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a b s t r a c t 

Histone modifications are key factors in chromatin packaging, and are responsible for gene regulation during 
cell fate determination and development. Abnormal alterations in histone modifications potentially affect the 
stability of the genome and disrupt gene expression patterns, leading to many diseases, including cancer. In recent 
years, mounting evidence has shown that various histone modifications altered by aberrantly expressed modifier 
enzymes contribute to tumor development and metastasis through the induction of epigenetic, transcriptional, 
and phenotypic changes. In this review, we will discuss the existing histone modifications, both well-studied and 
rare ones, and their roles in solid tumors and hematopoietic cancers, to identify the molecular pathways involved 
and investigate targeted therapeutic drugs to reorganize the chromatin and enhance cancer treatment efficiency. 
Finally, clinical inhibitors of histone modifications are summarized to better understand the developmental stage 
of cancer therapy in using these drugs to inhibit the histone modification enzymes. 
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. Introduction 

Cancer is a complex disease, which has rising prominently to become
ne of the largest killers of human health together with cardiovascular
iseases 1 . The incidence and mortality of cancer are rapidly growing
n many countries, indicating that cancer is still a life-threatening dis-
ase worldwide. According to the International Agency for Research on
ancer (IARC), approximately 19.3 million new cancer cases and almost
0.0 million cancer deaths occurred in 2020 1 . Incidence and mortality in
040 are estimated as 30.2 million and 16.3 million, respectively (based
n https://gco.iarc.fr/tomorrow/en ). Thus, it is vital for scientists to in-
estigate the regulatory mechanisms of gene expression to develop new
trategies and effective drugs for cancer therapy. 

Cancer is the first human disease to be correlated with epigenetic al-
erations 2 . The term ‘epigenetics’ was first defined by Conard Wadding-
on in 1942 3 . It is increasingly clear that epigenetics plays a key role
n tumor development and metastasis through the regulation of gene
xpression by histone modifications, DNA methylation, histone vari-
nt incorporation, chromatin remodeling, and non-coding RNAs 4 . His-
one modifications, established and removed by modifier enzymes called
riters and erasers, respectively, alter chromatin structure and phys-

cal properties to control gene expression, including tumor suppressor
enes (TSGs) and oncogenes. Evidence has revealed that histone modifi-
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ations participate in almost all the DNA-based processes, such as gene
ranscription and replication and DNA damage repair and recombina-
ion 5 . Mutations within histones or chromatin remodeling complexes
ffect the cell phenotype, leading to various diseases, including can-
er. For example, mutations within the SWI/SNF complex, which con-
ains 15 subunits encoded by 29 genes, affect > 20% of human can-
ers across many tumor types 6 . Histone mutations within H3K27M,
3K36M, and H4G34V/R/W/L usually occur in pediatric cancers 7 . In
articular, aberrant expression of histone modifier enzymes is associ-
ted with disruption of the histone modification machinery, leading to
ancer initiation, progression, and metastasis. Epigenetic-based drugs
epidrugs) have been investigated, and several have been approved by
he US Food and Drug Administration (FDA) to treat cancer with ab-
ormal histone modifications 8 . However, the majority of epidrugs are
till in the pre- or clinical phase, indicating that it is necessary to clarify
he regulatory pattern of epigenetics, especially histone modifications,
n cancer. 

A wealth of evidence supports a close relationship between misreg-
lated histone modifications and cancer. In this review, we will sum-
arize known histone modifications, to provide a clearer view of the
hole picture. In addition, gene regulation by abnormal histone modifi-

ations in solid tumors and hematopoietic cancers is discussed, and the
ifferences are compared. Finally, clinical inhibitors of histone modi-
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Fig. 1. Histone modifications. Various modifications could occur on tails of four core histones, H2A, H2B, H3 and H4. And variants of H2A and H3 can also 
be modified by different modifications, such as acetylation or phosphorylation on H2A.X, methylation or phosphorylation on CENP-A, and phosphorylation or 
biotinylation on H3.3. Histone methylation and acetylation are the most common modifications and usually occur on the same lysine sites of the four histones 
(i.e., H2AK5/13, H2BK5/46/108, H3K4/9/14/23/27/36/56/64/79/122 and H4K5/8/12/20/31/79). What’s more, several amino acid sites on histone tails could 
be commonly modified with more than two different modifications, including H2AK13me/ac/ar/bio, H3K9me/ac/cr, H3K14me/ac/pr/bu, H3K18me/ac/la/cr, 
H4K5me/ac/pr/bu/la, H4K8me/ac/pr/bio/cr and H4K12me/ac/pr/bu/bio, illustrating the role that these sites play in gene regulation and cell fate determination. 
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cations will be summarized to better understand the developmental
tage of cancer therapy using these drugs. 

. Histone modifications 

Histone modification is a covalent post-translational change to his-
one tails, including H2A, H2B, H3 and H4, catalyzed by proteins termed
s “writers ” and “erasers ”. Currently, several well-studied histone
odifications are involved in cancer development, such as H3K4me3

nd H3K36me3, which are associated with active transcription, and
3K27me3, H3K9me2/3, and H4K20me3, which are associated with

epressed genes 9 . A large catalogue of histone modifications has been
escribed, but functional understanding is still lacking. Histone methy-
ation, acetylation, and phosphorylation are the most frequent alter-
tions in histone tails, while many other modifications have been de-
ected, such as ubiquitination, lactylation, propionylation, crotonyla-
ion, and formylation 9-11 . The modified amino acid sites on histone tails
re shown in Fig. 1 . 

.1. Histone methylation 

Histone methylation involves the transfer of methyl groups from
-adenosyl methionine (SAM) to lysine (K) and arginine (R) residues
f H3 or H4 tails with indicated lysine methyltransferases (KMTs) or
rginine methyltransferases (PRMTs), respectively. Lysine demethylases
278 
KDMs) are responsible for removing methyl groups from histone lysine
esidues 12 . Histone methylation predominantly occurs via recruitment
f histone-binding proteins or inhibition of recruitment. For example,
3K4me3 recruits the activating proteins such as transcription factors

TFs) to gene promoters, whereas the recruitment of repressors such as
ucleosome remodeling and deacetylase (NuRD) complex is inhibited
y H3K4me3 11,13 . However, H3K9me2/3 specifically binds chromod-
main proteins, such as the heterochromatin protein 1 (HP1) family, to
orm a higher-order architecture of heterochromatin, leading to gene
epression 11 , 13 . 

Mutations within histone modifier enzymes and histone genes are
sually observed in cancer cells, resulting in changes in chromatin
ethylation patterns, which leads to tumor development and metas-

asis. Analysis of The Cancer Genome Atlas (TCGA) databases revealed
hat mutations occur in various enzymes involved in histone methyla-
ion 14 , 15 . Gain or loss of function of H3K27me3 is one of the well-known
isordered histone modifications leading to aberrant gene expression
nd genome stability in cancer, which is usually caused by mutations
n the gene encoding enhancer of zeste homologue 2 (EZH2), a histone
ethyltransferase 5 . Moreover, the enzymatic activity of EZH2 can also

e influenced by mutant histones with tumor-promoting features, in-
luding H3K27M/I 16 . Despite the obtained advances, a better under-
tanding of the abnormal histone methylation patterns in malignancies
s still necessary to elucidate the molecular mechanisms of tumorigene-
is and develop novel targeted therapeutics or combination treatments.
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.2. Histone acetylation 

Histone acetylation and deacetylation are processes by which the ly-
ine residues of tails protruding from the histone core of the nucleosome
re acetylated and deacetylated by the addition or removal of acetyl
roups, which is associated with many major cellular functions such
s DNA replication, DNA damage repair, and RNA transcription 10 , 17 .
hese reactions are typically catalyzed by enzymes with histone acetyl-
ransferase (HAT) or histone deacetylase (HDAC) activity 18 . In terms
f dynamics, histone acetylation is one of the fastest post-translational
odifications (PTMs), faster than methylation but slower than phospho-

ylation 19 . 
Numerous studies have noted that changes in histone acetylation

an lead to cancer development. Overexpression and enhanced activ-
ty of HDACs have been identified as drivers of tumor development and
etastasis by altering histone acetylation and regulating expression of

ncogenes such as p300 and CBP 20 , 21 . However, p300 and CBP have
lso been shown to be tumor suppressors in hematological malignancies
nd several solid tumors 20 . These findings suggest that the roles of p300
nd CBP, which are also HATs, in cancer, require further investigation.
dditionally, HDAC1, a component of the NuRD complex, can catalyze
eacetylation of H3K27 at the STAT1 gene promoter, creating an im-
unosuppressive environment that promotes the progression of glioma

tem-like cells (GSCs) 22 . Currently, four HDAC inhibitors (vorinostat,
stodax and beleodap for the treatment of T cell lymphoma, and panobi-
ostat for the treatment of multiple myeloma) have been approved by
he US FDA for cancer treatment 23 . Considering the reversible charac-
eristics of histone acetylation, developing new methods or combination
trategies is necessary to transform the histone acetylation status in can-
er cells to a normal state. 

