Skip to main content
. 2024 May 6;40(5):btae305. doi: 10.1093/bioinformatics/btae305

Table 4.

Prediction outcomes of hybrid features before and after BTG feature selection algorithm using 5-fold CV on the benchmark training dataset.

Method Classifier Acc (%) Sen (%) Sp (%) MCC AUC
Hybrid features Bagging 89.90 87.39 92.91 0.79 0.95
ETC 91.28 90.75 91.94 0.82 0.95
XGB 89.99 87.81 92.12 0.80 0.95
CatBoost 91.28 87.39 95.96 0.83 0.94
DNN 95.39 95.48 95.16 0.90 0.97
Hybrid features + BTG Bagging 91.28 90.76 91.92 0.82 0.95
ETC 91.74 89.91 93.94 0.83 0.96
XGB 92.20 90.75 93.94 0.84 0.96
CatBoost 92.75 95.51 90.14 0.85 0.96
DNN 96.84 96.92 98.66 0.93 0.98