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Abstract
Motivation: Despite the extensive manufacturing of antiviral drugs and vaccination, viral infections continue to be a major human ailment. 
Antiviral peptides (AVPs) have emerged as potential candidates in the pursuit of novel antiviral drugs. These peptides show vigorous antiviral 
activity against a diverse range of viruses by targeting different phases of the viral life cycle. Therefore, the accurate prediction of AVPs is an 
essential yet challenging task. Lately, many machine learning-based approaches have developed for this purpose; however, their limited 
capabilities in terms of feature engineering, accuracy, and generalization make these methods restricted.
Results: In the present study, we aim to develop an efficient machine learning-based approach for the identification of AVPs, referred to as 
DeepAVP-TPPred, to address the aforementioned problems. First, we extract two new transformed feature sets using our designed 
image-based feature extraction algorithms and integrate them with an evolutionary information-based feature. Next, these feature sets were 
optimized using a novel feature selection approach called binary tree growth Algorithm. Finally, the optimal feature space from the training 
dataset was fed to the deep neural network to build the final classification model. The proposed model DeepAVP-TPPred was tested using 
stringent 5-fold cross-validation and two independent dataset testing methods, which achieved the maximum performance and showed 
enhanced efficiency over existing predictors in terms of both accuracy and generalization capabilities.
Availability and implementation: https://github.com/MateeullahKhan/DeepAVP-TPPred.

1 Introduction
Viruses are severe and extensive pathogens, causing numer
ous infectious diseases in both humans and animals 
(S�ebastien Calvignac-Spencer et al. 2021). The persistence of 
viral infections is prolonged due to variations in transmission 
and genetic factors (Islam and Koirala 2022). In recent times, 
the occurrence of zoonotic viruses such as Ebola, Zika, and 
SARS-CoV-2 has led to numerous chronic diseases (Phan 
2020). Biologists have currently developed hundreds of antiviral 
medications to treat different families of viruses, including hepa
titis B–C, HIV, influenza, herpes, rhinoviruses, and more (De 
Clercq and Li 2016). However, these antiviral medications are 
inadequate due to a lack of state–of–the–art novel pathogens. 
Furthermore, issues associated with conventional treatments in
clude high processing time, inefficiency, and adverse side effects 
(Hollmann et al. 2021). In the previous decade, antiviral pepti
des (AVPs) have been recognized as a fundamental class of anti
microbial peptides and have been utilized in developing novel 
peptide-based agents for viral diseases. AVPs are short-sequence 
peptides derived synthetically from twenty amino acids 
(Gleenberg et al. 2007). The advantageous characteristics for 

developing innovative antiviral therapies include low molecular 
weight, minor side effects, less toxicity, and high efficiency, 
making them widely applicable (Ke Yan 2022).

With significant growth in genomics sequences in recent deca
des, computational intelligence-based peptide identification has 
gained the attention of biologists due to high selectivity, im
proved predictive results, and better generalization power. 
Consequently, various machine-learning approaches have been 
presented for predicting AVPs. Thakur et al. presented the pio
neer computational model called AVPpred, which used 
alignment-based frequency representation methods to search for 
internal motif features from peptide sequences (Thakur et al. 
2012). The extracted spaces were trained via a 10-fold-based 
support vector machine (SVM) model. Similarly, Chang et al. 
trained a random forest (RF) model by integrating aggregation, 
secondary structure, physiochemical properties, and computa
tional feature encoding schemes (Chang and Yang 2013). 
Subsequently, AVP-IC50Pred used different machine learning 
models via amino acid residue composition, binary profile, 
and structural-based descriptors for identifying AVPs (Qureshi 
et al. 2015). Moreover, Nath et al. developed a stacking-based 
meta-model using alignment scoring and evolutionary local 
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features of AVP samples (Nath 2021). Lissabet et al. presented 
the AntiVPP 1.0 model for predicting AVPs using an RF model 
using sequential residue features (Lissabet et al. 2019). In the 
PEPred-Suite model, an ensemble RF trained model is used for 
predicting different classes of therapeutic peptides (Wei et al. 
2019). Additionally, a two-level feature selection was utilized 
to train the RF model utilizing optimal feature sets from differ
ent adaptive formulation schemes. Likewise, HybAVPnet used 
a two-step training strategy for identifying AVPs (Ge et al. 
2024), where eighteen formulation methods were investigated 
using light-GBM and neural network-based models. Akbar 
et al. developed an ensemble training model using a genetic al
gorithm (Akbar et al. 2022). The optimal features were selected 
from local evolutionary features using SHAP feature selection. 
Similarly, the Meta-iAVP model developed another stack en
semble model using the amphiphilic-pseudo amino acid com
position method. The stacking model was created by 
aggregating the predicted scores of GLM, RF, KNN, SVM, re
gression trees, and XGboost models (Schaduangrat et al. 
2019). Pang et al. developed the AVPIden model by utilizing 
physiochemical properties, frequency, and gapped- 
compositional features for peptide representation (Pang et al. 
2021). Recently, Lin et al. developed AI4AVP for AVPs by 
training deep convolutional neural networks using different 
types of formulation methods (Lin et al. 2022).