.3. Histone phosphorylation 

Another histone modification, phosphorylation, changes the chro-
atin structure by adding a negative charge to mainly the serine (S),

hreonine (T), and tyrosine (Y) of histone tails, allowing the interac-
ion with TFs to regulate gene expression associated with cell cycle and
roliferation 24 , 25 . Similar to histone methylation and acetylation, aber-
ant histone phosphorylation can also mediate tumor development and
etastasis. For example, H3S10P, a well-known modification mediated

y several kinases, is correlated with positive regulation of transcription
nd is thought to be a cancer biomarker (reviewed in REF. 26 ). Deletion
f N- 𝛼-acetyltransferase D (NatD) inhibits the epithelial mesenchymal
ransition (EMT) in lung cancer by enhancing H4S1 phosphorylation
o downregulate Slug expression 27 . Phosphorylation of H3.3 at serine
1 can enhance the activity of p300 and histone acetylation in mouse
mbryonic stem cells (mESCs) 28 . This suggests that histone phosphory-
ation participates in many crosstalk events with other histone modifi-
ations, providing new insights into cancer drug discovery. 

.4. Other histone modifications 

Histone ubiquitination is also a common modification that usu-
lly occurs in histones H2A and H2B 

29 . Interestingly, ubiquitination of
2AK119 is always accompanied by H3K27me3 mediated by the poly-
omb repressive complex 2 (PRC2) complex 30 . During development,
RC1-mediated H2AK119ub and PRC2-associated H3K27me3 initially
ccumulate at large intergenic domains that can then spread into genes
nly under conditions of histone deacetylation and gene silencing 31 .
he cullin4B-ring E3 ligase complex (CRL4B) complex can also cat-
lyze ubiquitination of H2AK119 and cooperate with the PRC2 com-
lex to promote tumorigenesis 32 . The BAP1 deubiquitinase complex can
emove the ubiquitination of H2AK119 33 . Another ubiquitination site
n H2BK120 is mediated by RNF20/40, which activates gene transcrip-
ion in human cells 34 . This modification can also be catalyzed by UBR7
o suppress the development and metastasis of triple-negative breast
279 
ancer (TNBC) 35 . Crosstalk between different histone modifications or
nteraction between modifier enzymes represents a promising mecha-
ism for better understanding the gene regulation patterns in cancer.
or instance, ubiquitination of H2B is a prerequisite for the methyla-
ion of H3K4 and H3K79 mediated by COMPASS and DOT1L, respec-
ively 36 , 37 . The recruitment and activity of UTX, a key component of
LL3/COMPAS and H3K27 demethylase, are dependent on BAP1, a

eubiquitinase of H2AK119ub 38 . 
In addition to the four well-known histone modifications mentioned

bove, there are many other types of histone modifications, such as
eddylation, biotinylation, crotonylation, and lactylation 9-11 . In recent
ears, non-acetyl histone lysine acylations, such as crotonylation, bu-
yrylation and propionylation, have been identified and always share
he same “readers ”, “writers ”, and “erasers ”39 , 40 . For example, histone
rotonylation is read by Yaf9, ENL, AF9, and Sas5 domain proteins
nd double plant homeodomain (PHD) fingers, catalyzed by p300, and
rased by several histone deacetylases 39 . Fang et al. discovered that hi-
tone crotonylation increased during meso/endodermal differentiation
f human ESCs, enhancing the expression of meso/endodermal genes
nd promoting meso/endoderm commitment 39 . This study suggests that
istone crotonylation may be correlated with cancer stem cells (CSCs)
nd is involved in tumorigenesis. Histone butyrylation stimulates gene
ranscription by competing with H4K5ac 41 . However, the role of his-
one butyrylation in cancer development and metastasis remains poorly
nderstood. Recently, an isomer of histone butyrylation, termed his-
one isobutyrylation, was identified and found to be mediated by p300
nd HAT1 42 . Like crotonylation and butyrylation, histone propionyla-
ion can also be catalyzed by acetyltransferases such as KAT6, and defi-
iency of this modification by KAT6-BRPF1 complexes has been shown
o be related with neurodevelopmental disorders and cancer 43 . Lysine
uccinylation was first identified by Zhao lab in 2010 as a novel PTM 

44 .
AT1, CPT1A and KAT2A are demonstrated to be the lysine succinyl-

ransferases (KSTases) to catalyze succinylation 45 , 46 . Interestingly, the
ctivity of carnitine palmitoyltransferase (CPTase) and KSTase of CPT1A
an be separated by G710E mutation, revealing that tumor cells can ac-
uire new mutations to alter different histone modifications to avoid
argeted therapies. Other types of acylation reaction on histone tails are
lutarylation (catalyzed by KAT2A and erased by SIRT7), benzoylation
erased by SIRT2), lactylation (catalyzed by p300), S-palmitoylation,
nd O-palmitoylation (catalyzed by LPCAT1) 10 , 47 . Although the func-
ion and mechanism of histone lactylation, a recently identified histone
odification, remains largely unknown in cancer, it has been shown to

ink the metabolic regulation and epigenetically regulated gene expres-
ion, implying the important role of this modification in cancer 48 , 49 . 

Histone sumoylation of histone H4 is catalyzed by SUMO family pro-
eins, which mediate transcriptional repression by recruiting HDACs and
P1 50 . In addition, H4K12 sumoylation suppresses p300-mediated his-

one acetylation and Set1/COMPASS-mediated histone methylation, re-
ulting in repressed transcription 51 . Similar to histone acetylation and
ethylation, ubiquitination can be influenced by histone neddylation

atalyzed by RNF168, which regulates DNA damage repair 52 . Further-
ore, the neddylation inhibitor MLN4924 has been shown to suppress

he proliferation and migration of several cancers 53-55 . In breast cancer
ells, xenografts and patient tumors, the basal histone glycation is high
nd further investigation found that DJ-1 is the eraser of histone glyca-
ion associated with nucleosome stability 47 . ADP-ribosylation of histone
2AX is another modification involved in DNA damage repair 56 , 57 . Ten
leven translocation enzyme 2 (TET2) is found to directly interact with
-linked 𝛽-N-acetylglucosamine (O-GlcNAc) transferase (OGT), promot-

ng histone O-GlcNAcylation during gene transcription 58 . This histone
2B modification can also be regulated by adenosine-monophosphate
ctivated protein kinase (AMPK) 59 . Due to the modification of histone
ysine sites, histone N-formylation may crosstalk with other modifica-
ions, such as methylation or acetylation, contributing to the patho-
hysiology of oxidative and nitrosative stress 60 . Also, serotonylation
nd dopamunylation on histone H3Q5 are transamidated by TGM2 both
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lone and in combination with H3K3me3, and are associated with gene
ranscription 10 . Other rare histone modifications, including isomeriza-
ion, biotinylation and citrullination, are reported to be capable of in-
uencing histone methylation. However, the role of these modifications

s still not well-established in cancer 9 . 

