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Abstract
Background  The heightened risk of cardiovascular and cerebrovascular events is associated with the increased 
instability of atherosclerotic plaques. However, the lack of effective diagnostic biomarkers has impeded the 
assessment of plaque instability currently. This study was aimed to investigate and identify hub genes associated with 
unstable plaques through the integration of various bioinformatics tools, providing novel insights into the detection 
and treatment of this condition.

Methods  Weighted Gene Co-expression Network Analysis (WGCNA) combined with two machine learning 
methods were used to identify hub genes strongly associated with plaque instability. The cell-type identification by 
estimating relative subsets of RNA transcripts (CIBERSORT) method was utilized to assess immune cell infiltration 
patterns in atherosclerosis patients. Additionally, Gene Set Variation Analysis (GSVA) was conducted to investigate 
the potential biological functions, pathways, and mechanisms of hub genes associated with unstable plaques. To 
further validate the diagnostic efficiency and expression of the hub genes, immunohistochemistry (IHC), quantitative 
real-time polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA) were performed on 
collected human carotid plaque and blood samples. Immunofluorescence co-staining was also utilized to confirm the 
association between hub genes and immune cells, as well as their colocalization with mitochondria.

Results  The CIBERSORT analysis demonstrated a significant decrease in the infiltration of CD8 T cells and an obvious 
increase in the infiltration of M0 macrophages in patients with atherosclerosis. Subsequently, two highly relevant 
modules (blue and green) strongly associated with atherosclerotic plaque instability were identified. Through 
intersection with mitochondria-related genes, 50 crucial genes were identified. Further analysis employing least 
absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine recursive feature 
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Introduction
Atherosclerosis, a chronic inflammatory disease, is char-
acterized by the progressive formation of plaques within 
arterial walls [1]. These plaques primarily comprise cho-
lesterol, lipids, calcium, and various cellular compo-
nents, gradually accumulating on the vessel wall. As these 
plaques grow in size over time, they can cause vascular 
stenosis and obstruction [2]. Acute coronary syndrome 
(ACS), transient ischemic attack, and ischemic stroke (IS) 
are acute cardiovascular events strongly linked to unsta-
ble atherosclerotic plaques, often triggered by plaque 
rupture. The rupture of an unstable plaque poses a life-
threatening risk, leading to myocardial infarction (MI) 
and IS. Key characteristics of unstable plaques include 
a thin fibrous cap, a large necrotic core, infiltration of 
inflammatory cells, neovascularization within the plaque, 
intraplaque hemorrhage, and the presence of calcified 
nodules [3]. Early detection and identification of unstable 
plaques are crucial due to their elevated risk of rupture.

Mitochondria, characterized by a double membrane 
structure, are semi-autonomous organelles widely 
acknowledged as the cellular “powerhouses” crucial 
for maintaining cellular homeostasis. The impairment 
of mitochondrial function, marked by escalated reac-
tive oxygen species generation, mitochondrial oxida-
tive stress, compromised mitochondrial dynamics, and 
energy supply, has increasingly been linked to the onset 
and progression of atherosclerosis [4]. Research has high-
lighted the role of mitochondrial oxidative metabolism 
in the selective activation of macrophages [5]. The intri-
cate involvement of immune cells, including monocytes, 
macrophages, T cells, and B cells, in atherosclerosis is 
critical, considering that they are recruited to sites of 
lipid accumulation. The interplay between immune cells 
and lipids initiates a cascade of inflammatory responses, 

culminating in the formation of atherosclerotic plaques 
[6, 7]. Studies have specifically identified CD4 + T cells 
as active participants in atherosclerosis, engaging in 
interactions with antigen-presenting cells like dendritic 
cells and macrophages [8]. Using cell-type identifica-
tion by estimating relative subsets of RNA transcripts 
(CIBERSORT), a widely employed bioinformatics tool, 
facilitates the exploration of immune cell infiltration pat-
terns and enables the assessment of the proportions of 
22 distinct immune cell types using RNA-seq or micro-
array data [9]. However, limited research has been con-
ducted on the infiltration patterns of immune cells and 
the identification of immune-related mitochondrial genes 
within carotid plaques of atherosclerosis patients. There-
fore, evaluating immune cell infiltration patterns within 
carotid plaques of atherosclerosis patients shows promise 
for elucidating the intricate molecular mechanisms gov-
erning immunoregulation in atherosclerosis.

Weighted Gene Co-expression Network Analy-
sis (WGCNA) is a robust systems biology informat-
ics approach used to examine network relationships, 
decipher molecular mechanisms, and uncover poten-
tial key genes implicated in disease progression [10, 11]. 
Additionally, it facilitates exploration of the interac-
tions between gene modules and sample characteristics, 
thereby identifying module genes significantly associated 
with features of interest in samples. Currently, the Search 
Tool for the Retrieval of Interacting Genes (STRING) 
online database and cytoHubba software are frequently 
employed to identify hub genes among several module 
genes significantly associated with features of interest 
in samples [12]. In a previous study led by Zheng et al., 
several key genes significantly associated with coronary 
heart disease were successfully identified through the 
integration of WGCNA with protein-protein interaction 

elimination (SVM-RFE) algorithms revealed six hub genes significantly associated with plaque instability. Among 
them, NT5DC3, ACADL, SLC25A4, ALDH1B1, and MAOB exhibited positive correlations with CD8 T cells and negative 
correlations with M0 macrophages, while kynurenine 3-monooxygenas (KMO) demonstrated a positive correlation 
with M0 macrophages and a negative correlation with CD8 T cells. IHC and RT-qPCR analyses of human carotid plaque 
samples, as well as ELISA analyses of blood samples, revealed significant upregulation of KMO and MAOB expression, 
along with decreased ALDH1B1 expression, in both stable and unstable samples compared to the control samples. 
However, among the three key genes mentioned above, only KMO showed a significant increase in expression in 
unstable plaque samples compared to stable plaque samples. Furthermore, the expression patterns of KMO in human 
carotid unstable plaque tissues and cultured mouse macrophage cell lines were assessed using immunofluorescence 
co-staining techniques. Finally, lentivirus-mediated KMO silencing was successfully transduced into the aortas of high-
fat-fed ApoE-/- mice, with results indicating that KMO silencing attenuated plaque formation and promoted plaque 
stability in ApoE-/- mice.

Conclusions  The results suggest that KMO, a mitochondria-targeted gene associated with macrophage cells, holds 
promise as a valuable diagnostic biomarker for assessing the instability of atherosclerotic plaques.

Keywords  Weighted Gene Co-expression network analysis, Unstable atherosclerotic plaques, Immune cell subtype 
distribution pattern, Kynurenine 3-monooxygenas, Hub genes
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and cytoHubba analysis methods [13]. However, the 
selection process of key genes, such as choosing the top-
ranked genes by degree value [12, 13] or the top 5 or 10 
differentially expressed genes [14, 15], depends on the 
researcher’s preference, which may reduce the accuracy 
and reproducibility of the selection process. To address 
this issue, various machine learning techniques have 
recently been incorporated into bioinformatics analy-
ses, demonstrating improved accuracy and stability in 
the selection method [16]. The least absolute shrinkage 
and selection operator (LASSO) regression, as a normal-
ized linear regression method, allows for the exclusion 
of unimportant features and the construction of sparse 
and interpretable models to prevent overfitting. The sup-
port vector machine-recursive feature elimination (SVM-
RFE) technique integrates support vector machines into 
a recursive feature elimination strategy, leveraging the 
inherent feature selection capability of support vector 
machines to select key features during iterative iterations. 
LASSO regression and SVM-RFE algorithms, widely rec-
ognized machine learning techniques, are frequently uti-
lized for the identification of key genes. The combination 
of LASSO and SVM-RFE techniques has demonstrated 
satisfactory accuracy and sensitivity in certain fields, such 
as lung tumors and pituitary tumors [17]. However, lim-
ited studies have employed the combined application of 
WGCNA, LASSO, and SVM-RFE to identify hub genes 
linked to unstable atherosclerotic plaques.