In the existing studies, we have observed that each predic
tor has demonstrated significant contributions to predicting 
AVPs. However, these models still face issues in terms of reli
ability and model generalization. Most existing models used 
sequence-based encoding methods that solely concentrated 
on computing the residue composition of the individual 
amino acids without retaining the sequence order informa
tion. Some models proposed traditional evolutionary feature 
descriptors, which are very time-consuming to calculate for 
each protein sample by searching databases. On the other 
hand, from a training perspective, existing models have pri
marily focused on traditional machine learning (ML) based 
trained models. Therefore, considering these issues, the exist
ing predictors require further improvement by developing al
ternative solutions that can accurately discriminate between 
AVPs and non-AVPs with high throughput.

This work attempts to enhance the prediction performance of 
discriminating AVPs and non-AVPs concerning the following 
key aspects: (i) designing two novel feature extraction algo
rithms; (ii) using a new tree-based feature selection algorithm; 
(iii) developing a deep learning-based classification model for 
this study to improve the prediction performance; and (iv) 
showing the generalization performance with the non- 
experimentally non-AVPs samples. In particular, two new fea
ture extraction algorithms, named in this study as LBP-PSSM 
and LBP-SMR, are proposed which are based on the image- 
based descriptor local binary pattern (LBP). Next, a new tree- 
based feature selection algorithm called the binary tree growth 
(BTG) algorithm is used to select the optimal feature sets from 
the raw heterogeneous features. A deep learning-based model 
deep neural network (DNN) was then designed specifically for 
this study as the prediction algorithm, and the performance on 
both benchmark training and independent datasets was tested. 
Finally, based on the proposed pipeline, a new forecasting algo
rithm for anti-viral peptides, termed DeepAVP-TPPred, is imple
mented. Benchmark independent testing using non- 
experimentally non-AVP sequences demonstrates the generali
zation efficacy of the model.

2 Materials and methods
2.1 Benchmark datasets
In statistical machine learning, the construction and selection 
of a benchmark dataset is a crucial stage for designing an in
telligent predictive model. To fairly train and compare our 
proposed predictive model against existing state-of-the-art 
methods, we derived benchmark training and two indepen
dent datasets from the work of Thakur et al. (2012). The 
benchmark training dataset contains a total of 951 samples, 
of which 544 samples are AVPs and the remaining 407 are 
non-AVPs. In our study, we call this dataset as AVP951.

The first independent dataset contains 60 AVPs and 45 non- 
AVPs and is represented by AVP105. The second independent 
dataset contains 60 samples of AVPs and 60 samples of non- 
AVPs. However, in this study, we were unable to extract the 
PSSMs of 9 AVP samples. Therefore, the second dataset con
tains only 51 AVP samples and 60 non-AVP samples. Hence, 
we represent this dataset as AVP111. In AVP111, instead of ex
perimentally verified non-AVPs, the non-experimentally non- 
AVPs were used to test the strength of the model.

2.2 Feature representation
The fact is that the majority of the predictive machine learning 
models handle numerical-based vectors, making it a challenging 
task to express a peptide sequence with numerical values or dis
crete models while still protecting the sequence information. 
The feature extraction strategy can deal with this issue. 
However, the use of appropriate features is one of the most cru
cial steps for designing highly accurate predictive models, as the 
success of the model purely depends on the choice of the fea
tures used when training the model. In this study, we propose 
new image-based feature extraction methods to represent each 
peptide sample as a numerical vector. The details of these fea
ture extraction methods are as follows.

2.2.1 Representation of AVP sequence as the position- 
specific scoring matrix
The position-specific scoring matrix is a mathematical repre
sentation of the sequence used in bioinformatics to analyze 
and compare biological sequences of proteins or nucleotides. 
Prior computational methods disclosed that evolutionary in
formation of protein sequences is vital and widely used in a 
range of bioinformatics problems, such as protein DNA- 
binding residues (Hu et al. 2017), protein folding (Shen and 
Chou 2009), protein function prediction (Jeong et al. 2011), 
and protein secondary structure (Zangooei and Jalili 2012). 
Inspired by this, in the current study, we represent the AVP 
sequences with the PSSMs. For a given peptide sequence of 
length L, an L × 20 PSSM was constructed, where 20 is the 
number of amino acids. The following matrix PPSSM is the 
general representation of the PSSM. 