.5. Histone modification and DNA methylation 

DNA methylation, mediated by DNA methyltransferases (DN-
Ts), DNMT1, DNMT3A and DNMT3B, is also involved in histone
odification-regulated gene expression by operating chromatin acces-

ibility. Dysregulation of DNMTs is also involved in cancer initia-
ion and development. Evidence suggests that DNMT3A and DNMT3B
re “readers ” of methylation on H3K36 site through the PWWP do-
ain 5 . DNMT3A is more preferentially recruited by H3K36me2 than
3K36me3, whereas DNMT3B is recruited by H3K36me3 61-64 . In gastric
ancer, DNMT3A isoform b contributes to EMT-mediated metastasis by
epressing E-cadherin expression through cooperating with H3K9me2
nd H3K27me3 65 . Dysregulated histone modification is always corre-
ated with high expression of oncogenes in cancer, which may be reg-
lated by DNA methylation. For example, HDAC1 is involved in PAX2

pstream regulatory region, while hypomethylation of the PAX2 pro-
oter is detected in endometrial carcinoma. These results suggest that
istone acetylation may be involved in PAX2 regulation, resulting in
amoxifen-stimulated carcinogenesis 66 . However, the DNMT, that me-
iates methylation of PAX2 promoter, still needs to be further inves-
igated. The expression of DNMT3A can also be regulated by histone
ethylation mediated by KMT2C in small cell lung cancer (SCLC) 67 .

ow level of H3K4 methylation, mediated by KMT2C, repressed the
xpression of DNMT3A, resulting in elevated expression of MEIS2 and
CLC metastasis. Interestingly, treatment with SAM, an approved drug
or liver cirrhosis, depressive disorder, osteoarthritis and other syn-
romes, reversed this process, resulting in hypermethylation of H3K4
nd MEIS2 promoter, which leads to retrained SCLC metastasis. These
esults suggest that SAM may be used for the treatment of histone and
NA hypomethylation-associated malignancy, providing a potential epi-
enetic therapeutic vulnerability. 

. Histone modifications in solid tumors 

Disorders in histone modification are accompanied by various dis-
ases, including cancer. According to data from Cancer Statistics 2020,
he most frequently occurring solid tumor is breast cancer, followed by
ung, colorectal, prostate, stomach, and liver cancers 1 . Reordering aber-
ant histone modifications is considered to represent a powerful strategy
or the development of cancer therapeutic drugs. Therefore, an under-
tanding of the role of histone modifications in gene regulation in dif-
erent solid tumors is urgently required. 

.1. Breast cancer 

Since 2020, breast cancer is the highest occurring cancer world-
ide, based on data from the IARC 

1 . Various genetic mutations have
een identified in subclonal tumor cell populations within the tumor
icroenvironment, resulting in different phenotypes, including drug re-

istance, metastatic potential, and stem cell properties. However, the ge-
etic mechanisms driving these phenotypes are sometimes unclear. The
ajor epigenetic alteration that regulates gene expression is the modula-

ion of chromatin structure by histone modification. Data from a single-
ell chromatin immunoprecipitation followed by sequencing (scChIP-
eq) experiment revealed that H3K27me3, a stable regulator of the tran-
criptional repression of genes responsible for treatment resistance, was
ost in breast cancer cells from drug-resistant tumors 68 . CSCs within the
umor microenvironment always contributes to therapeutic failure, due
o the protection of various surrounding cells and overexpression of
280 
mmunosuppressive markers. It has been reported that PD-L1, an im-
une checkpoint molecule, is overexpressed in CSCs and contributes to

mmune evasion 69 . Furthermore, the repressive histone modifications
3K9me3 and H3K27me3 are enriched in the promoter region of PD-L1

n breast cancer cells, but are weaker in breast CSCs, leading to upregu-
ated expression of PD-L1 in CSCs 70 . Even though the mortality of breast
ancer has decreased owing to improved screening approaches and bet-
er therapeutics, approximately 25-40% of patients develop metastasis
nd even die 71 . Lymph nodes (LNs) are considered the most common
rgan of initial spread in most cancers. Then tumor cells spread to dis-
ant sites through draining LN to blood vessels. This process is highly
fficient and dynamic, making cancer metastasis a more complex mech-
nism in tumorigenesis. HDAC11 plays an important role in regulating
N metastasis 72 . HDAC11 expression was upregulated in LN metastasis
umors compared to primary and lung metastasis tumors. Histone acetyl
roups were removed by HDAC11, leading to downregulated expression
f cell cycle-associated genes such as RRM2 and E2F8, resulting in pro-
oted tumor growth within LNs. However, metastasis from LNs to dis-

ant organs increased when HDAC11 was blocked using HDAC inhibitor
HDACi) or shRNA. These results strongly suggest the risk of using a
ingle HDACi to treat cancer patients, and recommend that a combina-
ion of multiple therapeutic drugs may be the most appropriate strategy.
reast cancer is one of the most common cancer types associated with
one metastasis that correlates with histone modification 73 . However,
herapy targeting bone metastasis is still under preclinical studies, in-
luding cell culture experiments and mouse models. Thus, it is still ur-
ently needed to investigate the histone modification patterns involved
n bone metastasis. Accumulating evidence suggests a strong correlation
etween breast cancer and glucose metabolism. PDK1, a key enzyme in
lucose metabolism, is proved to be regulated by miR-148a whose ex-
ression can be inhibited by HDAC2 and EZH2-mediated histone mod-
fication, resulting in breast cancer progression and Adriamycin resis-
ance 74 . This provides new ideas and directions to counter chemother-
py resistance in breast cancer. 

.2. Lung cancer 

Before 2020, lung cancer was the most common type of solid tu-
or worldwide and is now still the leading cause of cancer-related
eath, with a 5-year survival rate of only 15%. TSGs, regulated by his-
one modifier factors, play a key role in the initiation, progression, and
etastasis of lung cancer. The histone methyltransferase G9a mediated
3K9me2 recruits transcription factors HP1 and DNMT1 to inhibit the
xpression of TSGs such as APC2 and WIF1, leading to Wnt activation
nd cancer progression in non-small cell lung cancer (NSCLC). Target-
ng G9a reversed this cancer-promoting effect, revealing that G9a could
erve as a therapeutic target in the treatment of lung cancer 75 . In an-
ther study, loss of G9a or H3K9me2 reduction permitted the expres-
ion of MMP10, KRAS, and ECM genes to promote lung adenocarci-
oma progression 76 . This finding demonstrates the controversial role of
9a in lung cancer. A CRISPR/Cas9 screening system found that histone
emethylase UTX could serve as a TSG in lung tumorigenesis by regu-
ating the homeostasis of H3K27me3 mediated by EZH2. Knockout of
TX increased the status of H3K27me3 and downregulated the expres-

ion of CDKN2a and CDKN2b to promote lung tumor proliferation in
ivo 77 . EZH2 is also overexpressed in SCLC and contributes to immune
vasion and drug resistance 78 . Chromodomain Y-like (CDYL) enhances
he chemoresistance in patients with SCLC by decreasing CDKN1C ex-
ression through H3K27me3 mediated by EZH2 79 . Due to the important
ole of EZH2 in tumorigenesis, EZH2 inhibitors are used in lung cancer
herapy and acquire drug sensitivity in tumors with mutated histone
odifier genes, such as histone demethylase KDM6 and H2AK119ub
eubiquitinase BAP1 80 , 81 . These findings imply that EZH2 inhibitors
re attractive cancer drugs and may have better therapeutic efficacy
hen combined with epidrugs based on other types of histone modifi-

ation. LSD1 (KDM1A), a flavin adenine dinucleotide (FAD)-dependent
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emethylase, is responsible for demethylating H3K4me1/2, and is an-
ther potential target for lung cancer. LSD1 is a component of several
arge chromatin-repressive complexes, such as CoREST and NuRD, ex-
rting its function together with histone acetylation and methylation
o regulate gene transcription 82 . ORY-1001 and GSK2879552 are LSD1
nhibitors that have been investigated in preclinical and clinical stud-
es and show potential antitumor effects 83 , 84 . Lung is one of the most
ommon sites of neuroendocrine tumors (NETs) with a worse 5-year
urvival rate (19-38%) in metastatic disease. Multiple clinical trials are
ngoing using drugs interfering with epigenetic pathways, including hi-
tone modification, or combination therapies with immune-checkpoint
nhibitors to NETs treatment, indicating potential usage of histone mod-
fier inhibitors and immunotherapy as combination therapy in cancer
reatment 85 . 