To accomplish our goals, this study first performed 
WGCNA to identify key module genes associated with 
unstable atherosclerotic plaques. Subsequently, mito-
chondrial genes were selected from these identified key 
modules for further analysis. A combination of LASSO 
regression and SVM-RFE was then employed to identify 
hub mitochondria-related genes associated with unsta-
ble atherosclerotic plaques. The biological functions of 
these key mitochondria-related genes were evaluated 
using Gene Set Variation Analysis (GSVA). The infiltra-
tion patterns of immune cells in carotid plaque samples 
obtained from patients diagnosed with unstable athero-
sclerotic plaques were examined using the CIBERSORT 
method. Additionally, the relationship between multiple 
hub genes and 22 types of immune cells was investi-
gated. Furthermore, validation of the expression patterns, 
diagnostic efficacy, cellular localization, and biological 
functions of key mitochondrial genes was conducted 
using techniques such as immunohistochemistry (IHC), 
Enzyme-Linked Immunosorbent Assay (ELISA), immu-
nofluorescence co-staining, and lentiviral transfection, 
based on human carotid plaque samples, blood samples, 
and the Apolipoprotein E knockout (ApoE-/-) mice 
model of atherosclerosis.

Materials and methods
Data collection and preprocessing of atherosclerosis 
datasets
Gene expression profiles were retrieved from the publicly 
accessible Gene Expression Omnibus (GEO) database at 
http://www.ncbi.nlm.nih.gov/geo using “atherosclero-
sis” as the primary keyword. Specific datasets related to 
atherosclerosis expression patterns, namely GSE28829, 
GSE41571, GSE43292, and GSE111782, along with plat-
form data such as GPL570, GPL571, and GPL6244, were 
obtained. Additionally, a set of mitochondrial genes was 
extracted from the MitoCarta 3.0 database [18]. The 
GSE28829 dataset included expression data from 13 
cases of early-stage and 16 cases of late-stage atheroscle-
rotic plaques. GSE41571 comprised expression data from 
6 stable plaques and 5 unstable plaques. GSE43292 con-
tained expression data from 32 macroscopically intact 
arterial tissues and 32 plaque tissues. Lastly, GSE111782 
encompassed expression data from 9 asymptomatic and 
9 symptomatic patients’ plaques. To ensure consistency 
and eliminate batch effects between the datasets, the 
integrated gene expression profiles were standardized. 
This involved employing the “normalize Between Arrays” 
function from the limma package to normalize the gene 
expression data. Moreover, the “ComBat” function from 
the “sva” R package was utilized to remove any remaining 
batch effects between the datasets [19]. The entire work-
flow is visually depicted in Fig. 1.

Identification of modules associated with unstable 
atherosclerotic plaques through WGCNA
The standardized and batch-corrected integrated gene 
expression profiles underwent WGCNA to explore the 
top 25% of genes displaying substantial expression dif-
ferences. A scale-free network was constructed to deter-
mine the appropriate soft-thresholding power (soft 
threshold = 14). Next, a power function was utilized to 
compute the connection values between genes exhibiting 
variances surpassing the lower quartile of all variances. 
Subsequently, the connection values were transformed 
into a topological overlap matrix (TOM), from which 
dissimilarity values (1-TOM) were derived. The dynamic 
tree-cutting method was then applied for hierarchical 
clustering of genes, utilizing 1-TOM as the distance met-
ric, a depth split value of 2, and a minimum module size 
cut-off of 100, to identify distinct modules [19]. A thresh-
old of 0.25 was applied to merge modules exhibiting high 
similarity. Pearson’s correlation tests were conducted to 
evaluate the relationship between clinical characteris-
tics and modules, aiming to identify significant modules. 
Module membership (MM) was defined as the correla-
tion between the gene expression profile and module 
eigengenes. Gene significance (GS) was defined as the 
absolute value of the correlation between external traits 

http://www.ncbi.nlm.nih.gov/geo
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and gene expression profiles. Subsequently, modules sig-
nificantly associated with advanced or ruptured plaques, 
and exhibiting a significant correlation between MM 
and GS values (with an absolute correlation coefficient 
greater than 0.3), were defined as meaningful modules 
for further analysis [12, 19].

Machine learning
To identify potential key genes, the overlap between 
module genes associated with ruptured plaques in ath-
erosclerosis and genes related to mitochondria was 
obtained. Two distinct machine learning algorithms, 
namely LASSO and SVM-RFE, were then employed to 
identify hub genes possessing optimal prognostic value 
for unstable atherosclerotic plaques. LASSO logistic 
regression analysis was performed using the “glmnet” 
package, with a binomial response type and alpha set to 

1. Moreover, the SVM-RFE algorithm was utilized to iter-
atively eliminate feature vectors generated by the support 
vector machine, employing threshold settings of halve.
above = 100 and k = 5, to identify the most informative 
variables [19]. Lastly, the intersection of genes obtained 
from both algorithms was determined to identify the hub 
genes associated with unstable atherosclerotic plaques.

Immune infiltration analysis
The present study adopted the “Cibersort” algorithm 
to transform the standardized gene expression matrix, 
enabling the characterization of infiltrating immune 
cell composition to investigate immune infiltration pat-
terns in atherosclerosis [20]. Visualization tools, such as 
the “ggplot2” package, were used to generate correlation 
heatmaps and violin plots, effectively illustrating dispari-
ties in immune cell infiltration between the control group 

Fig. 1  Flowchart of the analysis. WGCNA, Weighted gene co-expression network analysis; LASSO, Least absolute shrinkage and selection operator; SVM-
RFE, Support vector machine-recursive feature elimination; GSVA, Gene Set Variation Analysis; ROC, Receiver Operating Characteristic; IHC, immunohisto-
chemistry; RT-qPCR, Quantitative real time polymerase chain reaction; AUC, areas under the curve; NT5DC3, 5’-nucleotidase domain containing 3; ACADL, 
acyl-CoA dehydrogenase long chain; SLC25A4, solute carrier family 25 member4; ALDH1B1, aldehyde dehydrogenase 1 family member B1; MAOB, mono 
amineoxidase B; KMO, kynurenine3-monooxygenase
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and atherosclerosis patients. Additionally, the “corrplot” 
package was applied to compute Pearson correlation 
coefficients among immune cell populations and visual-
ize the outcomes via corresponding heatmaps. Finally, a 
comprehensive analysis was conducted to assess the rela-
tionship between immune cell infiltration and hub genes 
associated with atherosclerosis.

GSVA enrichment analysis
The assessment of 50 HALLMARK pathways between 
the control group and patients diagnosed with athero-
sclerosis was performed using the “GSVA” package in the 
R software. GSVA analysis method was utilized for this 
purpose. To utilize the GSVA package, the gene set “h.all.
v7.0.symbols” was extracted from the MSigDB database, 
which is accessible at http://software.broadinstitute.org/
gsea/msigdb/index.jsp [21]. Subsequently, Spearman cor-
relation analysis was conducted to determine the associa-
tions between hub genes, infiltrating immune cells, and 
the aforementioned 50 HALLMARK pathways.

Construction of diagnosis prediction models
Following the identification of overlapping key module 
genes associated with unstable atherosclerotic plaques 
and mitochondria-related genes, a subsequent machine 
learning-based filtering approach was applied to refine 
the selection of hub genes. Subsequently, the diagnostic 
efficacy of these refined hub genes was assessed using 
receiver operating characteristic (ROC) curve analysis.

