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Draft genome of the marine bacterium Alteromonas 
gracilis strain J4 isolated from the green coenocytic alga 
Caulerpa prolifera

Hannah J. van Duijnhoven,1 Nina Dombrowski,2 Peter Kuperus,2 Tânia Aires,1 Márcio A.G. Coelho,1 João Silva,1 Gerard Muyzer,2 

Aschwin H. Engelen1

AUTHOR AFFILIATIONS See affiliation list on p. 3.

ABSTRACT Here, we present the draft genome sequence of Alteromonas gracilis strain 
J4, isolated from the green macroalga Caulerpa prolifera. The draft genome is 4,492,914 
bp in size and contains 4,719 coding DNA sequences, 67 tRNAs, and 16 rRNA-coding 
genes. Strain J4 may exhibit host growth-promoting properties.
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T o understand Caulerpa host-microbe interaction(1,2), we isolated bacteria from C. 
prolifera rhizoid tissue and conducted whole-genome sequencing. Here, we present 

the draft genome sequence of Alteromonas gracilis strain J4.
Strain J4 was isolated from rhizoids of hand-collected C. prolifera in the Ria Formosa 

lagoon (37°00′22.7″N 7°58′00.3″W, Faro, Portugal) and stored in a cooling box. Rhizoids 
were ground with mortar and pestle, and the lysate was plated on Difco Marine Agar 
2216 and incubated in the dark at room temperature (20–25°C). After 3 days, individual 
colonies were replated and re-incubated. Isolate J4 was identified as an Alteromonas 
sp. by comparative full-length 16S rRNA gene Sanger sequencing (Applied BioSystems 
3130xl Genetic Analyzer) analysis using primers 27F/1492R against the NCBI database 
(3). The 16S rRNA gene showed 96.80% sequence identity to A. gracilis strain 9a2 
341. Genomic DNA was extracted using the peqGOLD Bacterial DNA Mini Kit (VWR). 
Genome sequencing was conducted on a MinION Mk1C device (Oxford Nanopore 
Technologies), using the Ligation Sequencing Kit (SQK-LSK110) and a Flongle Flow Cell 
(R9.4.1). Base-calling was performed using Guppy v6.2.7 (https://community.nanopore
tech.com/downloads). 225,773 reads passed quality control with a mean Q-score of 12 
and an N50 of 3.71 kb.

Trimming residual sequencing adaptors and splitting chimeric reads [Porechop v0.2.4 
(4)] resulted in 211,623 reads. Filtlong v0.2.1 was used to remove small (<1,000 bp) 
and poor quality (<5%) reads (https://github.com/rrwick/Filtlong). For the remaining 
172,018 reads, 12 subsamples were generated at 55× depth using Trycycler v0.5.5 (5). 
Three subsamples were each assembled with (i) Flye v2.9.3, (ii) Miniasm v0.3 & Minipol
ish v0.1.3, (iii) Raven v1.8.3, and (iv) Unicycler v0.5.0 (6–10). The consensus assembly 
was further generated using Trycycler v0.5.5 and polished with Homopolish v0.4.1 
(11), resulting in one circular contig with a total size of 4,492,914 bp (131× coverage) 
and a GC content of 44.0%. The genome was reoriented using Dnaapler chromosome 
v0.7.0 (12) by identifying dnaA as the replication initiator gene. The genome had a 
completeness of 98% and contamination of 5.1% (CheckM2 v1.0.2) (13) and contained 
4,719 protein-coding genes, 67 tRNA, and 16 rRNA coding genes [Prokka v1.14.6 
(14); Fig. 1]. 903 genes were identified as potential pseudogenes (https://github.com/
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ndombrowski/j4_assembly) using Pseudofinder v1.1.0 with the UniProtKB/Swiss-Prot 
database as reference (15, 16). J4 likely belongs to an uncharacterized species within the 
genus Alteromonas. The genome exhibits 85.3% average nucleotide identity (ANI) with 
Alteromonas sp009811495 (GCF_016756315.1) based on a comparison with the GTDB 
r214 database using GTDB-Tk v2.3.2 (17, 18).

The annotation analysis identified two genes encoding 4-hydroxyphenylpyruvate 
dioxygenase (EC 1.13.11.27), pivotal in melanin catalysis (19). Melanin plays a role in 
ensuring survival during symbiotic interactions (20). Protein genes cspD, dnaJ, dnaK, and 

FIG 1 The genome map of Alteromonas gracilis strain J4. Each circle from inner to outer indicates potential plant growth-promoting (PGP) genes, coding 

sequences (CDS) in the leading strand, CDS in the lagging strand, tRNA and rRNA, GC content, GC skew+, and GC skew−. Potential PGP genes are indicated in red 

and labeled with EC numbers. If not labeled, tryptophan halogenases are represented.
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grpE, described to protect against cold/heat and oxidative stress, were detected (21), 
as well as 12 genes related to sulfur metabolism (22). Four indole-3-glycerol phosphate 
synthases (EC 4.1.1.48) and two tryptophan 2,3-dioxygenases (EC 1.13.11.11), both key 
precursors in indole-3-acetic acid biosynthesis were found. In all, 24 putative genes 
encoding tryptophan halogenases and six tryptophan synthases were found, suggesting 
potential growth-promoting properties in strain J4 with biotechnological applications 
(23, 24).
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