.3. Colorectal cancer 

Colorectal cancer (CRC) remains a life-threatening cancer all over
he world. In 2020, the incidence and mortality of CRC were 10% and
.4%, respectively, making CRC the third most frequent cancer and the
econd leading cause of cancer-related deaths worldwide 1 . The etiology
f CRC is not well established; therefore, there is an urgently need to
dentify potential biomarkers for the early diagnosis of CRC. Recently,
he contribution of epigenetic alterations, especially histone modifica-
ions, to CRC malignancy has gained considerable attention. The spa-
ial features of histone modifications may have prognostic potential and
enefit CRC therapy. In a comparative study, H3K9me, H3K27ac, and
4K12ac levels were higher in CRC tissues than in normal colonic mu-
osa 86-88 . Histone modification markers are completely different from
he primary site in metastatic organs, such as the liver. H3K4me2 and
3K9me2 have been shown to be correlated with the clinicopathologi-
al stage and may be prognostic markers for liver metastasis 89 , 90 . Fur-
hermore, combined histone modifications are thought to be a more
owerful method for detecting CRC to enhance the credibility of prog-
ostic biomarkers. For instance, high H3K9me and H4K20me3 and low
3K4me3 in the nucleus are together associated with improved clinical
rognosis, with hazard ratios (HR) of 3.81 (disease-free survival), 2.86
locoregional recurrence-free survival) and 2.94 (distant recurrence-
ree survival) 91 . Compared with colonoscopy, liquid biopsy (serum or
lasma) is considered the most efficient method for detecting CRC with-
ut resected lesions. Interestingly, H3K9me3 and H4K20me3 levels were
oth decreased in the circulating nucleosomes of CRC patients 92 , 93 .
owever, further studies are required to confirm the utility of these two
iomarkers for diagnostic detection. Owing to the prognostic potential
f histone modifications, several inhibitors of modifier enzymes, includ-
ng HDAC inhibitors, histone methyltransferase (HMT) inhibitors, and
istone demethylase (HDM) inhibitors, have been applied into preclin-
cal and clinical studies combined with chemotherapeutic drugs 94 . 

.4. Prostate cancer 

Prostate cancer (PCa) is the second most common cancer occurring in
en, and over 1.4 million new cases of PCa were detected worldwide in
020 1 . The androgen receptor (AR) is widely accepted to play an essen-
ial role in the proliferation and maintenance of PCa. Although androgen
eprivation therapy (ADT), such as enzalutamide (an AR antagonist),
s considered the most effective treatment for PCa, the emergence of
astration-resistant prostate cancer (CRPC) and enzalutamide-resistant
rostate cancer (ERPC) has presented obstacles for PCa therapy 95 . AR
an be regulated by histone modifications, such as histone methyla-
ion and phosphorylation, mediated by the correlated modifier enzymes,
uch as EZH2, JMJD1A, ACK1 and LSD1 96 . Thus, these enzymes could
erve as therapeutic targets for PCa treatment. The lysine methyltrans-
erase KMT9A controls the proliferation of PCa cells by monomethylat-
ng H4K12, and inhibition of KMT9A significantly attenuates the growth
281 
f xenograft tumors 97 . Another histone methyltransferase, DOT1L, to-
ether with AR, improves the expression of Myc through binding to
he enhancer by catalyzing H3K79me2, which inhibits the expression
f E3 ubiquitin ligases HECTD4 and MYCBP2 to promote PCa. Block-
de of DOT1L with its inhibitor EPZ004777 disrupts this process and
nhances the degradation of Myc and AR by upregulating HECTD4 and
YCBP2 98 . Histone demethylases, such as JMJD1A and LSD1, can also

erve as coactivators of AR by epigenetic regulation of H3K9 or H3K4
ethylation 99 , 100 . Other histone modifications such as ubiquitination

nd phosphorylation may be involved in the epigenetic process of AR
ctivation 99 , 101 . RNF8, a RING finger E3 ligase, binds to MYC and en-
ances AR transcription by catalyzing ubiquitination of H2A/H2B and
cetylation of H3/H4. Elevated AR/ARV7 level interact with RNF8 to
orm a complex that activates the expression of AR target genes, includ-
ng PSA, FASN , and ALDH1A3 . In this process, reduced H3K27me3 is
lso involved as a repressive histone marker of AR target genes 101 . In ad-
ition to EZH2, methylation of H3K27 can also be mediated by NSD3, a
istone methyltransferase for H3K36 102 , 103 . Belonging to the same pro-
ein family, NSD2 enhances AR-mediated transcription 104 . However, the
ole of NSD3 in PCa malignancy is still a mystery. 

.5. Gastric cancer 

Gastric cancer (GC) is the third most common cancer (10.5%) and
he third leading cause of cancer-related deaths (12.4%) in both sexes
n China, based on IARC data from 2020. Among the risk factors, such
s smoking and obesity, Helicobacter pylori (Hp) is an important cause of
astric carcinoma and is responsible for 75% of cases 105 , 106 . Hp causes
lterations in histone modifications in epithelial cells and macrophages
ithin the stomach, leading to GC development. Yang et al. demon-

trated that Hp infection induces the phosphorylation of H3S10 to fa-
ilitate gastric carcinogenesis 107 . Phosphorylation of H3S10 induced by
p in macrophages increased the expression of IL-6 by binding to the
romoter region of this gene, resulting in Hp-induced gastritis 108 . In
ontrast, Hp decreased the phosphorylation of H3S10 and H3T3 in a
ype IV secretion system (T4SS)-dependent manner in gastric epithelial
ell lines 109 . Hp also affects histone acetylation. For example, Hp in-
reases the expression of p21 WAP1/CIP1 by promoting acetylation of his-
one H4 in the promoter region 110 . However, p21 WAP1/CIP1 is a TSG in
C and acquires H3 hypoacetylation on its promoter region. The HDACi
SA could restore the H3 hyperacetylation to induce the p21 WAP1/CIP1 

xpression 111 . These studies reveal that the exact mechanism of Hp in
istone acetylation of GC needs to be further elucidated. Hp upregu-
ates the JMJD2B expression to promote tumorigenesis in GC. JMJD2B
hen cooperates with NF- 𝜅B to enhance the expression of COX-2 on the
romoter with decreased H3K9me3, a histone marker that is correlated
ith tumor stage, invasion, and recurrence 112 , 113 . Cytotoxin-associated
ene A (CagA), an Hp virulence factor, is thought to be a powerful factor
hat has carcinogenic potential 114 . CagA upregulates the expression of
yc, DNMT3B, and EZH2, and increases H3K27me3 and DNA methyla-

ion on the let-7 promoter. Finally, the expression of Ras oncoprotein is
pregulated in the stomach without inflammation 115 . DNA methylation
nd histone modifications always co-occur in GC, illustrating that epi-
enetic combination modalities may be a better method for GC therapy.