Clinical sample collection and assessment of plaque 
stability
Carotid atherosclerotic plaques were obtained from 
patients undergoing carotid endarterectomy. Samples 
were collected intraoperatively and immediately divided 
into two components: atherosclerotic plaque and mac-
roscopically intact arterial tissue. Each component was 
further subdivided, with one portion promptly frozen in 
liquid nitrogen (LN2) for RNA analysis, and the other 
portion utilized for histological examination. This study 
enrolled a total of 72 subjects, including 24 healthy con-
trols, 24 patients with stable angina (SA), and 24 patients 
with ACS. SA was defined as typical exercise-induced 
myocardial ischemic chest pain, while ACS was defined 
as chest pain at rest with or without elevated cardiac 
troponin. All participants underwent coronary angiog-
raphy. Patients with other causes of ACS (such as coro-
nary vasospasm, coronary dissection, or non-obstructive 
MI, non-atherosclerotic inflammatory diseases (such 
as pneumonia and vasculitis), and neurological dis-
orders associated with kynurenine 3-monooxygenase 
(KMO) (such as Parkinson’s syndrome and schizophre-
nia) were excluded from the study. Informed consent 
was obtained from all patients, and the study protocol 

adhered to the ethical guidelines outlined by the Eth-
ics Committee of Guizhou Medical University Affili-
ated Hospital (Ethics Approval No: 2023 − 898) and the 
revised 1975 Helsinki Declaration(http://www.wma.net/
en/30Publications/10Policies/b3/) [22]. Supplementary 
Table 1 contains the clinical data of the enrolled patients. 
Histological stability was determined using a scoring 
system developed by the American Heart Association 
(AHA) for assessing atherosclerosis, which evaluates var-
ious parameters such as bleeding, thrombosis, lipid core, 
fibrous tissue, chronic plaque inflammation, chronic 
fibrous cap inflammation, acute plaque inflammation, 
acute fibrous cap inflammation, foam cells, neovascular-
ization, and cap rupture, providing an overall measure of 
plaque stability [23, 24]. Additional details regarding the 
scoring criteria can be found in Supplementary Table 2 
[22].

Animal model establishment
Male ApoE-/- mice (6 weeks old, n = 48) were purchased 
from specific pathogen free (SPF) Biotechnology (Beijing, 
China). The mice were randomly divided into four groups 
(n = 12 per group): (1) Negative control group (NC), (2) 
High-fat diet group (HF), (3) Sham group (HF + GFP-
labeled neutral construct), and (4) Lentivirus KMO 
group (HF + Sh-KMO). The mice were housed in the SPF 
Animal Laboratory at Guizhou Medical University under 
controlled conditions with a temperature of 22–24  °C, 
humidity of 55–60%, and a 12-hour light/dark cycle. 
They had ad libitum access to food and water and were 
initially fed a regular diet for two weeks. Subsequently, 
the NC group continued on the regular diet, while the 
other groups were fed a HF diet comprising 16% fat and 
1.3% cholesterol for the ensuing 12 weeks. At 8 weeks of 
age, the mice received intravenous injections of either an 
empty vector (GFP-labeled neutral construct) or lentivi-
rus with KMO silencing at a dose of 2 × 107 TU per mouse 
via the tail vein (KMO silencing lentiviral vector and the 
empty lentiviral vector were obtained from Shanghai 
Genechem Co., Ltd). Two weeks post-viral transduc-
tion, blood samples were collected from the orbital vein 
under sodium pentobarbital anesthesia. Some mice were 
euthanized via cervical dislocation to obtain the heart 
and aorta for assessing viral transduction efficiency. The 
remaining mice were euthanized at 20 weeks of age using 
the same method. The study strictly adhered to the rec-
ommendations of the Guide for the Care and Use of Lab-
oratory Animals by the National Institutes of Health. The 
research protocol was approved by the Animal Experi-
mental Ethics Committee of Guizhou Medical University 
(Protocol No. 2,402,131). All surgical procedures were 
performed under sodium pentobarbital anesthesia, with 
efforts made to minimize pain.

http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://www.wma.net/en/30Publications/10Policies/b3/
http://www.wma.net/en/30Publications/10Policies/b3/
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Fluorescence detection after lentiviral transduction
The frozen sections were thawed at room temperature 
under dark conditions. After washing with phosphate-
buffered saline (PBS), the sections were treated with 
4’,6-diamidino-2-phenylindole (DAPI) staining solution 
and allowed to incubate at room temperature for 10 min 
under dark conditions. After washing away the DAPI 
staining solution with PBS, the images were examined 
using a fluorescence microscope (Olympus fluorescence 
microscope BX63).

Lipid profile measurement
Blood samples were collected from the orbital vein of 
mice, and serum was assessed for low-density lipoprotein 
(LDL) cholesterol levels using an LDL cholesterol assay 
kit according to the manufacturer’s instructions.

Cell culture
The RAW 264.7 cell line served as the experimental 
model and was cultured in Roswell Park Memorial Insti-
tute (RPMI) 1640 medium. The medium was supple-
mented with 20% fetal bovine serum (FBS) to provide 
essential nutrients and growth factors. Additionally, 100 
U/ml of penicillin and 100 mg/ml of streptomycin were 
added to prevent contamination by bacteria and fungi. 
Cells were maintained at 37  °C in a humidified atmo-
sphere containing 5% CO2. All experiments utilized cells 
in the logarithmic growth phase to ensure consistency 
and reliability for subsequent cellular assays.

Quantitative real-time polymerase chain reaction 
(RT-qPCR)
Total RNA was extracted from various samples of macro-
scopically intact arterial tissue and carotid artery plaques 
using Trizol reagent (Ambion, Wilmington, USA). Sub-
sequently, the isolated RNA was subjected to reverse 
transcription using a reverse transcription kit (Seville, 
Wuhan, China) to generate complementary DNA 
(cDNA). RT-qPCR was conducted using the 2×RealStar 
Fast SYBR qPCR Mix kit (Kangrun, Beijing, China) on 
an ABI Prism 7500 Sequence Detection System (Applied 
Biosystems, USA). Relative fold changes in mRNA 
expression levels of target genes across different samples 
were determined using the 2−ΔΔCt method, with glycer-
aldehyde phosphate dehydrogenase (GAPDH) serving as 
the internal reference. Each sample was analyzed in trip-
licate to ensure accuracy and reproducibility. The prim-
ers of RT-qPCR used in this study were designed and 
validated by General Biotech (General Biotech, Anhui, 
China) (Supplementary Table 3). Statistical significance 
was assessed with a threshold of P < 0.05.

Hematoxylin eosin (HE) and Masson’s staining
The paraffin sections, measuring 5 μm in thickness, were 
mounted onto glass slides and underwent dewaxing and 
rehydration procedures using xylene and graded alco-
hols, respectively. Staining of the sections was performed 
using the HE staining kit (Sigma-Aldrich, Darmstadt, 
Germany) and the Masson’s Trichrome Stain Kit (Sigma-
Aldrich, Darmstadt, Germany).

IHC staining
IHC staining commenced with the dewaxing and rehy-
dration of the paraffin sections, followed by heat-induced 
antigen retrieval in 0.1 M citrate buffer solution at 94 °C 
for 20  min, with subsequent cooling to room tempera-
ture. Subsequently, the sections were incubated in the 
dark at room temperature for 25  min with 3% hydro-
gen peroxide to inhibit endogenous peroxidase activ-
ity. Following a 30-minute room temperature block 
with 3% bovine serum albumin (BSA), the sections were 
incubated overnight at 4  °C with primary antibodies, 
including KMO antibody (Proteintech, Illinois, USA), 
5’-nucleotidase domain containing 3 (NT5DC3) anti-
body (Bioss, Beijing, China), acyl-CoA dehydrogenase 
long chain (ACADL) antibody (Proteintech, Illinois, 
USA), solute carrier family 25 member 4 (SLC25A4) anti-
body (Affinity, Wuhan, China), aldehyde dehydrogenase 
1 family member B1 (ALDH1B1) antibody (Proteintech, 
Illinois, USA), monoamine oxidase B (MAOB) antibody 
(Proteintech, Illinois, USA), and GAPDH antibody (Affin-
ity, Wuhan, China). After washing, the sections were 
exposed to the secondary antibody, goat anti-rabbit IgG-
HRP (Solarbio, Beijing, China), at room temperature for 
90 min. Following additional washing steps, the sections 
were stained with 3,3’-diaminobenzidine and counter-
stained with hematoxylin. Images of the stained sections 
were captured using the Olympus fluorescence micro-
scope (BX63), and subsequent image analysis was per-
formed using ImageJ software (2.14.0/1.54f ).