PPSSM ¼

p1;1 p1;2 � � � p1;20

p2;1 p2;2 � � � p2;20
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. ..
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. ..
.
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3

7
7
7
7
7
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L × 20

(1) 

To construct the PSSMs, we used the PSI-BLAST (Sch€affer 
et al. 2001) and Swiss-Prot database (Bairoch and 
Apweiler 1997).
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2.2.1.1 Transformation from PSSM to feature vector via 
image-based LBP method
LBP (Ojala et al. 1996, 2002) is a simple yet widely used fea
ture descriptor in image analysis and computer vision for rep
resenting local features in images. Existing studies proved 
that LBP has a striking performance when extracting local 
features from the images (Huang et al. 2011, Shakoor 2019, 
Ullah et al. 2022). Considering the outstanding performance 
of LBP, we proposed an LBP-based feature extraction method 
for the peptide sequence. We named our proposed feature de
scriptor LBP-PSSM. LBP-PSSM works as follows:

First, we constructed the PSSM for each peptide sequence 
in our datasets and transformed its matrix representation to a 
PSSM image in the range of 0–255. We then choose the 
3 × 3 window to calculate the LBP-PSSM features.

Next, we calculated the center pixel’s gray value of each 
3 × 3 window in an image by comparing it with the neigh
boring pixels’ gray values using the given formula. 

LBP − PSSMN;R ¼
XN − 1

n¼0

sðdÞ2n (2) 

where d ¼ pn − pc which is the difference between the center 
pixel pc and the neighborhood pixel pn in the N involved 
neighbor pixels around pc with the radius R. Suppose that 
the coordinate of pc is ð0; 0Þ the coordinate of pn are 
ðR cosð2πn=NÞ;R sinð2πn=NÞÞ. The function sðdÞ is used to 
assign a value of 1 if the intensity value of the corresponding 
neighborhood pixel is greater than or equal to the given 
threshold, and 0 otherwise. sðdÞ can be denoted as: 

sðdÞ ¼ 1;d≥ 0
0; otherwise

n
(3) 

We then used the clockwise order to concatenate the obtained 
binary values from thresholding to form a binary pattern and fi
nally, a histogram is generated by counting the occurrences of 
different patterns. In this study, a total of 256 histograms of 
regions were generated. These 256 histograms of regions serve 
as the feature vector in our research. The N ¼ 8 and R ¼ 1 
were used to extract LBP-PSSM features with 256 dimensions.

2.2.2 Pseudo PSSM
In this study, a 20 × 5 þ 20 ¼ 120-dimension of the 
PsePSSM feature vector is also obtained for each peptide se
quence. Complete details of PsePSSM are available in 
Supplementary Text S1.

2.2.3 Transformation from substitution matrix 
representation to feature vector via image-based LBP method
Substitution matrix representation (SMR), proposed by Yu 
et al. (2012), is an efficient descriptor for primary proteins. In 
this study, we first transform the peptide sequence to the 
SMR matrix. The SMRðj; lÞ denotes the distance of j � type 
amino acid contacting to the lth position of a given peptide se
quence. SMRðj; lÞ can be defined using the following mathe
matical formula: 

SMRðj; lÞ ¼Mðj;PðlÞÞ (4) 

where M represents a 20 × 20 substitution matrix, P ¼
ðp1;p2;p3; . . . ;pLÞ is the given L � length peptide sequence 
and j ¼ 1;2; 3; . . . ;20 represents one of the twenty standard 

amino acid types. For the substitution matrix, we used an 
amino acid contact matrix (Ding et al. 2016). The details of 
the amino acid contact matrix can be found in 
Supplementary Table S1 under Supplementary Text S2.

The given L � length peptide sequence can then be represented 
by one 20 × L SMR matrix. Next, we used the same procedure 
discussed in Section 2.2.1.1 to transform the SMR matrix into 
image-based feature representation, and the resultant novel LBP- 
SMR feature space of 256 dimensions is obtained.

2.3 Binary tree growth algorithm
The extracted evolutionary and image-based heterogeneous fea
tures might uncover a range of hidden useful information that 
is beneficial for predicting AVPs. However, these heterogeneous 
features might contain irrelevant, noisy, and redundant infor
mation as well, and inputting raw heterogeneous features into a 
classifier may cause overfitting or underfitting. To solve this 
problem, a vital phase called optimized feature selection, which 
can extract intrinsic features from the raw heterogeneous fea
tures, is used. In this study, we also utilized the feature selection 
strategy by using the BTG algorithm to solve the problems 
mentioned above and increase the prediction efficiency. The 
BTG algorithm, proposed by (Too et al. 2018), is a powerful 
feature selection approach with few studies available in the lit
erature (Kumar et al. 2023). The BTG algorithm is a binary 
version of the tree growth algorithm (Cheraghalipour et al. 
2018). The details of the BTG algorithm are as follows:

In the first step, the initial population of trees is arbitrarily 
generated and then the fitness value for each tree is calculated 
by using the following function: 

Fitness ¼ β � Er þ ð1 − βÞ �
jSj
jFj

(5) 

where Er is the learning error rate, β is used to control both 
the prediction error and feature reduction and its value is be
tween 0 and 1, jSj represents the number of selected features, 
and jFj denotes the total features in the dataset.