.6. Liver cancer 

The mortality rate of liver cancer is 8.3% in both sexes worldwide,
anking the third in 2020 1 . Although the incidence of liver cancer (9%)
anks fifth in China, the death rate is 13%, which is only lower than
hat of lung cancer. Abnormal epigenetic regulation is a common fea-
ure of human hepatocellular carcinoma (HCC). HCC has been shown
o develop from liver disease induced by hepatitis C virus (HCV) infec-
ion. Most HCV-positive patients can still develop HCC after antiviral
gents treatment due to persistent epigenetic changes such as acetyla-
ion of H3K27 116 . In hepatitis B virus (HBV)-positive HCC patients, over-
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xpression of the long non-coding RNA PVT1 impairs the recruitment of
ZH2 to the myc promoter region, leading to elevated Myc expression
y reducing the status of H3K27me3 117 . This study also supports the no-
ion that histone methylation is linked to HCC proliferation and metas-
asis 118 . H3K9me2, mediated by G9a, which is overexpressed in HCC,
epresses the expression of RARRES3, a TSG, to promote tumor devel-
pment 119 . Several other histone methylation modifier enzymes, includ-
ng JARID1B 

120 , KDM4B 

121 , KDM5C 

122 , and SETDB1 123 , 124 , are overex-
ressed in HCC. HDAC3 is a member of class I HDACs and is considered
 strong contributor to hepatocarcinogenesis owing to its role in cell cy-
le regulation and transcriptional reprogramming. HDAC3 is selectively
xpressed in liver cancer stem cells and contributes to their self-renewal
ia histone modifications 125 . Furthermore, HDAC deficiency increases
3K56ac level and decreases the status of H3K27me3 in liver can-
er stem cells 125 . Interestingly, targeting mTORC2/HDAC3 signaling in-
ibits the stemness of HCC cells and is correlated with metabolic repro-
ramming 126 . The presence of HDAC3 increased the level of H3K9me3
ediated by histone lysine N-methyltransferase SUV39H1. H3K9me3

ooperates with the DNA damage response (DDR) complex to accumu-
ate damaged DNA, resulting in HCC progression 127 . However, in liver-
pecific deficient mice, HDAC3 ablation enhances the H3K9ac level, ac-
ivating numerous oncogenes such as KRAS, FOS , and CDK6 , leading
o HCC development 127 . Thus, the mechanism of action of HDAC in-
ibitors, especially those targeting class I HDACs, require further inves-
igation in the treatment of HCC. 

. Histone modifications in hematopoietic cancers 

Hematopoietic malignancies can occur at any stage of blood cell de-
elopment and influence the production and function of blood cells,
eading to a diminished ability to fight infection and susceptibility to
ncontrolled bleeding. Aberrant regulation of gene transcription by
istone modifications is an important mechanism in oncogenesis and
he development of hematopoietic malignancies, including three main
ypes: leukemia, lymphoma, and multiple myeloma 128 . 

.1. Leukemia 

According to IARC, there were approximately 313,594 deaths caused
y leukemia worldwide. Leukemia, originally developed from bone mar-
ow with production of large amounts of abnormal white blood cells,
s the most common type of cancer in children and can be divided
nto four main subtypes: acute lymphoblastic leukemia (ALL), acute
yeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and

hronic myeloid leukemia (CML). However, over 90% of leukemia cases
re diagnosed in adults, of which CLL and AML are the most common.
 study conducted using a reverse phase protein array (RPPA) demon-
trated that multiple histone-modifying proteins are associated with the
urvival of newly diagnosed AML patients 129 . For instance, KDM6A ex-
ression is upregulated in AML and contributes to poor prognosis, while
nhibition of KDM6A by GSK-J4 inhibitor reduces the progression and
roliferation rate of both primary and immortalized AML cells with in-
reased H3K27me3 level 130 . H3K27me3 is catalyzed by EZH2, and its
oss induces poor outcomes in patients with AML 131 . Moreover, loss of
ZH2 contributes to resistance to multiple drugs in AML 132 . EZH2 is
n oncoprotein overexpressed in CLL 133 . Inhibition of EZH2 enzymatic
ctivity by drugs induces downregulation of H3K27me3, leading to in-
reased cell apoptosis 134 . As reviewed elsewhere, disruption of the bal-
nce of histone acetylation is also a major factor in AML 135 . 

In recent years, no histone modification-based drug has been ap-
roved by the FDA for leukemia. Thus, more progress is still required
n the research area of leukemia therapy, and the detailed mechanism
eeds to be fully elucidated for different leukemia subtypes. Drug dis-
overy may focus on the direction of individualized therapy, according
o the regulatory mechanism of histone modifications. 
282 
.2. Lymphoma 

Lymphoma is a group of blood and lymph tumors that develop from
ymphocytes. The two main subtypes of lymphoma are non-Hodgkin
ymphoma (NHL) and Hodgkin lymphoma (HL). The most frequent lym-
homa is NHL that accounts for 90% of all cases. Based on IARC data,
HL caused 259,793 deaths worldwide in 2020, while HL caused only
3,376 deaths. Frequent mutation analysis demonstrated that genes
ssociated with histone modification are common targets of somatic
utations in B-cell NHL 136 . MLL2 , also known as histone lysine N-
ethyltransferase (KMT2D), was the most frequent gene with the largest
umber of single nucleotide variants (SNVs) distributed across the whole
LL2 gene sequence. MLL2 is a major mammalian histone methyltrans-

erase that mono-methylates H3K4 and is a TSG in NHL 137 , 138 . Another
ene acquiring mutations in NHL is MEF2B, a TF linked to histone acety-
ation and methylation in a calcium-regulated manner 139 . The most
ommon mutation in MEF2B leads to amino acid changes in D83V 

140 .
his mutation cannot alter DNA interactions, but disrupts the interac-
ion with some repressive complexes, including the HUCA complex and
DAC class IIa members, resulting in abnormal expression of histone
arkers at H3K27 139, 141 . Therefore, targeting the various mutated TFs

ssociated with anomalous histone modifications is an attractive strat-
gy for lymphoma treatment. 

These studies reveal that mutations in histone modifier genes or cor-
elated TFs alter the normal status of histone modifications, resulting
n lymphomagenesis. A better understanding of the associated mecha-
isms will aid in the design and discovery of targeted drugs. Three HDAC
nhibitors (vorinostat, romidepsin and beleodap) have already been ap-
roved by the FDA for treatment of T-cell lymphoma 142 . 

.3. Multiple myeloma 

In 2020, multiple myeloma (MM) caused 117,077 deaths in both
exes worldwide, and is the second most common type of blood can-
er in high-income countries and is characterized by the uncontrolled
roliferation of plasma cells in the bone marrow. Despite genetic reg-
lation, accumulating evidence has revealed that alteration of histone
odifications also plays a central role in supporting MM. NSD2, also

nown as MMSET/WHSC1, is the most well-studied histone methy-
ase for H3K36me2 in MM and is overexpressed in all MM cases with
(4;14), one of the most common translocations 143 , 144 . Elevated levels
f H3K36me2 are associated with active chromatin, which drives onco-
ene expression, leading to MM progression 145 , 146 . NSD2 can also act
s a component of the repressor complex through its association with
DAC1/2 and LSD1, resulting in increased H4K20me3 and decreased
istone acetylation 147 . Furthermore, NSD2, which interacts with KAP1
nd HDAC1, induces H3K9me3 and represses H3ac, resulting in the
nhibited expression of miRNA-126 ∗ and enhanced c-Myc expression,
eading to MM pathogenesis 148 . Thus, NSD2 may be a regulatory center
hat affects overall histone methylation in MM. Other well-known aber-
ant histone modifiers, such as EZH2, PRMT5, KDM6B, and KDM3A, are
lso involved in disrupting histone modifications that contribute to MM
evelopment 149 . Except the functions of HDAC1/2 mentioned above,
DAC3 is much more important in MM. Inhibition of HDAC3 induced
 stronger decrease in MM cell growth than inhibition of HDAC1 and
DAC2, indicating that HDAC3 is a more attractive target in MM 

150 .
herefore, MS-275, an HDAC1/2/3 inhibitor, was more toxic to MM
ells than Merck60, an HDAC1/2 inhibitor. HDAC3 also inhibits the
cetylation of c-Myc and DNMT1 to maintain their stability and pro-
ote MM cell survival 151 . To date, multiple therapeutic approaches
ave been investigated for the treatment of MM, including alkylating
rugs, steroids, anthracyclines, proteasome inhibitors, immunomodu-
atory drugs, HDAC inhibitors, monoclonal antibodies, antibody-drug
onjugates, and nuclear export inhibitors 152 . However, only one HDAC
nhibitor, panobinostat, has been approved by the FDA for relapsed MM
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Fig. 2. Main roles of histone modifier enzymes alteration in solid tumors and hematopoietic cancers. The alterations of histone modifier enzymes could induce various 
diseases, including cancer. Some enzymes such as DOT1L, SMYD2, JARID1 and several HDACs play similar role in tumorigenesis, promoting tumor development 
in both solid and hematopoietic cancers. Some of them play different, even opposite, role between solid and hematopoietic cancers. For instance, PRMT1, PRMT5, 
KDM6A, HDAC2, HDAC5 and HDAC10 can promote the development of hematopoietic cancers. However, the exact function of these molecules in solid tumors 
is controversial, which may depend on the individual situation. For example, SUV39H2, a HMT, functions as a tumor suppressor in solid tumors, but promotes 
the tumorigenesis of hematopoietic cancers. Similarly, JARID2 is an oncoprotein in solid tumors, but a tumor suppressor in hematopoietic cancers. HAT, histone 
acetyltransferase; HDAC, histone deacetylases; HDM, histone demethylase; HMT, histone methyltransferase. 
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herapy 153 . More efforts are required to understand the histone modifi-
ation pattern in MM for targeted drug development. 