Immunofluorescence staining
Carotid atherosclerotic plaques from human subjects 
were fixed in a 4% paraformaldehyde solution and then 
embedded in optimal cutting temperature compound. 
Using a Leica cryostat, 8-µm sections were prepared 
from the embedded tissues. After air-drying for 1  h at 
room temperature, the sections were hydrated with 
1×PBS for 5 min. Tissue slide preparation involved apply-
ing sodium citrate antigen retrieval buffer (PR30001, 
Proteintech, Wuhan, China), followed by three sequen-
tial PBS washes. Slides were then blocked with a solu-
tion containing 1% BSA and 0.25% Triton X100 in PBS at 
room temperature for 1 h [25]. RAW264.7 cells were cul-
tured in six-well plates. After removing the medium, the 
cells were washed thrice with phosphate-buffered saline 
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with tween (PBST). They were then fixed with 4% para-
formaldehyde for 15  min, permeabilized with 0.5% Tri-
ton X-100 for 20 min, and subsequently blocked with the 
blocking solution at room temperature for 1 h. Following 
the blocking step, the samples were incubated overnight 
at 4  °C with primary antibodies: anti-KMO (Protein-
tech; catalog number: 10698-1-AP; diluted 1:1000), 
CD68 (Proteintech; catalog number: 25747-1-AP; diluted 
1:1000-1:8000), and TOM20 (Abcam; catalog number: 
ab56783; diluted 1:500–1:1000). After washing, the sam-
ples were incubated with fluorescence-labeled secondary 
antibodies for 30  min. Subsequently, the samples were 
stained with DAPI dye for 5 min and washed three times 
with PBS. Images were captured using an Olympus fluo-
rescence microscope (BX63), and recorded using ImageJ 
software (2.14.0/1.54f ).

Western blotting
Tissue lysates were prepared by extracting total protein 
using ristocetin-induced platelet aggregation (RIPA) 
lysis buffer supplemented with 1% (v/v) protease inhibi-
tor cocktail. The lysates were then denatured by boiling 
in sodium dodecyl sulfate (SDS) loading buffer. Equal 
volumes of the denatured samples were resolved on 10% 
or 12% sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE). Subsequently, the separated 
proteins were transferred onto polyvinylidene fluoride 
(PVDF) membranes (Millipore, Billerica, MA, USA). 
After blocking with 5% skim milk at room temperature 
for 1 h, the membranes were washed with Tris-buffered 
saline-tween (TBST) for 30  min. Next, the membranes 
were incubated overnight at 4  °C with primary antibod-
ies. Following another round of washing with TBST for 
30  min, the membranes were incubated with secondary 
antibodies at room temperature for 1 h. Finally, the pro-
tein bands were visualized using an enhanced chemilu-
minescence (ECL) system and quantified using ImageJ 
software (2.14.0/1.54f ).

ELISA
Currently, high-sensitivity C-reactive protein (hs-CRP) 
has been the most commonly used serological marker for 
identifying characteristics of unstable plaques [26–28]. 
In this study, serum levels of KMO and hs-CRP were 
assessed using ELISA in normal controls, patients with 
SA, and those with ACS. According to the manufacturer’s 
instructions, the levels of KMO and hs-CRP in human 
serum samples were measured using an ELISA kit.

Statistical analyses
Statistical analysis was performed using SPSS (Version 
27.0). Data were presented as mean ± standard devia-
tion. The normality of data distribution was assessed with 
the Shapiro-Wilk test. Normally distributed data were 

analyzed using a t-test; Otherwise, the Kruskal-Wallis 
test was applied. Group comparisons were conducted 
using one-way analysis of variance (ANOVA). The diag-
nostic performance of hub gene expression levels was 
evaluated using ROC curve analysis. Bioinformatics and 
ROC curve analyses were conducted with R software 
(version 4.3.0). A P-value < 0.05 was considered statisti-
cally significant.

Results
Data preprocessing
The gene expression profiles from the GSE28829, 
GSE41571, GSE43292, and GSE111782 datasets under-
went initial normalization procedures, including stan-
dardization of data formats, imputation of missing 
values, and removal of outliers. Subsequently, the merged 
dataset was generated by combining these datasets and 
addressing any interbatch discrepancies. The result-
ing combined expression matrix comprised 11,240 gene 
symbols from 90 atherosclerotic plaque samples and 32 
macroscopically intact arterial tissue samples within the 
training set. To focus on genes with significant expression 
variance, we selected the top 25% of genes for subsequent 
analysis using WGCNA. Further details and results are 
available in Supplementary Table 4. Additionally, Supple-
mentary Table 5 provides disease grouping information 
for the 122 samples.

Weighted gene co-expression networks analysis
Our analysis revealed a strong correlation among genes, 
with the correlation coefficient exceeding 0.9, indicating 
their suitability for constructing multiple gene modules 
(Fig. 2A) using a soft threshold of β = 14. To capture the 
similarity between genes based on their expression pro-
files, we constructed a TOM by calculating correlation 
and adjacency matrices. The resulting gene cluster tree 
(Fig. 2B) visually represents the hierarchical relationships 
and clustering patterns among the genes. Using a hier-
archical average linkage clustering method in conjunc-
tion with TOM, we successfully identified distinct gene 
modules within each gene network. Figure  2C depicts 
this process in the heatmap. Furthermore, utilizing the 
dynamic tree cut algorithm, we further partitioned the 
gene modules into three sub-modules (Fig.  2D). These 
findings were biologically relevant for studying gene reg-
ulatory networks and functional modules.

Identification of relevant gene modules
Gene modules closely associated with clinical features 
often carry significant and specific biological implica-
tions. In Fig.  3A, the blue and green modules dem-
onstrated robust correlations with plaque rupture, 
progression, and atherosclerosis. The blue module exhib-
ited positive correlations with atherosclerotic plaque 
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rupture (r = 0.80, P = 1E-28) and progression (r = 0.78, 
P = 3E-26), while the green module displayed significant 
negative correlations with plaque rupture (r = -0.66, 
P = 2E-16) and progression (r = -0.75, P = 2E-23) in the 

context of atherosclerosis. Further analyses underscored 
the strong correlation between the blue module and GS 
(r = 0.59, P = 1.1E-74) (Fig. 3B), as well as the correlation 
between the green module and GS (r = 0.52, P = 5.4E-47) 

Fig. 3  Association of module features and relationships between gene significance and module membership. Panel (A) represents module eigengenes 
arranged in rows, while clinical phenotypes are organized in columns. The correlation coefficient is presented in the first line of each cell, accompanied by 
the corresponding p-value displayed in the second line. The table is color-coded according to the correlation strength, as indicated in the colour legend. 
Panels (B) and (C) display scatterplots demonstrating a highly significant correlation between gene significance (GS) and module membership (MM) in 
the blue and green modules, respectively, in relation to unstable atherosclerotic plaque

 

Fig. 2  Weighted gene co-expression network analysis. (A) Analysis of network topology for various soft-thresholding powers. (B) Relationship among all 
modules. (C) Heatmap of the topological overlap in the gene network. (D) Clustering dendrogram of genes. Gene clustering tree (dendrogram) obtained 
by hierarchical clustering of adjacency-based dissimilarity
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(Fig.  3C). Supplementary Table 6 provides comprehen-
sive details, including gene symbols, GS values, and cor-
responding P-values within the blue and green modules.

Machine learning-based identification of hub genes
Initially, a Venn intersection analysis was conducted to 
identify the overlap between 1,288 genes significantly 
associated with unstable atherosclerotic plaques and a set 
of 1,136 mitochondrial genes (Supplementary Table 7). 
This analysis yielded a subset of 50 mitochondrial genes 
(as illustrated in Fig. 4A and documented in Supplemen-
tary Table 8). Subsequently, based on LASSO regression, 
we refined this set and identified 20 key genes from the 
50 mitochondrial genes (Fig.  4B). Furthermore, using 
the SVM-RFE algorithm, an additional 6 key genes were 
identified (Fig.  4C). Finally, by intersecting the results 
obtained from these two machine learning approaches, 
6 hub mitochondrial genes were uncovered: NT5DC3, 
ACADL, SLC25A4, ALDH1B1, MAOB, and KMO (Fig. 4D 
and Supplementary Table 9).