Next, the fitness values are used to sort out the population 
of trees in ascending order. The first tree group receives the 
best T1 trees, and the following mathematical formula is used 
to generate the new tree in this group: 

Nt þ 1
i ¼

Nt
i

θ
þ rNt

i (6) 

where Ni at order i in the population denotes the tree (solu
tion), θ denotes the trees diminution rate of power, r is the 
randomly disturbed number between ½0; 1� and t is the num
ber of current iterations. The current tree is replaced if the 
newly constructed tree has a better fitness score, otherwise, it 
is stored for the next generation.

In the next step, T2 trees are assigned to the second group, 
and for each tree, the two closest trees from the first and sec
ond groups are determined using the Euclidian distance: 

di ¼
XT1 þ T2

i¼1

ðNt
T2

− Nt
iÞ

2

0

@

1

A

1
2

(7) 

where NT2 denotes the present tree and Ni represents the tree 
at i � th position in the population. It is worth mentioning 
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that the distance becomes infinite when NT2 ¼ Ni , 
where T2 ¼ i. Then, the two nearest trees x1,x2 with a 
minimum di are selected and the following Equation (8) is 
used to compute the linear combination of the se
lected trees: 

Q ¼ λx1 þ ð1 − λÞx2 (8) 

where the parameter λ is used to control the impact of the 
closest tree. The location of the tree in the second group is 
updated using: 

Nt þ 1
T2 ¼ Nt

T2 þ αQ (9) 

where α is the angle distribution between [0,1]. The T3 worst 
trees in the third group are eliminated and substituted with 
the new trees. Equation (10) can be used to compute the T3: 

T3 ¼ T − T1 − T2 (10) 

where T is the population size.
Using a masked operator, T4 new trees are constructed 

within the last group around the best trees. These newly 
constructed trees are then added to the population and the 
fitness values are used to sort the merged population in as
cending order. In the subsequent iteration, the best T trees 
are then selected to represent the new population. The pro
cess is reiterated until the termination criterion is met and fi
nally, the universally finest tree is chosen as the 
best solution.

To select the optimal feature sets, the BTG algorithm uti
lizes a transfer function to translate the location of the trees 
into probability values ranging between 0 to 1. A large prob
ability number means there will be a greater possibility that 
the feature will be selected. In the present study, we used the 
sigmoid function as the transfer function which can be 
expressed as: 

δðqt
idÞ ¼

1

1 þ e −qt
id

(11) 

where q denotes the dth dimensionality of the search space. 
The location of the tree is updated depending on the value of 
the probability described below: 

qt þ 1
id ¼

1; if @ < δt
id

0; otherwise

(

(12) 

Where @ is a random number between 0 and 1. The proce
dure of the mask operation in the BTG algorithm is shown 
in Table 1.

In this study, we used the k-nearest neighbor (KNN) ma
chine learning algorithm in the process of fitness evaluation 
because it is simple yet efficient and faster. In KNN, the value 

k is empirically set to five. Finally, a set of 352 dimensions of 
optimal features is obtained.

2.4 Prediction algorithm
In 2006, Hinton and colleagues introduced the concept of 
neural networks after deriving motivation from the learning 
process of the human brain (Hinton et al. 2006, Hinton and 
Salakhutdinov 2006). A typical neural network incorporates 
an input layer, hidden layers, and an output layer. A neural 
network with the stacking of two or more hidden layers is re
ferred to as a DNN. Because DNN achieves better perfor
mance than the majority of traditional machine learning 
models, it has been utilized in a wide area of research 
(Farabet et al. 2012, Buchan et al. 2023, Seo et al. 2023, 
Tsirmpas et al. 2024). In the present study, we trained the 
DNN model to construct our final prediction model for 
AVPs. The DNN model was trained using an input layer, 
three hidden layers, and an output layer. Figure 1 illustrates 
the DNN model designed for this study. First, the optimized 
hybrid features are given to the input layer (x), where each 
node of the input layer is associated with an instance of the 
input features. The input layer computes the output by using 
weights, a bias term, and an activation function. Next, the 
output of the input layer is provided as an input to the first 
hidden layer (h1) and using their corresponding weights, bias 
term, and activation function to compute the output. The 
process is continued until the output layer (y) is reached.

In our study, we used two activation functions rectified lin
ear unit (ReLu), which is used at the hidden layers and sig
moid, which is used at the output layer, for predicting the 
input instance in the AVP or non-AVP class. The specific op
timal parameters for the DNN used in this study are shown 
in Table 2.