. Clinical inhibitors of histone modifier enzymes 

Dysregulation of histone modification enzymes plays an important
ole in tumorigenesis. The high expression of HMTs, including SMYD2,
ETDB2, or MLL1 mutations, and the loss of function of MLL3 are asso-
iated with tumor growth, invasion, metastasis, and poor prognosis in
arious types of cancers 154 , 155 . Histone demethylases JARID1A/1B and
istone acetyltransferases KAT7 156 and MOF, and histone deacetylases
DAC1, HDAC3, HDAC4, HDAC7, HDAC8, and HDAC9 are positively
ssociated with the aggressive progression of solid tumors and hema-
ologic malignancies 157 , 158 . SUV39H1, G9a, SETDB1, histone demethy-
ase HDM LSD1, and histone deacetylase HDAC6 mainly act as tumor
romoters but sometimes play different roles in the tumorigenesis of
olid tumors and hematologic malignancies 159-161 . A large number of hi-
tone modification enzymes play a different role in some specific tumors.
or example, some histone modification enzymes such as EZH2, SETD2,
OT1L, KDM6A, JARID2, HDAC2, HDAC5, and HDAC10, play differ-
nt roles in solid tumors and hematologic malignancies 162 , 163 . What’s
ore, some tumor-specific enzymes exist and function in different can-

ers. Here, we briefly list some dysregulation of the histone modification
nzymes and their roles in cancer ( Fig. 2 ). 

.1. Histone acetyltransferase and deacetylase inhibitors 

Acetylation or deacetylation of histone proteins regulates gene ex-
ression. A small number of cancer patients have reported abnormal
ATs. Tip60 (KAT5) and p300 are typical HATs that have participated

n multiple physiopathological processes including DNA damage and re-
air, transcriptional regulation, and cell signaling. Histone acetyltrans-
erase inhibitors (HATi) of Tip60 and p300 have been developed in clini-
al trials for cancer treatment 164 , 165 . Inhibitors of histone deacetylation
283 
nzymes are considered one of the most promising anticancer targets.
elaxation of the DNA wrapped around histone proteins promotes the
inding of DNA to gene transcription factors 166 . The HDAC family of
istone demethylases can be divided into four groups according to their
equence homology to yeast. Class I consists of HDAC1, 2, 3, and 8, class
I consists of HDAC IIA (HDAC4, 5, 7, and 9) and IIB subgroups (HDAC6
nd 10), class III comprises seven Sir2-like enzymes (SIRT1-7), and class
V has only one member, HDAC11. HDACs are involved in regulating a
ariety of cellular biological processes, including cellular metabolism,
rowth, metastasis, and aging. To a variable extent, HDACis induce
he expression of proteins related to cell differentiation, cell growth ar-
est, and apoptosis, thereby inhibiting cancer progression 167 . The iden-
ified HDACis are classified as short-chain fatty acids (sodium butyrate,
alproic acid, pivanex, AR-42, and phenylbutyrate), hydroxamic acids
TSA, oxamflatin, SAHA, hexamethylene bisacetamide (HMBA), pyrox-
mide, CHAPs), depsipeptide (FK-228), cyclic tetrapeptides (trapoxin
nd apicidin), and benzamides (MS-275, MGCD0103, CI-994), some of
hich have already entered the different stages of clinical trials 168 , 169 

 Table 1 ). The anticancer agents vorinostat, romidepsin, belinostat, and
anobinostat (LBH-589) are four granted FDA-approval HDACi that
ave been shown to inhibit histone deacetylation in clinical trials 170 , 171 

 Table 1 ). 

.2. Histone methyltransferase and demethylase inhibitors 

HMTs can methylate specific residues on histone proteins, leading
o the alteration of chromatin structure, which plays an important role
n tumorigenesis. Therefore, inhibition of abnormal HMTs is crucial for
locking tumor growth and development. High level of histone methyl-
ransferase enzymes usually correlates with aggressive cancer progres-
ion. Histone lysine methyltransferase EZH2 catalyzing the methylation
f H3K27 plays an important role in cancer development, and is fre-
uently overexpressed in breast cancer and other human cancers in-
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Table 1 

Histone acetyltransferase inhibitors and histone deacetylase inhibitors. 

Chemical class Compound Clinical stage Cancer specificity Reference/NCT number 

HATi TH1834 Preclinical Breast cancer 172 

C646 Preclinical Gastric cancer 164 

HDACi: Cyclic tetrapeptides FK-228 (Romidepsin) FDA approved (2009) Cutaneous/peripheral T cell lymphoma NCT00106431 
HDACi: 
Hy- 
drox- 
amic 
acid 

SAHA (Vorinostat) FDA approved (2006) Cutaneous T cell lymphoma NCT00918489 
PXD-101 (Belinostat) FDA approved (2014) Peripheral T cell lymphoma NCT00413075 
LBH-589 (Panobinostat) FDA approved (2015) Multiple myeloma NCT00739414 
Pyroxamide Phase I and II Solid and hematological tumors NCT00042900 
Resminostat Phase II Colorectal, hepatocellular carcinoma, lymphoma NCT01037478 
Givinostat Phase II Lymphoma, Hodgkin lymphoma, myeloma NCT01761968 
Pracinostat Phase II Acute myeloid leukemia NCT03151304 
CHAPs Phase II Hematological tumors NCT03986970 
TSA Phase I Solid tumors NCT02959905 
CBHA Preclinical Solid and hematological tumors 173 

Oxamflatin Preclinical Solid and hematological tumors 174 

Abexinostat Phase I Solid and hematological tumors NCT03939182 
Quisinostat Phase I and II Solid tumor, cutaneous T cell lymphoma NCT01486277 
MPT0E028 Phase I Solid tumor, B-cell lymphoma NCT02350868 
CHR 3996 Phase I Solid tumor NCT00697879 
CUDC 101 Phase I Solid tumor NCT01171924 

HDACi: 
Benzamides 

Entinostat (MS-275) Phase I and II Solid and hematological malignancies NCT04708470 
Chidamide Phase II and II Breast cancer; non-small-cell lung cancer NCT04582955 
Ricolinostat Phase I and II Multiple myeloma, lymphoma NCT02091063 
Tacedinaline Phase II and III Lung and pancreatic cancer; myeloma NCT00005093 
Mocetinostat Phase I and II Solid and hematological malignancies NCT02282358 

HDACi: 
Short- 
chain 
fatty 
acids 

Valproic acid Phase I and II Solid and hematological malignancies NCT01861990 
Sodium butyrate Phase I Colorectal NCT05456763 
AR-42 Phase I Acute myeloid leukemia NCT01798901 
Phenylbutyrate Phase II Solid and hematological tumors NCT00005639 
Pivanex Phase II Non-small cell lung cancer, myeloma, leukemia NCT00073385 