Characterization of immune cell subtype distribution 
pattern
The immune cell subtype distribution pattern was 
evaluated using the CIBERSORT algorithm to com-
pare the differential expression between the control 

and atherosclerosis samples. Analysis of the correlation 
matrix revealed a negative correlation between CD8 
T cells and M0 macrophages (Fig.  5A). The heatmap 
analysis (Fig.  5B) demonstrated significant variations 
in the proportions of immune cells between the con-
trol and atherosclerosis samples. The atherosclerosis 
samples exhibited a general decrease in CD8 T cell infil-
tration and an increase in M0 macrophage infiltration 
(Fig.  5C) (P < 0.01). Supplementary Table 10 provides 
detailed information on the immune cell infiltration pat-
tern observed in the atherosclerosis patient group. Fur-
ther analysis (Fig.  6) revealed that SLC25A4, NT5DC3, 
ACADL, ALDH1B1, and MAOB were positively cor-
related with CD8 T cells (P < 0.001) and negatively cor-
related with M0 macrophages (P < 0.001). Conversely, 
KMO displayed a negative correlation with CD8 T cells 
(P < 0.001) and a positive correlation with M0 macro-
phages (P < 0.001).

Comparative analysis of 50 HALLMARKS pathways
Differential analysis was conducted to examine the dis-
tribution of immune cell subtypes in patients with ath-
erosclerosis. The differences in HALLMARKS pathways 
between the control group and atherosclerosis patients 
were compared using GSVA (Supplementary Fig.  1A). 
Additionally, the correlation between 6 hub genes and 

Fig. 4  Identification of key genes in ruptured atherosclerotic plaque by machine learning. (A) The Venn diagram illustrates the overlapping expression of 
50 genes between module genes and genes associated with mitochondrial localization. (B) A total of 20 key genes associated with unstable atheroscle-
rotic plaque were identified using LASSO regression. (C) The SVM-RFE algorithm identified a total of 6 key genes associated with unstable atherosclerotic 
plaque. (D) The intersection of LASSO and SVM-RFE methods revealed a set of 6 key genes associated with ruptured atherosclerotic plaque. LASSO, least 
absolute shrinkage and selection operator; SVM-RFE, support vector machine-Recursive feature elimination

 



Page 10 of 20Liao et al. Journal of Translational Medicine          (2024) 22:668 

50 HALLMARKS pathways was evaluated (Supplemen-
tary Fig. 1B). Compared to the control group, the athero-
sclerosis patient group exhibited significantly increased 
enrichment levels in multiple pathways (P < 0.001). These 
pathways included upregulation of KRAS signaling, 
inflammatory response, transplant rejection, Interleukin 
2 (IL-2)/ Signal Transducer and Activator of Transcrip-
tion 5 (STAT5) signaling, coagulation, heme metabolism, 
downregulation of ultraviolet (UV) response, P53 signal-
ing, reactive oxygen species, Phosphoinositide 3-kinase 
(PI3K)/ Protein kinase B (Akt)/ mammalian target of 
Rapamycin (mTOR) signaling, complement, interferon-
alpha response, interferon-gamma response, myogen-
esis, apoptosis, Tumor Necrosis Factor alpha (TNFA) 
signaling via nuclear factor-kappaB (NF-KB), hypoxia, 
Interleukin 3 (IL-3)/ Janus kinase (JAK)/ Signal Trans-
ducer and Activator of Transcription 3 (STAT3) signal-
ing, and xenobiotic metabolism pathways. Furthermore, 
SLC25A4, NT5DC3, ACADL, ALDH1B1, and MAOB 
were found to be negatively correlated with multiple 

pathways, such as xenobiotic metabolism, upregulation of 
UV response, downregulation of UV response, unfolded 
protein response, TNFA signaling via NFKB, TGF-β sig-
naling, spermatogenesis, reactive oxygen species, PI3K/
Akt/mTOR signaling, peroxisomes, pancreatic beta 
cells, P53 signaling, myogenesis, MYC targets V2 signal-
ing, mTORC1 signaling, upregulation of KRAS signal-
ing, downregulation of KRAS signaling, interferon-alpha 
response, interferon-gamma response, inflammatory 
response, IL-2/STAT5 signaling, IL-3/JAK/STAT3 sig-
naling, hypoxia, heme metabolism, hedgehog signaling 
pathway, glycolysis, estrogen response late, DNA repair, 
complement, coagulation, cholesterol homeostasis, apop-
tosis, apical surface, adipogenesis, transplant rejection, 
angiogenesis, and androgen response. In contrast, KMO 
exhibited a positive correlation with all of the aforemen-
tioned pathways (Supplementary Table 11).

Fig. 5  Analysis of immune cell subtype infiltration patterns between control and atherosclerosis samples. Panel (A) shows a correlation heatmap display-
ing the interrelationships among all 22 immune cell types. Panel (B) presents a heatmap illustrating the proportions of 22 immune cell types between 
control and atherosclerosis samples. Panel (C) presents a violin plot depicting the differential fractions of infiltrated immune cells across the 22 types 
between control and atherosclerosis samples
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KMO as a potential biomarker for assessing the instability 
of atherosclerotic plaques
The predictive diagnostic performance was assessed 
through ROC curve analysis for machine learning-based 
selection of central gene expression levels. As depicted 
in Supplementary Fig.  2, the respective AUC values for 
SLC25A4, NT5DC3, ALDH1B1, MAOB, KMO, and 
ACADL were as follows: 0.843 (with a 95% confidence 
interval [CI] of 0.747–0.919), 0.845 (with a 95% CI of 
0.759–0.924), 0.809 (with a 95% CI of 0.701–0.899), 0.8 
(with a 95% CI of 0.703–0.888), 0.823 (with a 95% CI of 
0.728–0.906), and 0.84 (with a 95% CI of 0.74–0.918), 
respectively.

To further validate the diagnostic value of these bio-
markers in assessing the instability of atherosclerotic 
plaques, we conducted a study involving the collection 
of human carotid atherosclerotic plaque samples. Plaque 
stability was assessed using a semiquantitative scoring 
system for histological grading based on the AHA clas-
sification (Supplementary Table 2). HE staining revealed 
different characteristics in the stable plaque group (SAP) 
in contrast with the control group, including an increased 
presence of foam cells, smaller lipid cores, and decreased 
infiltration of inflammatory cells. Conversely, the unsta-
ble plaque group (UAP) exhibited larger atherosclerotic 
plaques, tissue rupture, neovascularization, and height-
ened inflammatory cell infiltration.

IHC was performed to preliminarily evaluate the 
expression of KMO, ACADL, ALDH1B1, MAOB, 
NT5DC3, and SLC25A4 in human carotid plaque tis-
sues (Fig.  7). Our findings revealed that KMO expres-
sion varied among group comparisons of the control, 
SAP, and UAP groups, with significant differences not 
only between control group and SAP group (P < 0.01) 
but also between the control group and the UAP group 
(P < 0.001). Moreover, when comparing the SAP group 
with the UAP group, KMO expression exhibited sig-
nificant discrepancies (P < 0.001). Similarly, MAOB 
and ALDH1B1 expressions in the control group also 
showed significant differences from both SAP and UAP 
groups (all P < 0.001), but no significant distinctions were 
observed between the SAP group and the UAP group 
(P > 0.05).

Concurrently, the RT-qPCR results showed that KMO 
mRNA expression level in the control group was sig-
nificantly different from that in both the UAP group 
(P < 0.01) and the SAP group (P < 0.01); besides, signifi-
cant differences were also observed between the SAP 
group and the UAP group (P < 0.001) (Fig.  8A and 9). 
Similarly, ALDH1B1 and MAOB mRNA expressions in 
the control group were significantly different from those 
in both the SAP group (P < 0.001) and the UAP group 
(P < 0.001), while no significant differences were observed 
between the SAP group and the UAP group (P > 0.05) 
(Fig. 10C, D).