2.5 Architecture of the proposed DeepAVP-TPPred
Figure 2 shows a diagrammatic overview of our proposed 
DeepAVP-TPPred prediction algorithm. For a given peptide 
input sequence from the benchmark datasets, DeepAVP- 
TPPred first extracts the transformed PSSM-LBP, SMR-LBP, 
and PsePSSM feature sets by calling their respective feature 
description program (feature extraction phase). Next, 
DeepAVP-TPPred serially integrates all the extracted feature 
sets into a hybrid feature set and then calls the BTG feature 
selection algorithm to select the best optimal feature subset 
from the hybrid feature set (feature selection phase). 
Consequently, the feature set obtained from the BTG feature 
selection algorithm is selected as the final optimal feature set 
which represents the given peptide sequence. Finally, in the 
training phase, the obtained optimal feature set is provided to 
the prediction algorithm to train the prediction model (model 
construction). While testing the model, after producing the fi
nal optimal feature set for the given unseen peptide sequence, 
the trained model is called to predict the sequence as AVP or 
non-AVP (model evaluation phase).

2.6 Performance measures
In the current study, we assessed the performance of our pro
posed DeepAVP-TPPred using various performance assess
ment measures, i.e. Accuracy (Acc), Sensitivity (Sen), 
Specificity (Sp), and the Matthew correlation coefficient 
(MCC). The mathematical notations for Acc, Sen, Sp, and 
MCC are provided in Supplementary Equations (6)–(9) under 
Supplementary Text S3. In addition to that, we also assessed 

Table 1. A simple example showing the procedure mask operation.

New tree 1 1 0 0 0 0
Mask operator 0 1 0 1 1 0
Random finest tree 0 1 0 1 0 1
New tree after masking 1 1 0 1 0 0
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the model performance on a broad level by computing the 
area under the receiver operating characteristic (ROC) curve 
(AUC) and the area under the precision-recall (AUPR) curve, 
which are other critical assessment tools.

2.7 Model evaluation
In machine learning, various model evaluation strategies are 
used to test the performance of a prediction model, such as 
the k-fold cross-validation (CV), jackknife, and independent 
testing strategies. The major limitations of the jackknife test 
are the computational time and the huge number of calcula
tions. Therefore, in this study, we utilized the k-fold CV 
method to avoid overfitting and boost the generalization ca
pability of the model. k-fold CV method randomly divides 
the training dataset into k non-overlapping approximately 
equal-sized subsets and at each step, the model is trained on 
k-1 subsets and tested on the left-out subset. In this work, we 
used the value of k ¼ 5.

An Independent test is the most critical testing method for 
assessing the generalization ability of a model. Therefore, in 
this study, we also used the independent testing method by 
using two unseen datasets to show the efficacy of the pro
posed model.

3 Results
3.1 Performance analysis of individual feature sets 
using various learning models on the 
training dataset
To show the performance of the proposed feature extraction 
algorithms, we tested using various latest classification 

learning models, including Bagging, Extra-Trees Classifier 
(ETC), eXtreme Gradient Boosting (XGB), CatBoost, and 
DNN, using 5-fold cross-validation on the benchmark train
ing dataset. The hyper-parameter settings for the Bagging, 
ETC, XGB, and CatBoost are provided in Supplementary 
Table S2 under Supplementary Text S4. The comparative 
results are shown in Table 3 and Fig. 3 is provided to help 
easily understand the effect of different classifiers. From  
Table 3, we can see that both the LBP-SMR and LBP-PSSM 
individual raw feature sets have more reasonable and com
petitive performance on all the classifiers. Between the two, 
the LBP-SMR achieved the best performance on the DNN 
classifier with an Acc and MCC of 88.07 and 0.76, respec
tively. Similarly, the LBP-PSSM achieved Acc¼87.15 and 
MCC¼0.74. Both the LBP-SMR and LBP-PSSM achieved an 
equal AUC of 0.95 on the DNN classifier, which shows the 
effectiveness of our proposed feature extraction methods.

Similarly, by comparing the experimental results of all the 
classifiers in Fig. 3, The DNN classifier performed better by 
achieving the Acc, MCC, and AUC of 91.21, 0.82, and 0.96 
on the PsePSSM, 88.07, 0.76, and 0.95 on the LBP-SMR and 
87.15, 0.74 and 0.95 on the LBP-PSSM, respectively, which 
shows that DNN is more powerful than the rest of the classi
fier when using individual raw feature sets. The CatBoost 
classifier achieved the second-best performance in compari
son to other classifier results, while the remaining classifiers 
have more competitive performance results. From Table 3, 
we can easily conclude that both the proposed feature extrac
tion methods achieved better performance because the LBP- 
SMR and LBP-PSSM capture more intrinsic information. 
Similarly, from the comparison in Fig. 3, we observed that 
the DNN performs better than even the updated classifiers, 
which shows its superiority. Therefore, we further performed 
experiments, in terms of ROC and PR curves, using the DNN 
classifier and the results were illustrated in Fig. 4A and B, 
respectively.

Figure 4A shows the ROC curves, while Fig. 4B shows the 
PR curves for the individual features. From both Fig. 4A and 
B, we can see that the proposed features have more stable 
performance in terms of both AUC and AUPR values, which 
again demonstrates the effectiveness of the LBP-PSSM and 
LBP-SMR feature extraction methods.