Abbreviations: HATi, histone acetyltransferase inhibitor; HDACi, histone deacetylase inhibitor. 
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luding melanoma, prostate, gastric, bladder, and colon cancer. High
xpression of EZH2 is associated with aggressive cancer progression 175 .
he emergence of different EZH2 inhibitors provides new insights into
ancer therapy. The classification and details of the EZH2 inhibitors
re shown in Table 2 . Based on structural differences, EZH2 inhibitors
an be classified into pyridone-indazole scaffolds (e.g., EPZ005687,
NC1999, GSK343), pyridone-indole scaffolds (e.g., CPI-1205, GSK126,
I1), and pyridone-phenyl scaffolds (e.g., EPZ6438, EPZ006088). In ad-
ition, the histone lysine methyltransferase G9a catalyzes the methyla-
ion of H3K9 and plays an essential role in cancer proliferation, inva-
ion, and metastasis. Many G9a inhibitors have been reported and these
an be divided into several groups, including substrate competitive in-
ibitors (BIX01294, UNC0638, and A-366) and S-adenosyl-methionine
ofactor competitive inhibitors (BRD4770 and BRD9539) 176 . G9a in-
ibitors can induce cell cycle arrest and impede cancer development 177 .
MYD2 is a lysine methyltransferase that catalyzes the methylation of
3K36. The activity of SMYD2 is associated with normal organismal
evelopment and a series of pathophysiological processes. The aberrant
xpression of SMYD2 usually leads to multiple diseases, including can-
er. AZ-505 and LLY-507 are well-studied SMYD2 inhibitors that prevent
he growth and progression of various cancers 178 , 179 . DOT1L methyl-
ransferase calculates the methylation of H3K79 and plays an impor-
ant role in embryogenesis and leukemia tumorigenesis. EPZ004777,
PZ5676, and SYC-522 are selective inhibitors of DOT1L in cancer ther-
py 98 , 180 , 181 . 

Enzymes of the PRMT family catalyze the methylation of histone
rginine residues. Dysregulation of PRMTs has been observed in var-
ous cancers. Many selective PRMT inhibitors (PRMTi) have been de-
eloped for cancer therapy 182 . PRMT1 regulates the methylation of
4R3 and numerous non-histone substrates. PRMT1 plays an essential

ole in a large number of biological and pathology processes including
NA repair, signal transduction, and tumorigenesis. DB75 is a selective

nhibitor of PRMT1 183 . The protein arginine methyltransferase 3 cat-
lyzes asymmetric dimethylarginine, and plays an essential role in tu-
or cell proliferation and metastasis. SGC707 is a selective inhibitor
 t  

284 
f PRMT3 184 . PRMT4 (CARM1) is a type I PRMT that catalyzes the
symmetrically dimethylation of protein arginine residues. TP-064 and
ZM2302 are selective inhibitors of CARM1 for MM treatment 185 , 186 .
he PRMT5 usually catalyzes the dimethylation of mono- and symmet-
ic arginine residues. PRMT5 plays an important role in physiological
nd pathological processes by regulating the cell cycle, cell prolifera-
ion and differentiation. GSK3326595, JNJ-64619178, LLY-283, and PF-
6939999 are potent inhibitors of PRMT5 in tumor therapy 187-190 , while
PZ020411 is a selective PRMT6 specific inhibitor 191 . Table 2 high-
ights some HMT inhibitors of EZH2, G9a, SMYD2, DOT1L, LSD1 and
RMT1/4/5. 

Histone demethylases catalyze the removal of lysine or arginine
ethyl groups, which regulate the dynamic balance of the lysine or

rginine residues methylation 192 . Abnormal expression of the histone
emethylase LSD1 plays an essential role in tumorigenesis, and targeting
SD1 is an emerging option for cancer therapy 193 . Numerous LSD1 in-
ibitors have been discovered, including TCP, PCPA, phenelzine, pargy-
ine, ORY-1001, GSK2879552, INCB059872, IMG-7289, and CC-90011,
n various cancer therapy 194 . In addition, some natural products, such
s cyclic peptides, flavonoids, protoberberine alkaloids, melatonin, stil-
ene, and diarylheptanoids, have been identified as LSD1 inhibitors that
estrict tumor growth and progression 195 . KDM2A is a histone demethy-
ase containing the JmjC domain, which most inhibitors are designed to
arget. KDM2A is usually overexpressed in various cancers such as lung
ancer and breast cancer, thus inhibiting KDM2A could decrease the
rowth and metastasis of tumors. JmjC KDM inhibitors include the 8-
ydroxyquinoline analogs IOX1 and JIB-04 196 . Several other molecules
hat inhibit the activity of KDMs have also been identified (not listed
ere). Table 2 highlights some of the developed KDM inhibitor com-
ounds. 

.3. Other histone modification enzyme inhibitors 

Abnormal regulation of histone modifier enzymes plays an essen-
ial role in tumor growth and development. In addition to the above-
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Table 2 

Histone methyltransferase/demethylase inhibitors. 

Chemical class Compound Clinical stage Cancer specificity Reference/NCT number 

G9a substrate competitive inhibitor BIX01294 Preclinical Breast cancer, myeloid leukemia 197,198 

UNC0638 Preclinical Breast cancer 199 

A-366 Preclinical Leukemia 200 

G9a inhibitor BRD4770 Preclinical Pancreatic cancer 201 

SMYD2 inhibitor AZ505 Preclinical Polycystic kidney 202 

LLY-507 Preclinical Esophageal, liver 179 

DOT1L inhibitor EPZ-5676 Phase I Leukemia NCT02141828 
SYC-552 Preclinical Leukemia 181 

EZH2 inhibitor EPZ005687 Preclinical Lymphoma 203 

UNC1999 Preclinical Lymphoma 204 

GSK343 Preclinical Breast cancer, prostate cancer 205 

CPI-1205 Phase I and II B cell lymphoma, solid tumor NCT02395601 
GSK2816126 Phase I Cancer, neoplasm NCT02082977 
EI1 Preclinical Lymphoma 206 

Tazemetostat FDA approved (2020) Epithelioid sarcoma NCT02875548 
EPZ6438 Phase I and II Solid and hematological tumors NCT01897571 
DZNeo Preclinical Solid tumor, glioblastoma 207 

DS-3201 Phase I and II Leukemia, small cell lung carcinoma, lymphoma NCT04388852 
PF-06821497 Phase I small cell lung carcinoma NCT03460977 
MAK683 Phase I and II Lymphoma, advanced solid tumor NCT02900651 
SHR2554 Phase I Prostate cancer, lymphoid neoplasm NCT04407741 

PRMT1 inhibitor DB75 Phase I and II Leukemia NCT00408369 
PRMT4 inhibitor TP-064 Preclinical Multiple myeloma 208 

PRMT5 inhibitor GSK3326595 Phase I and II Solid tumor, lymphoma NCT03614728 
JNJ-64619178 Phase I Solid and hematological tumors NCT03573310 
PF-06939999 Phase I Advanced or metastatic solid tumor NCT03854227 

LSD1 inhibitor Tranylcypromine Phase I and II Solid and hematological tumors NCT02273102 
Bizine Preclinical Lung cancer, prostate cancer 209 

PG11144 Preclinical Breast cancer 210 

Namoline Preclinical Prostate cancer 211 

ORY-1001 Preclinical Acute leukemia 212 

GSK2879552 Phase I and II Small cell lung cancer, acute myeloid leukemia NCT02177812 
CC-90011 Phase I and II Solid tumor and lymphoma NCT04748848 
INCB059872 Phase I and II Solid and hematological tumors NCT02712905 
IMG-7289 Phase I and II Acute myeloid leukemia NCT02842827 