Fig. 6  Pearson correlation analysis. Correlation between SLC25A4 (A), NT5DC3 (B), ALDH1B1 (C), MAOB (D), KMO (E), and ACADL (F) and infiltrating immune 
cells was assessed. Dot size indicates the strength of correlation between genes and immune cells, with larger dots indicating stronger correlations. Dot 
colour represents the corresponding p-value, with greener colours indicating lower p-values. A significance threshold of P < 0.05 was considered statisti-
cally significant
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Both IHC and RT-qPCR results consistently indicated 
a significant upregulation of KMO expression in athero-
sclerotic stable and unstable plaques compared to the 
control group, with an obvious distinction between the 
SAP group and UAP group. Similarly, MAOB expres-
sion exhibited a significant upregulation compared to the 
control group. However, no significant differences were 
observed between the SAP group and UAP group. Con-
versely, ALDH1B1 expression demonstrated a significant 
decrease in both stable and unstable plaques of athero-
sclerosis, with no significant differences between the SAP 
group and UAP group. Therefore, the KMO gene might 
hold promise as a potential diagnostic and predictive bio-
marker for identifying unstable plaques.

KMO: dual localization in macrophages and mitochondria
To explore the subcellular localization of KMO in human 
atherosclerotic plaque tissue and cells, we conducted 
immunofluorescence co-staining of KMO and the mac-
rophage marker CD68 in unstable plaques of human 
carotid arteries (Fig.  9A-E). The results revealed the 
co-localization of KMO within CD68-positive macro-
phages, consistent with the findings derived from our 
study utilizing WGCNA, machine learning, and immune 
cell infiltration analysis on a publicly available dataset of 
human carotid atherosclerosis. To further validate KMO 
as a mitochondrial gene, we cultured the RAW264.7 cell 
line and performed co-staining of KMO with the mito-
chondrial-specific antibody TOM20. Co-localization 

analysis of KMO and the mitochondrial-specific antibody 
TOM20 demonstrated their overlapping signals within 
macrophage mitochondria (Fig.  9F-H). These findings 
provided compelling evidence for KMO expression in 
macrophages within atherosclerotic lesions and the role 
of KMO as a mitochondrial gene.

Attenuation of atherosclerotic plaque formation and 
enhancement of plaque stabilization through silencing of 
KMO in HCD-fed ApoE−/− mice
In ApoE−/− mice, we detected the expression of the con-
struct in the aorta following lentiviral transduction at 
both 2 and 20 weeks. Frozen sections of the aortic root 
exhibited EGFP fluorescence (Fig.  10A). Western blot 
analysis revealed a significant difference in the aortic 
KMO protein levels between the groups (Fig.  10C and 
D), indicating successful Sh-KMO transduction in the 
aortic wall of ApoE−/− mice. After 20 weeks of a HF diet, 
the ApoE−/− mice were euthanized, and blood samples 
were collected from the orbital vein. Histological analy-
sis of the aortic root sections using HE and Masson’s 
Trichrome staining demonstrated that the HF diet sig-
nificantly increased the aortic plaque area (Fig.  10B top 
and F), necrotic core area (Fig. 10B top and G), collagen-
positive area (Fig.  10B bottom and H), and serum LDL 
cholesterol levels (Fig.  10E) in ApoE−/− mice. The HE 
staining revealed that the Sh-KMO transduced mice had 
reduced aortic plaque area (Fig. 10A and F) and necrotic 
core area (Fig. 10B top and G) compared to the control 

Fig. 7  Immunohistochemistry staining was performed to preliminarily evaluate the expression of KMO (A), ACADL (B), ALDH1B1 (C), MAOB (D), NT5DC3 (E), 
and SLC25A4 (F) between samples from SAP, UAP and control groups. Statistical analysis was conducted on data from the control, SAP, and UAP groups, 
with a sample size (n) of 5 for each group. Significance levels were indicated as * for P < 0.05, ** for P < 0.01, and *** for P < 0.001. Scale bars represent 50 μm. 
HE, Hematoxylin and Eosin; SAP, stable plaques; UAP, unstable plaques; Control, macroscopically intact arterial tissues
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Fig. 9  KMO demonstrated dual localization, with co-localization observed in macrophages and mitochondria. Immunofluorescence staining of CD68 
and KMO in unstable plaques of human carotid arteries was visualized. Representative images from three samples each of atheroma were analyzed. Scale 
bars represent 50 μm and 25 μm (magnification), respectively (A-E). Co-localization analysis of KMO and the mitochondrial-specific antibody TOM20 in 
the RAW264.7 cell line demonstrated overlapping signals within macrophage mitochondria (F-H). Representative images from three samples each of 
macrophages were analyzed. Scale bars represent 50 μm

 

Fig. 8  RT-qPCR analysis was performed to measure the relative RNA expression levels of KMO, ACADL, ALDH1B1, MAOB, NT5DC3, and SLC25A4 between 
samples from SAP, UAP, and control groups. Significance levels were indicated as * for P < 0.05, ** for P < 0.01, and *** for P < 0.001
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group. Masson’s Trichrome staining showed that the Sh-
KMO transduced mice had increased collagen-positive 
area (Fig. 10B bottom and H), suggesting that KMO pro-
motes the formation and instability of atherosclerotic 
plaques.

KMO as a diagnostic biomarker for ACS
Compared to the control group, patients with SA exhib-
ited significant elevations in serum KMO and hs-CRP 
levels. Similarly, patients with ACS had significantly 
higher levels of both KMO and hs-CRP compared to the 
control group, with even greater differences observed 
when comparing ACS to SA (Fig.  11A-B). The mean 
KMO levels were 198.8 ng/L in the control group, 210.0 
ng/L in the SA group, and 237.2 ng/L in the ACS group. 
The mean hs-CRP levels were 3.56  mg/L in the control 
group, 4.07 mg/L in the SA group, and 4.63 mg/L in the 
ACS group. ROC curve analysis (Fig. 11C) demonstrated 
that the AUC for KMO in differentiating SA from the 
control group was 0.73 (95% CI 0.58–0.87, P = 0.007) with 
a sensitivity of 0.92 and a specificity of 0.58. For the com-
parison between ACS and the control group, the AUC for 

KMO was 0.95 (95% CI 0.89-1.00, P < 0.0001) with a sen-
sitivity of 0.88 and a specificity of 0.96. When comparing 
ACS to SA, the AUC for KMO was 0.89 (95% CI 0.79–
0.98, P < 0.0001) with a sensitivity of 0.79 and a specificity 
of 0.83. Additionally, the AUC for hs-CRP in differentiat-
ing SA from the control group was 0.71 (95% CI 0.57–
0.87, P = 0.009) with a sensitivity of 0.67 and a specificity 
of 0.75. For the comparison between ACS and the control 
group, the AUC for hs-CRP was 0.82 (95% CI 0.70–0.94, 
P < 0.0001) with a sensitivity of 0.71 and a specificity of 
0.87. When comparing ACS to SA, the AUC for hs-CRP 
was 0.71 (95% CI 0.56–0.87, P = 0.011) with a sensitivity 
of 0.71 and a specificity of 0.75 (Fig.  11D). Notably, in 
distinguishing between ACS and SA, the area under the 
AUC curve for KMO and its sensitivity and specificity 
were significantly greater than those of hs-CRP, indicat-
ing that KMO might have a superior ability to differen-
tiate between ACS and SA compared to hs-CRP. These 
findings provided a basis for further exploration of the 
clinical utility of KMO in the diagnosis of CAD and ACS.