Figure 1. Deep neural network model architecture.

Table 2. Optimal configuration values for the proposed DNN model.

Hyper-parameters Optimal values

Activation function ReLu, sigmoid
Learning rate 0.01
Number of hidden layer Neurons 128,64, 32
Optimizer Adam
Regularization L1 0.001
Dense layers 3
Dropout rate 0.5
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3.2 BTG improves the model performance
Next, to further improve the performance of the DeepAVP- 
TPPred model, we integrated all three extracted feature sets 
in serial fashion and named it as hybrid features, i.e. Hybrid 
Features ¼ LBP-SMRþLBP-PSSMþ PsePSSM. The results of 
the hybrid features on different classifiers, using a 5-fold CV 
and benchmark training dataset, are provided in Table 4. By 
comparing the results in Tables 3 and 4, we observed that by 

integrating all three feature sets, the model accuracy for most 
of the classifiers improved drastically. Notably, by comparing 
the results of the best individual feature set PsePSSM, which 
achieved the Acc, MCC, and AUC of 91.21, 0.82, and 0.96, 
respectively, on the DNN classifier using the benchmark 
training dataset, and Hybrid Features, which achieved the 
Acc¼ 95.39, MCC¼0.90, and AUC¼0.97, the Acc, MCC 
and AUC of the hybrid features increased by 4.18%, 8%, 
and 1%, respectively. This performance increase is because 
each feature set contains unique information and integrating 
all the unique information will result in better performance. 
However, there may also be redundant, noisy, and irrelevant 
information in the integrated feature set, which might not 
convey the maximum performance. Therefore, we passed the 
hybrid feature set through the BTG feature selection algo
rithm to remove noisy, irrelevant, and redundant informa
tion. The resultant feature set is called the optimal feature set, 
which is denoted here as hybrid featuresþBTG.

The result of the hybrid featuresþBTG is also provided in  
Table 4. We can easily conclude from Table 4 that in terms of 
all performance measures, the hybrid featuresþBTG 
achieved increased performance on all the classifiers with 
DNN at the front in comparison to the simple hybrid features 
or any individual feature set, which shows that BTG feature 
selection can further empower the prediction performance of 
the DeepAVP-TPPred using 5-fold CV on the benchmark 
training dataset.

Figure 2. Diagrammatic overview of the proposed DeepAVP-TPPred.

Table 3. Prediction analysis of individual feature sets using 
training samples.

Method Classifier Acc (%) Sen (%) Sp (%) MCC AUC

LBP-SMR Bagging 86.92 83.97 89.87 0.73 0.93
ETC 86.23 90.90 95.93 0.72 0.94
XGB 84.40 87.87 91.79 0.69 0.91
CatBoost 87.61 87.39 87.87 0.75 0.95
DNN 88.07 84.03 92.91 0.76 0.95

LBP-PSSM Bagging 84.80 84.34 85.26 0.69 0.92
ETC 85.63 85.26 86.03 0.71 0.93
XGB 84.34 82.87 85.81 0.68 0.92
CatBoost 85.77 85.71 85.84 0.71 0.93
DNN 87.15 84.03 90.91 0.74 0.95

PsePSSM Bagging 86.23 89.07 82.81 0.72 0.93
ETC 89.44 84.03 95.91 0.79 0.95
XGB 86.69 87.39 85.85 0.73 0.93
CatBoost 90.36 89.91 90.91 0.80 0.95
DNN 91.21 89.46 92.97 0.82 0.96
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To further validate the results on a wider level, we compared 
both the Hybrid features before and after applying the BTG fea
ture selection algorithm. The results are illustrated in Fig. 5. 
From Fig. 5A, which shows the ROC curves, and Fig. 5B, which 
shows the PR curves for Hybrid features and Hybrid 
FeturesþBTG, respectively, it can be concluded that applying 
BTG on the Hybrid Features, we can see improvement in both 

AUC and AUPR values on the obtained Hybrid FeturesþBTG 
optimal feature set. Furthermore, to illustrate the high contribu
tory features, we also performed SHapley Additive exPlanations 
(SHAP) analysis-based interpolation as shown in 
Supplementary Fig. S1 in Supplementary Text S5. In addition, 
we also performed heat map analysis of the encoding schemes 
versus trained classifiers using predicted Acc and MCC as 

Figure 3. Performance comparison of different classifiers on the individual feature sets: (A), (B), and (C) show the comparison in terms of Acc, MCC, and 
AUC values, respectively.
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shown in Supplementary Fig. S2A and B under Supplementary 
Text S5.

