomly selected 700 pipeline segments

(including the overall risk level of the segments and the level
of each indicator) to build a random forest model. Among them,
70% of the segments (490 data sets) were used for training, and
30% of the segments (210 data sets) were used for testing. The
optimal model parameters were selected through a grid search
algorithm (number of decision trees = 21, maximum tree depth
= 8). After training, the confusion matrix for the test set is shown
in Figure 10a, and the accuracy of the model is 0.917.
Finally, the paper utilized the trained random forest model to

classify the overall risk levels of all pipeline segments. The
confusion matrix for all of the researched pipeline segments is
shown in Figure 10b. The classification results were then
imported into ArcGIS to create a thematic layer for the overall
risk (Figure 11). By analyzing the results of the comprehensive

risk analysis for the pipelines, the number of segments in each
risk level is presented in Table 4.

Figure 10. (a) Confusion matrix for the test set. (b) The confusion matrix for all of the researched pipeline segments.

Figure 11. Pipeline comprehensive risk.

Table 4. Number of Segments in Each Risk Level

comprehensive risk level of pipeline segments quantity percentage

1 656 28.0%
2 501 21.4%
3 379 16.2%
4 366 15.6%
5 438 18.7%
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By comparing the risk assessment results from the entropy
weight method and the random forest model, a statistical
analysis of 89 historical disaster events in the study area is
conducted. It is found that 70 of the historical disaster events are
distributed in the high-risk and moderate-risk areas evaluated by
the entropy weight method (Level 5 and Level 4), with an
accuracy rate of approximately 78.7%. On the other hand, 74 of
these events are distributed in the high-risk and moderate-risk
areas evaluated by the random forest model, with an accuracy
rate of approximately 83.1%. It can be concluded that the risk
assessment of the random forest model is more in line with the
actual situation and demonstrates better accuracy.
3.5. Model Verification. In this paper, the model

performance was evaluated using Acc, Pre, R, F1-score, and
the ROC curve. After testing, the performance metrics are
shown in Table 5, and the results of the ROC curve are depicted

in Figure 12. These indicate that the model has good predictive
capability. The assessment results of the model for pipeline
sections exhibit a high level of consistency when compared with
historical incident events. Some of the comparative charts are
shown in Figure 13.

4. RESULTS AND DISCUSSION
Based on the statistical data, it can be observed that compared to
the results of K-means clustering, the classification results of the
random forest model show a reduction in the number of pipeline
segments classified as high risk (Level 5) and an increase in the
number of segments classified as low risk (Level 1 and Level 2),
while the classification of other risk levels remains consistent.
Referring to historical accident event data, the classification

results provided by the random forest model are more in line
with the actual situation.
Two incidents occurred near pipeline segments, which were

classified as low risk. Upon analysis, it was found that both
accidents took place in areas with frequent human activities. In
the case of accidents near low-risk segments, it was determined
that they occurred due to a lack of awareness among residents in
the pipeline vicinity, who ignored warning signs and engaged in
unintentional construction activities. Another incident near a
low-risk segment was attributed to outdated data. The geological
conditions in that area had changed due to land development
and urbanization activities, indicating that it should be
reclassified as a medium to high-risk segment. Therefore, future
research should consider incorporating indicators related to the
intensity of human activities, residents’ safety awareness, and
education level. Additionally, regular data updates are necessary
to achieve a more accurate assessment of the comprehensive risk
levels of pipeline segments.
Compared to previous studies on small-scale pipeline risk

assessment, this study has a larger research scope, focusing on
the region along the long-distance natural gas pipelines in
mountainous areas. It primarily considers the influence of
external factors in the study area on the pipelines rather than the
pipelines themselves. On the other hand, in mountainous
environments, the mechanical behavior of pipelines is more
complex, requiring the establishment of relevant physical
models for calculation and analysis. For long-distance pipelines,
the complexity and computational effort of the models increase
further. Therefore, factors such as pipeline mechanical perform-
ance, structural defects, and corrosion have not been considered
at the moment. In the future, specific to mountainous pipelines,
structural and mechanical analyses of the pipelines, detection
and assessment of structural defects, and assessment of pipeline
corrosion will be conducted. By comprehensively considering
these factors’ impact on the pipelines, a more comprehensive
pipeline risk assessment can be achieved.
Based on the model’s predicted results and validation results,

the model tends to favor low-risk levels and has higher accuracy
in predicting low-risk segments (all above 0.9). Upon analysis,
for comprehensive pipeline analysis and evaluation, the number
of samples in the low-risk category is usually greater than the
number of samples in the high-risk category. This may cause the
model to predict more samples as low-risk categories, leading to
an overall underestimation of high-risk predictions. In the future,
considerations will be given to strategies such as adjusting class
weights, oversampling, or undersampling to balance the sample
distribution and improve the accuracy of predictions for the
high-risk category.

5. CONCLUSIONS
The paper proposes a pipeline risk assessment model based on
the fusion of multiple data sources. The model divides the
pipeline segments based on slope units and takes into account
the factors of geological hazards and pipeline risk characteristics.
It constructs a comprehensive risk assessment indicator system
for pipelines, which includes 25 indicators in four aspects: real-
time monitoring of fiber optics, third-party damage risk,
susceptibility to geological hazards, and warning for water-
related hazards. This model is of significant importance in
ensuring the safety and reliable operation of pipeline systems.

• Dividing the pipeline segments based on slope units
allows for a more accurate reflection of the geographical

Table 5. Model Accuracy Index

risk level precision recall F1-score

1 0.91 0.94 0.92
2 0.98 0.93 0.95
3 0.91 0.91 0.91
4 0.92 0.88 0.89
5 0.88 0.92 0.90

Figure 12. ROC curve.
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and geological characteristics of the pipeline system.
Through a finer division, it becomes possible to capture
small-scale geological changes and risks that exist within
the pipeline system. This significantly improves the
accuracy of the comprehensive analysis and assessment
of the pipeline.

• The proposed pipeline risk assessment method, which
incorporates multiple data sources, including real-time
fiber optic monitoring, third-party damage risk, suscept-
ibility to geological hazards, and warning for water-related
hazards, offers several advantages in terms of compre-
hensiveness, accuracy, and timeliness. It enables the
timely understanding of the pipeline system’s condition,
identification of potential risks, and implementation of
appropriate measures to reduce the occurrence of
accidents.

• The proposed pipeline comprehensive risk classification
method based on K-means clustering, entropy weight
method, and random forest has the advantage of
automatically learning features and performing classi-
fication from the data, reducing reliance on prior
knowledge. By leveraging the strengths of multiple
algorithms, it can better handle complex classification
problems. The proposed method is capable of adapting to
different data characteristics and classification require-
ments while considering multiple indicators and features,
thereby providing more accurate and comprehensive
pipeline risk classification results.

In future work, a more comprehensive risk assessment will be
conducted, analyzing the potential threats to pipeline safety
posed by human activities and incorporating relevant indicators.
Additionally, a data management system will be established to
regularly update data and enable timely evaluations, achieving a
more precise assessment of the comprehensive risk levels of
pipeline segments.
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