Fig. 10  Silencing lentiviruses targeting KMO were successfully transfected into the aortas of ApoE-/- mice, resulting in reduced plaque formation and en-
hanced plaque stability in high cholesterol diet (HCD)-fed ApoE-/- mice. (A) Successful transfection of KMO silencing lentiviruses into the aortas of ApoE-
/- mice (scale bar: 20 μm). (B) Representative images of HE and Masson’s trichrome staining in the aortic root (scale bar: 200 μm). Black boxes indicate the 
magnified regions below (scale bar: 200 μm). (C) Representative Western blot analysis of KMO in the aortas. (D) Quantification analysis of KMO protein 
levels in the aortas. (E) Low-density lipoprotein cholesterol (LDL-C) levels. (F) Quantification analysis of plaque area in the aortic root lesions using HE stain-
ing. (G) Quantification analysis of necrotic core area in the aortic root lesions using HE staining. (H) Quantification analysis of collagen content in the aortic 
root lesions using Masson’s trichrome staining. Data are presented as means ± standard error of the mean (SEM). n = 5, * for P < 0.05, ** for P < 0.01, *** for 
P < 0.001, and **** for P < 0.0001. NC: mice fed a regular chow diet; CTRL: mice fed a high-fat diet; Mock: mice transfected with empty lentiviral vector + HF 
diet; Sh-KMO: mice transfected with KMO silencing lentiviruses + HF diet; HE: hematoxylin and eosin staining; LDL-C: low-density lipoprotein cholesterol
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Discussion
IS frequently arises from the rupture of unstable ath-
erosclerotic plaques and subsequent thrombus forma-
tion. Identifying biomarkers to stratify the risk of stroke 
and therapeutic targets to stabilize vulnerable plaques 
in atherosclerosis is crucial for preventing adverse cere-
brovascular and cardiovascular events. In this study, we 
obtained four datasets (GSE28829, GSE41571, GSE43292, 
and GSE111782) from the GEO database as training 
datasets and performed WGCNA. We identified two 
modules (blue and green) significantly associated with 
unstable atherosclerotic plaques. Utilizing LASSO logis-
tic regression and SVM-RFE machine learning methods, 
we identified six hub genes (NT5DC3, ACADL, KMO, 
SLC25A4, ALDH1B1, and MAOB significantly corre-
lated with unstable atherosclerotic plaques. ROC analysis 

based on the training set demonstrated the high efficacy 
of these six hub genes in distinguishing unstable athero-
sclerotic plaques. To validate our findings, we conducted 
IHC combined with RT-qPCR experiments. Interestingly, 
significant differences in KMO expression were observed 
between the control group and the atherosclerotic plaque 
group. Elevated KMO expression was associated with the 
promotion of atherosclerosis progression. We found a 
significant increase in KMO expression in both stable and 
unstable atherosclerotic plaques, with an obvious distinc-
tion between the two plaque types. These findings sug-
gest that KMO may contribute to plaque instability and 
hold considerable value and significance in predicting 
plaque stability and vulnerability.

Following a thorough exploration of the NCBI Gene 
database, KMO (HGNC: 6381, gene ID: 8564, OMIM: 

Fig. 11  Results of ELISA analysis. (A) Serum KMO levels in control samples and patients with SA or ACS. (B) Serum hs-CRP levels in control samples and 
patients with SA and ACS. (C) ROC curve analysis based on serum KMO levels. (D) ROC curve analysis based on serum hs-CRP levels. KMO, kynurenine 
3-monooxygenase; SA, stable angina; ACS, acute coronary syndrome; ROC, Receiver operating characteristic; hs-CRP, high-sensitivity C-reactive protein
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603,538) was identified at the chromosomal locus 1q43, 
characterized by 15 exons. This gene encodes a mito-
chondrial outer membrane protein that catalyzes the 
hydroxylation of L-tryptophan metabolite, L-kynurenine 
(KYN), yielding L-3 hydroxykynurenine (HK). Studies 
in yeast have recognized KMO as a therapeutic target 
for Huntington’s disease [29]. The kynurenine pathway, 
serving as the principal metabolic route for tryptophan, 
generates various metabolites with distinct biological 
properties [30]. This pathway plays critical roles in diverse 
biological processes, including immune regulation, can-
cer, inflammation, and metabolism [31, 32]. Within the 
kynurenine pathway, metabolites such as KYN, kyn-
urenic acid (KYNA), 3-HK, and 3-hydroxyanthranilic 
acid (3-HAA) exert significant biological effects. KMO, a 
critical enzyme within the kynurenine pathway, facilitates 
the conversion of tryptophan to 3-HK and is intricately 
involved in immune regulation, cancer development, 
inflammation, and metabolism [33, 34]. Consequently, 
KMO is associated with various conditions, including 
cardiovascular diseases, neurological disorders, tumor 
formation, and inflammation. Overactivation of the 
kynurenine pathway has been observed in the presence 
of several cardiovascular risk factors, including obesity, 
hyperglycemia, dyslipidemia, hypertension, smoking, and 
aging [35, 36]. Furthermore, recent studies have provided 
compelling evidence regarding the significant involve-
ment of KYN and its metabolites in the pathophysiology 
of cardiovascular diseases. Moreover, pharmacological 
interventions targeting the modulation of the kynurenine 
pathway have shown therapeutic potential in managing 
various cardiovascular diseases [35, 37].

Several studies have investigated the role of KMO 
in cardiovascular diseases. For instance, Lai et al. [38] 
reported a significant increase in KMO expression in 
myocardial cells of mice with MI, closely associated 
with elevated levels of xanthurenic acid. Furthermore, 
experimental evidence indicated that KMO influenced 
myocardial cell apoptosis and ferroptosis by modulat-
ing mitochondrial fission and fusion processes, thereby 
exacerbating MI-induced damage. In a separate study, 
Kubo et al. [39] demonstrated that KMO−/− mice exhib-
ited enhanced survival rates and reduced inflammatory 
cell infiltration in a mouse model of viral myocarditis 
compared to KMO mice. Additionally, KMO−/− mice 
displayed elevated serum levels of kynurenine, anthra-
nilic acid, and KYNA, along with decreased levels of 
chemokines such as chemokine ligand (CCL) 1, CCL2, 
CCL3, and CCL4, suggesting the potential of target-
ing indoleamine 2,3-dioxygenase or inhibiting KMO 
to improve myocarditis outcomes. Gellért et al. [40] 
found that the repeated intraperitoneal administra-
tion of KMO inhibitors at specific time intervals (1, 30, 
and 180 min) following bilateral carotid artery occlusion 

resulted in a significant reduction in infarct size in rats. 
The involvement of kynurenine and its metabolites in 
the pathophysiology of atherosclerosis has been exten-
sively studied. Activation of the kynurenine pathway and 
elevated plasma levels of KYNA, 3-HK, anthranilic acid, 
and 3-HAA have been linked to an increased risk of acute 
myocardial infarction in patients with SA pectoris, par-
ticularly in subgroups with diabetes or prediabetes [41]. 
Previous research has highlighted the facilitative role of 
the enzymes KMO and kynureninase in the development 
of atherosclerotic plaques [41], suggesting the potential 
utility of measuring these metabolites and enzymes as 
biomarkers for identifying individuals at risk of cardio-
vascular complications. While no comparative research 
has yet investigated KMO expression differences spe-
cifically between stable and unstable plaques, our study 
revealed that KMO was associated not only with the 
formation of atherosclerotic plaques but also with their 
stability.