KDM inhibitor JIB-04 Preclinical Breast cancer 213 

IOX1 Preclinical Esophageal squamous cell carcinoma 214 
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f  
entioned histone-modifying enzymes, histone phosphorylases and
biquitinases also have important functions in cancer treatment. Au-
ora kinase A (AURKA), Aurora kinase B (AURKB) and aurora kinase
 (AURKC) belong to the aurora kinase family that are mitotic ser-

ne/threonine protein kinases. The expression level of these protein ki-
ases is frequently linked to tumor cell proliferation, invasion and drug
esistance 215 . The alteration of cyclin-dependent kinase (CDK) activity
s associated with tumor cell cycle defects. Some CDK inhibitors in-
luding CDK4/6 or CDK8 inhibitors, have been developed as potential
nti-cancer drugs 216 , 217 . PIM serine/threonine kinases behave in 3 iso-
orms: PIM1, PIM2, and PIM3. These PIM kinases are engaged in various
copes of the biological process including cell proliferation, drug resis-
ance, apoptosis, and immune response 218 . Targeting PIM kinases and
ignaling pathways has been recognized as potential therapeutics. Some
mall molecules, including barasertib, BI-847325, alisertib, flavopiri-
ol, SEL120, SEL24/MEN1703, and PIM447, target different histone
hosphorylases 219 . Non-receptor tyrosine kinases are involved in au-
oimmune diseases and cancers. Janus kinase 1 (JAK1) is one of the
anus kinase family proteins. JAK1 plays a critical role in inflammatory
ytokine signaling, cancer progression, and oncogenic signaling activa-
ion 221 . JAK2 is frequently mutated in cancers, mediating the activation
f downstream signaling responses to cytokines and growth factors 220 .
uxolitinib is a JAK2 inhibitor used for the treatment of lymphoma and

tacitinib is a JAK1 inhibitor that inhibits tumor growth in solid tumors,
eukemia, and lymphoma 222 . Deubiquitinases (DUBs) could regulate the
eubiquitination of substrate proteins to control the modification of pro-
eins. The aberration of ubiquitination caused by the abnormal function
f DUBs is frequently associated with various diseases, especially the
evelopment and progression of cancer. Ubiquitin-specific peptidase 1
USP1), USP2, USP7, and USP14 are members of the DUBs family. Inhi-
285 
ition of these ubiquitin-specific peptidases can inhibit tumor cell pro-
iferation, metastasis and stemness, and promote tumor cell senescence
o varying degrees 223 . ML323, ML364, b-AP15, and P5091 are selective
nhibitors of histone ubiquitinases in cancer 224 . However, inhibitors of
istone phosphorylase and histone deubiquitinase are still very limited
n clinical trials, and require further study. Table 3 highlights some other
istone modification enzyme inhibitors that have been developed. 

.4. Combination of histone modification enzyme inhibitors with other 

nhibitors 

In addition to the above-mentioned histone modifying enzyme in-
ibitors, the combination of multiple histone inhibitors or in combina-
ion with chemotherapy and immunotherapy have been widely used in
linical trials for cancer treatments and overcoming drug resistance. A
arge number of HDACi have been used in combination therapy for var-
ous cancer treatment. For example, HDACi vorinostat combined with
laparib (PARP inhibitor) or panobinostat co-treatment displayed pow-
rful anti-cancer activity in leukemia and colon adenocarcinoma, and
reast cancer by causing enhanced apoptosis of cancer cells 230 . Syner-
istic effects of histone inhibitors such as EZH2 inhibitors tazemetostat
ith doxorubicin plus placebo or plus the combination of rituximab, vin-

ristine, cyclophosphamide, prednisolone, doxorubicin, and so on have
een under evaluation in clinical trials for cancer treatment 231 . DNMT
nhibitors combined with Cytarabine or Talacotuzumab or Chelated
inc, are widely implicated in the treatment of hematologic malignan-
ies leading to cell cycle arrest, growth inhibition, and apoptosis 232 .
he combination of epi-drugs or with other inhibitors have displayed
avorable outcomes in clinical trials for cancer therapy. Here, we briefly
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Table 3 

Other histone modification enzyme inhibitors. 

Chemical class Compound Clinical stage Cancer specificity Reference/NCT number 

AURKB/A inhibitor Barasertib Phase I and II Acute myeloid leukemia, solid tumor NCT03217838 
AURKA/B/C inhibitor BI-847325 Phase I Solid tumor NCT01324830 
AURKA inhibitor Alisertib Phase II Solid tumor NCT01898078 
CDKs inhibitor Flavopiridol Phase I and II Myelodysplastic syndrome, acute myeloid leukemia NCT00058240 
CDK8 inhibitor SEL120 Phase I High-risk myelodysplastic syndrome, acute myeloid leukemia NCT04021368 
PIM kinases inhibitor SEL24/MEN1703 Phase I and II Acute myeloid leukemia NCT03008187 

PIM447 Phase I Myelofibrosis NCT02160951 
JAK2 inhibitor Ruxolitinib Phase II B cell lymphoma, T cell lymphoma NCT02912754 
JAK1 inhibitor Itacibinib Preclinical Leukemia, lymphoma 225 

USP1 inhibitor ML323 Preclinical Solid tumor, leukemia 226 

USP2 inhibitor ML364 Preclinical Colorectal cancer, mantle cell lymphoma 227 

USP14/UCHL5 inhibitor b-AP15 Preclinical Acute myeloid leukemia, multiple myeloma 228 

USP7 inhibitor P5091 Preclinical Multiple myeloma 229 

Abbreviation: CDKs, cyclin-dependent kinases. 

Table 4 

Combination of histone modification enzyme inhibitors. 

Epi-drug Combination Clinical stage Cancer specificity NCT number 

EZH2 inhibitor tazemetostat Cyclophosphamide/doxorubicin/ oncovin/prednisone Phase III EZH2 mutant DLBCL NCT04204941 
HDAC inhibitor vorinostat Olaparid Phase I Breast cancer NCT03742245 
HDAC inhibitor mocetinostat Gemcitabine Phase II Metastatic leiomyosarcoma NCT02303262 
HDAC inhibitor depsipeptide/FK228 Alisertib/pralatrexate/gemcitabine Phase III Relapsed PTCL NCT01482962 
HDAC inhibitor resminostat Sorafenib Phase I and II Hepatocellular carcinoma NCT02400788 
DNMT inhibitor disulfiram Chelated zinc Phase II Melamoma NCT02101008 
DNMT inhibitor azacytidine Cytarabine Phase III Acute myeloid leukemia NCT01839240 

Abbreviations: DLBCL, diffuse large B-cell lymphoma; DNMT, DNA methyltransferases; HDAC, histone deacetylase; PTCL, peripheral T-cell lymphoma. 
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ummarized part of the epi-drugs combination currently in clinical trials
n Table 4 . 

. Conclusions 

Histone modification is a key step in gene regulation that deter-
ines cell fate. Abnormal modifications of histone tails contribute to

he development of various diseases including cancer, making targeting
r reshaping aberrant histone modifications an attractive approach in
ancer therapy. However, histone tail-modifying enzymes play different
oles in solid tumors and hematopoietic cancers. There are four FDA-
pproved drugs based on histone modifier enzymes to treat hematopoi-
tic cancers 142 , 153 , whereas only tazemetostat, an EZH2 inhibitor, was
pproved by the FDA for treatment of epithelioid sarcoma 233 . Thus, fur-
her investigations should focus on discrete histone modification pat-
erns in solid tumors and hematopoietic cancers. In addition to the
entioned histone modification enzyme inhibitors, many other histone
odification enzyme inhibitors are entering clinical trials for therapy

f both solid tumors and hematological malignancies. Furthermore, the
ombination of these inhibitors or their combination with other drugs
n clinical trials for cancer is worth further investigation. Therefore, fur-
her studies are required to reveal the functions and crosstalk of these
istone modification enzymes, which may facilitate the development of
ore efficient cancer therapy methods with histone modification en-

yme inhibitors. 
Cancer/tumor is a complex and systemic disease instead of a sin-

le organ/tissue failure. Therefore, a single drug cannot cure the tu-
or completely resulting in tumor recurrence or resistance. Recently,
 concept “network medicine ” provides a potential improvement in
he diagnosis, prognosis, and treatment of cancer using network sci-
nce approaches and computational biology. There are several network
edicine approaches in cancer, including functional epigenetic mod-
les (FEM), oxidative bisulfite and bisulfite (OxyBS), whole-genome
isulfite sequencing (WGBS) combined with whole-genome sequencing
WGS) and weighted correlation network analysis (WGCNA) 234 . Net-
ork medicine integrates multiple datasets, including epigenetics, illus-
286 
rating the molecular interactome to develop drugs 235 , 236 . Traditional
herapeutic approaches cannot fulfill requirement of every patient be-
ause every single cancer patient has a unique tumor microenvironment.
recision medicine may be the potential strategy to fill the gap through
linical image-based deep learning architectures 237 . Precision medicine
an not only truly reflect the clinical problems of cancer patients, but
lso propose unique treatment plans for specific patients. It’s a very
romising direction in cancer therapy. 
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