3.3 DeepAVP-TPPred has enhanced generalized 
performance
In the previous Results and Discussion sections, we have 
shown results by performing experiments on the training 
dataset using a 5-fold CV. To validate the assumption that 
training our DeepAVP-TPPred with DNN as a learning 
model has enhanced performance, in this section, we per
formed an independent testing method using two different 
types of independent datasets, the details of which are dis
cussed in Section 2.1, and compared the results with other 
classifiers. The results derived from the independent testing 
experiments for all the classifiers are shown in Table 5. We 
can see from the results that both the independent datasets 
AVP105 and AVP111 have better performance outcomes in 
terms of generalization capability. Specifically, when the 
DNN is used, the DeepAVP-TPPred has the maximum Acc 
and MCC of 96.09 and 0.92 on the AVP105 and 95.73 and 
0.92 on the AVP111 in comparison with the second-best clas
sifier CatBoost results, which are 81.44 and 0.62 on the 
AVP105 and 79.16 and 0.60 on the AVP111, respectively, in  
Table 5. Similarly, in terms of Sen, Sp, and AUC, the DNN 
achieved better performance than all the other classifiers, 
which again demonstrates that the DeepAVP-TPPred with 
the DNN classifier has better generalization capability.

We further evaluated the performance of the DeepAVP- 
TPPred in terms of ROC and PR curves and the results are 
provided in Fig. 6. From Fig. 6A and D, which show the 
ROC curves on the AVP105 and AVP111 independent 

datasets, we can observe that the DeepAVP-TPPred has a 
smoother and more consistent performance in terms of AUC 
values. Similarly, in terms of PR curves shown in Fig. 6B and 
D on the AVP105 and AVP111 independent datasets, respec
tively, the AUPR values once again evaluate the effectiveness 
of the DeepAVP-TPPred in terms of generalization capability.

3.4 Performance comparison of DeepAVP-TPPred 
and other existing methods on the AVP951 
training dataset
In this section, in order to illustrate the predictive perfor
mance of our proposed DeepAVP-TPPred, we compared it 
with other existing binary class AVPs prediction methods, in
cluding AVPpred (Thakur et al. 2012), Meta-iAVP 
(Schaduangrat et al. 2019), and Chang et al.’s method 
(Chang and Yang 2013). The performance results of 
DeepAVP-TPPred against these predictors, in terms of ACC, 
Sen, Sp, and MCC, are shown in Table 6. The results of other 
methods are derived from their respective papers.

We can see from Table 6 that the proposed DeepAVP- 
TPPred substantially enhanced all the performance measures. 
More specifically, DeepAVP-TPPred achieved Acc¼96.84 and 
MCC¼ 0.93, which were 11.84% and 23%, 11.74% and 
23%, 8.64% and 17%, respectively, higher than the AVPpred, 
Chang et al. method and Meta-iAVP method. Similarly, in 
terms of Sen and Sp, our DeepAVP-TPPred also has better per
formance than the other existing methods in Table 6. 
Altogether, the performance results on the training dataset sug
gest that DeepAVP-TPPred outperformed the other existing 
sequence-based AVP methods.

3.5 Performance comparison of DeepAVP-TPPred 
with existing methods on the independent datasets
Figure 7 further illustrates the generalization power of the pro
posed DeepAVP-TPPred and other existing sequence-based 
AVP methods on the two independent datasets AVP105 and 
AVP111, including AVPpred, Chang et al.’s method, FIRM- 
AVP (Chowdhury et al. 2020), AntiVPP1.0 (Lissabet et al. 
2019), and Meta-iAVP. Again, the performance results of these 
methods are derived from their respective papers.

We can observe from Fig. 7A and D that DeepAVP-TPPred 
achieved the best predictive performance with Acc¼96.09 and 
MCC¼ 0.92 on the AVP105, Acc¼95.73 and MCC¼0.92 on 
the AVP111, which were about 0.89–10.39% and 2–21%, 
0.83–3.23%, and 2–7% higher than the existing methods. 
More specifically, in terms of Acc and MCC, DeepAVP-TPPred 

Figure 4. Performance comparison of individual features using DNN classifier: (A) shows the comparison in terms of ROC and; (B) shows the comparison 
in terms of PR curves.

Table 4. Prediction outcomes of hybrid features before and after BTG 
feature selection algorithm using 5-fold CV on the benchmark 
training dataset.

Method Classifier Acc (%) Sen (%) Sp (%) MCC AUC

Hybrid features Bagging 89.90 87.39 92.91 0.79 0.95
ETC 91.28 90.75 91.94 0.82 0.95
XGB 89.99 87.81 92.12 0.80 0.95
CatBoost 91.28 87.39 95.96 0.83 0.94
DNN 95.39 95.48 95.16 0.90 0.97

Hybrid features 
þ BTG

Bagging 91.28 90.76 91.92 0.82 0.95
ETC 91.74 89.91 93.94 0.83 0.96
XGB 92.20 90.75 93.94 0.84 0.96
CatBoost 92.75 95.51 90.14 0.85 0.96
DNN 96.84 96.92 98.66 0.93 0.98
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Table 5. Prediction outcomes using independent datasets.