Atherosclerosis is characterized by vascular inflam-
mation, contributing to plaque instability [42]. The 
groundbreaking study by Fernandez et al. provided 
a comprehensive morphological characterization of 
immune cells during atherosclerosis, elucidating the 
immune cell composition within plaques and delineat-
ing their distinct activation states. This seminal work 
laid the groundwork for investigating atherosclero-
sis as an immune-mediated disorder [43]. Both innate 
and adaptive immune cells, particularly macrophages, 
play significant roles in the pathogenesis of atheroscle-
rosis. Macrophage-related pathological processes are 
important targets for diagnostic imaging and new ther-
apies in atherosclerosis. Therapeutic manipulation of 
macrophages within atherosclerotic plaques can effec-
tively inhibit pro-atherosclerotic macrophage activities, 
thereby enhancing the resolution of inflammation and 
stabilizing plaques [44]. T lymphocytes, a critical popula-
tion of immune cells, can be classified into CD4 and CD8 
subsets based on their surface markers and functions. 
CD8 T cells exhibit a dual role in atherosclerosis. Previ-
ous research has indicated that CD8 T cells can secrete 
a range of inflammatory cytokines, thereby exacerbating 
the inflammatory response and promoting plaque insta-
bility [45]. However, cytotoxic activity directed towards 
antigen-presenting cells and regulatory CD8 T cells has 
demonstrated efficacy in impeding the progression of 
atherosclerosis by mitigating immune reactions [45]. 
Additionally, Xu et al. [46]. documented obvious eleva-
tions in the proportions of M0 macrophages, gamma 
delta (γδ) T cells, and neutrophils, while observing a 
decrease in the proportions of eosinophils and resting 
dendritic cells, among patients exhibiting atheroscle-
rosis progression leading to plaque rupture. Consistent 
with these findings, further exploration of immune cell 
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population differences between atherosclerotic and 
normal samples revealed decreased CD8 T cell infiltra-
tion and increased M0 macrophage infiltration in ath-
erosclerotic samples. Based on these results, it could be 
inferred that M0 macrophages promote the formation of 
atherosclerosis, while CD8 T cells may delay its progres-
sion. Previous studies have suggested that KMO exerts 
a critical regulatory role in macrophages, with emerg-
ing evidence highlighting its close interplay with macro-
phage inflammatory responses and immune modulation 
[34]. Heightened KMO activity augments flux within the 
kynurenine pathway, resulting in excessive generation 
of pro-inflammatory mediators, obvious quinolinic acid 
[47]. Consequently, this elicits robust inflammatory cas-
cades. KMO activity profoundly influences macrophage 
functionality and inflammatory responses, thereby affect-
ing the pathogenesis and progression of inflammatory 
disorders, including neuroinflammation, autoimmune 
diseases, and atherosclerosis [34]. Interestingly, a positive 
correlation between KMO expression and the infiltra-
tion abundance of M0 macrophages was observed. Uti-
lizing immunofluorescence co-staining techniques, the 
expression patterns of KMO in human carotid unstable 
plaque tissues and cultured mouse macrophage cell lines 
were examined. The findings provide strong evidence 
that KMO participates in atherosclerosis by mediating 
macrophage function. However, additional in vivo and in 
vitro experiments are necessary to further elucidate the 
potential molecular mechanisms by which KMO medi-
ates macrophage function in atherosclerosis.

Mitochondrial dysfunction is intricately associated 
with a spectrum of chronic human disorders, including 
atherosclerosis and diabetes mellitus [48]. Mitochondria, 
which are dynamic organelles, continuously undergo 
turnover within living cells. Processes of mitochondrial 
fission and fusion processes ensure the preservation of 
a functional mitochondrial population, aligned with the 
cellular energy demands [49]. Mitophagy, a specialized 
autophagic process, mediates the elimination of impaired 
or excessive mitochondria [50]. These complicated pro-
cesses are meticulously regulated by a diverse reper-
toire of proteins and genes. Perturbations in any of these 
processes can culminate in the accumulation of dys-
functional mitochondria, compromised energy produc-
tion, heightened oxidative stress, and ultimately cellular 
demise—consistently observed features in various human 
disorders [51]. Severe mitochondrial dysfunction is well-
established as the causative factor in specific mitochon-
drial disorders, while progressive mitochondrial damage 
is also evident in various chronic diseases, including 
cancer and atherosclerosis, underscoring its prominent 
role in disease progression [52]. The association between 
mitochondrial dysfunction and atherosclerosis has gar-
nered increasing attention in recent years. In this study, 

we used WGCNA to identify key genes within mod-
ules and intersected them with the mitochondrial gene 
set from the MitoCarta 3.0 database [18], yielding a list 
of 50 mitochondria-related unstable plaque genes. The 
identification of KMO as a target gene was accomplished 
through a combination of machine learning algorithms 
and experimental validation. Furthermore, we con-
ducted cell immunofluorescence colocalization experi-
ments to confirm the subcellular localization of KMO 
within macrophage mitochondria. In future, it is crucial 
to undertake additional research to explore the potential 
role of KMO in promoting atherosclerosis via mitochon-
drial dysfunction and elucidate the specific mechanisms 
underlying its regulation of mitochondrial dysfunction.

Chronic inflammation promotes the progression of 
plaques and increases their vulnerability, necessitating 
precise determination of plaque vulnerability based on 
specific features such as a lipid-rich core, thin fibrous 
cap, and intraplaque hemorrhage. Although these fea-
tures can be partially identified through imaging tech-
niques, effectively recognizing the vulnerability of arterial 
plaques remains challenging [53]. Therefore, investigat-
ing circulating biomarkers as supplementary indicators 
to predict the risk of atherosclerotic plaque rupture or 
vulnerability and inform subsequent revascularization is 
important. Previous studies have linked most biomark-
ers predicting plaque rupture or vulnerability primarily 
to inflammatory molecules, including hs-CRP, interleu-
kin-6 (IL-6), matrix metalloproteinase 9 (MMP9), mono-
cyte chemoattractant protein-1 (MCP-1), and CD163. 
Additionally, other biomarkers encompass short, single-
stranded, non-protein-coding RNAs such as miR-21, 
miR-133, and miR-145, which may be released into cir-
culation due to plaque instability or rupture [53]. In this 
context, there is increasing evidence supporting the role 
of inflammatory biomarkers in acute ischemic events; 
however, they cannot predict disease progression. More-
over, their concentrations may increase nonspecifically in 
other concurrent pathological conditions. Consequently, 
inflammation-related biomarkers for predicting plaque 
vulnerability exhibit higher sensitivity but lower specific-
ity [54]. The results of this study suggest that using KMO 
as a serum biomarker demonstrates higher sensitivity 
and specificity in distinguishing between patients with 
SA and ACS compared to hs-CRP. Although our study 
provides some evidence indicating KMO’s potential as a 
reliable serum biomarker for predicting unstable plaques, 
further research is necessary to substantiate this find-
ing. Therefore, identifying KMO as a reliable circulat-
ing biomarker in clinical practice for selecting patients 
with high-risk vulnerable plaques still requires extensive 
investigation.

Several limitations should be acknowledged in this 
study. Firstly, the inclusion of validation samples from a 
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single center with small sample sizes may limit the gener-
alizability of the findings. The variability in gene expres-
sion levels among individuals from diverse geographic 
regions or ethnic backgrounds remains unclear. There-
fore, it is imperative to undertake larger sample sizes and 
multicenter studies to validate and enhance the robust-
ness and generalizability of the results. Secondly, further 
in vivo and in vitro investigations are warranted to elu-
cidate the underlying mechanisms governing the rela-
tionship between KMO and immune cell infiltration in 
atherosclerosis. Additionally, it is essential to explore the 
potential contribution of KMO to atherosclerosis pro-
gression through mitochondrial dysfunction and investi-
gate the specific regulatory pathways involved. Research 
in these areas will provide a more comprehensive under-
standing of the role of KMO in atherosclerosis and its 
potential therapeutic implications.

Conclusions
In conclusion, our study identified KMO as a mitochon-
dria-targeted gene associated with the immune system, 
demonstrating its potential as a promising diagnostic 
biomarker for assessing the instability of atherosclerotic 
plaques. Our results indicated that M0 macrophages 
likely might contribute to the initiation and progression 
of atherosclerotic plaques, while CD8 T cells might play 
a protective role. Moreover, we observed a positive cor-
relation between KMO expression and M0 macrophages, 
along with a negative correlation with CD8 T cells. These 
findings highlight the significant role of KMO in the 
interplay with macrophages, elucidating its relevance 
to the development and progression of atherosclerotic 
plaques. Thus, our study provides novel insights for fun-
damental research and unveils potential avenues for the 
development of preventive and therapeutic strategies tar-
geting atherosclerosis-related diseases.
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