Dataset Method Classifier Acc (%) Sen (%) Sp (%) MCC AUC

AVP105 Hybrid features þ BTG Bagging 76.26 74.57 77.96 0.52 0.91
ETC 78.07 76.27 79.66 0.55 0.90
XGB 71.15 79.66 62.71 0.42 0.78
CatBoost 81.44 79.66 83.05 0.62 0.89
DNN 96.09 94.83 97.33 0.92 0.98

AVP111 Hybrid features þ BTG Bagging 76.16 85.37 66.73 0.53 0.81
ETC 75.00 66.67 83.31 0.50 0.82
XGB 70.83 58.83 83.33 0.43 0.78
CatBoost 79.16 66.67 91.67 0.60 0.85
DNN 95.73 95.38 97.77 0.92 0.97

Figure 6. Performance evaluation of DeepAVP-TPPred using independent datasets: Panels (A) and (B) show the ROC and PR curve for the AVP105 
dataset while panels (C) and (D) show the ROC and PR curves for the AVP111 dataset.

Figure 5. Performance comparison of Hybrid features before and after BTG feature selection: (A) shows the comparison in terms of ROC and; (B) shows 
the comparison in terms of PR curves for the DNN classifier.
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is 0.89% and 2%, 0.83%, and 2% higher than the runner-up 
Meta-iAVP, 10.39% and 3.23%, 21%, and 7% higher than 
the AVPpred, 6.59% and 2.43%, 13% and 5% higher than 
Chang et al.’s method, on the AVP105 and AVP111 datasets, 
respectively. Similarly, DeepAVP-TPPred is 3.69% and 8% 
higher than the FIRM-AVP on the AVP105, while 2.73% and 
5% higher than the AntiAVP 1.0 on the AVP111 in terms of 
Acc and MCC, respectively. The comparative results of all these 
methods in terms of additional performance measures are pro
vided in Supplementary Table S3 in Supplementary Text S6, 
which also shows that DeepAVP-TPPred substantially improved 
those other performance measures. On the other hand, local in
terpretable model-agnostic explanations (LIME) analysis was 
also performed to validate the proposed model more effectively, 
as shown in Supplementary Fig. S3 under Supplementary Text 
S6. Together, all the results in Fig. 7A and D, Supplementary 
Table S3 and Supplementary Fig. S3 show that the proposed 
DeepAVP-TPPred has better generalization capability than the 
other existing methods.

4 Discussion
Accurate forecasting of AVPs is critically essential for devel
oping novel peptide-based agents for viral diseases. To boost 

the performance of the AVP’s prediction, this study proposed 
a computational-based predictor, namely DeepAVP-TPPred. 
Precisely, DeepAVP-TPPred first extracted various features 
from each peptide sequence by using PsePSSM and two pro
posed LBP-PSSM and LBP-SMR feature extraction methods. 
Next, the extracted feature sets are integrated in a serial way 
to generate a more powerful heterogeneous feature set to 
compensate for the limitations of single feature sets. Using a 
new tree-based feature selection algorithm, i.e. BTG, 
DeepAVP-TPPred then selected the optimal hybrid feature set 
from the integrated feature set, which further outputted an ef
fective feature vector. The designed DNN model was then 
learned on the optimal feature sets to construct the 
DeepAVP-TPPred model. Benchmark experiments on the 
AVP training and independent datasets demonstrated the 
superiority of DeepAVP-TPPred over several existing state- 
of-the-art binary class prediction models for AVPs. The re
markable performance of the DeepAVP-TPPred is mainly due 
to the capturing of more meaningful information in the 
PSSM and SMR of each sequence by LBP-PSSM and 
LBP-SMR, which can extract more local evolutionary infor
mation, and utilizing the tree-based BTG feature selection al
gorithm which can further generate a more efficient optimal 
feature set. The careful selection of the learning model further 
resulted in better predictive performance.

In the future, we plan to deal with the following different 
aspects and further enhance the prediction performance of 
DeepAVP-TPPred: (i) constructing larger AVPs datasets; (ii) 
extracting deep learned-based features and integrating with 
other effective feature sets, such as features from residue en
ergy contact matrix representation (RECM), to construct a 
more robust feature set; (iii) integrating feature extraction 
algorithm in ways other than simple serial integration 

Figure 7. Performance comparison of DeepAVP-TPPred with existing models using independent datasets: Panels (A) and (C) show the Acc and panels 
(B) and (D) show the MCC on AVP105 and AVP111, respectively.

Table 6. Performance comparison of DeepAVP-TPPred with existing 
models using training dataset.

Method Acc (%) Sen (%) Sp (%) MCC

AVPpred 85.00 82.20 88.20 0.70
Chang et al. 85.10 86.60 83.00 0.70
Meta-iAVP 88.20 89.20 86.90 0.76
DeepAVP-TPPred 96.84 96.92 98.66 0.93
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approach; (iv) designing more advanced learning models, for 
instance, the ensemble of deep learned models; and (v) devel
oping and designing a user-friendly web server.

Supplementary data
Supplementary data are available at Bioinformatics online.
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