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Abstract
Summary: Spatial omics technologies are increasingly leveraged to characterize how disease disrupts tissue organization and cellular niches. 
While multiple methods to analyze spatial variation within a sample have been published, statistical and computational approaches to compare 
cell spatial organization across samples or conditions are mostly lacking. We present GraphCompass, a comprehensive set of omics-adapted 
graph analysis methods to quantitatively evaluate and compare the spatial arrangement of cells in samples representing diverse biological condi-
tions. GraphCompass builds upon the Squidpy spatial omics toolbox and encompasses various statistical approaches to perform cross- 
condition analyses at the level of individual cell types, niches, and samples. Additionally, GraphCompass provides custom visualization functions 
that enable effective communication of results. We demonstrate how GraphCompass can be used to address key biological questions, such as 
how cellular organization and tissue architecture differ across various disease states and which spatial patterns correlate with a given pathologi-
cal condition. GraphCompass can be applied to various popular omics techniques, including, but not limited to, spatial proteomics (e.g. MIBI- 
TOF), spot-based transcriptomics (e.g. 10× Genomics Visium), and single-cell resolved transcriptomics (e.g. Stereo-seq). In this work, we show-
case the capabilities of GraphCompass through its application to three different studies that may also serve as benchmark datasets for further 
method development. With its easy-to-use implementation, extensive documentation, and comprehensive tutorials, GraphCompass is accessi-
ble to biologists with varying levels of computational expertise. By facilitating comparative analyses of cell spatial organization, GraphCompass 
promises to be a valuable asset in advancing our understanding of tissue function in health and disease.

1 Introduction
The spatial arrangement and interactions of cells under dif-
ferent physiological and pathological states provide insights 
into the underlying mechanisms of tissue function and disease 
progression. Understanding cell spatial organization is not 
only essential for deciphering physiological processes but also 
for advancing diagnostic and therapeutic strategies (Rao 
et al. 2021, Palla et al. 2022a, Williams et al. 2022).

Spatial omics have emerged as a powerful technology for 
profiling cellular phenotypes in their tissue context. Spatial 
transcriptomics methods such as 10× Genomics Visium 
(Ståhl et al. 2016) and Stereo-seq (Chen et al. 2022), as well 
as spatial proteomics methods such as CODEX (Goltsev 
et al. 2018) and multiplexed ion beam imaging by time of 
flight (MIBI-TOF) (Keren et al. 2019), can measure molecu-
lar profiles while maintaining information about the loca-
tions of cells, therefore enabling the study of cell–cell 
communication (Fischer et al. 2023) and tissue architecture 
(Fischer et al. 2022, Wu et al. 2022). Spatial omics technolo-
gies have been increasingly leveraged by researchers 

interested in delineating mechanisms that disrupt tissue ho-
meostasis and cellular niches in diseased individuals. 
For example, spatial transcriptomics data has been instru-
mental in deciphering spatial dysregulation in ischemic hearts 
(Kuppe et al. 2022). Additionally, spatial proteomics data 
has been used to elucidate cellular neighborhoods associated 
with disease progression and response to therapy in breast 
cancer (Risom et al. 2022).

Related work has looked into identifying cell interactions 
(Fischer et al. 2023), spatial clusters (Zhao et al. 2021, 
Varrone et al. 2023), and niche composition in individual 
samples (Bernstein et al. 2023). However, methods to com-
pare spatial organization across different sample groups are 
still lacking. Such methods would be instrumental in elucidat-
ing how the arrangement of cell types influences the overall 
state of a tissue.

In this work, we model spatial omics samples as graphs of 
cells to enable differential analysis of phenotypes. We focus 
on providing easy-to-use graph metrics and statistical meth-
ods for the comparative analysis of cell spatial organization. 
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Studying changes in niche composition and tissue architec-
ture is essential to unlock new insights into the role of tissue 
organization in prognosis and diagnosis (Rao et al. 2021, 
Palla et al. 2022a, Williams et al. 2022).

We introduce GraphCompass (Graph Comparison Tools 
for Differential Analyses in Spatial Systems), a Python-based 
framework that brings together a robust suite of graph analy-
sis and visualization methods, specifically tailored for the 
analysis of cell spatial organization using spatial omics data. 
Developed on top of Squidpy (Palla et al. 2022b) and 
AnnData (Virshup et al. 2021), our methods are easily inte-
grated into existing spatial omics analysis workflows. The 
framework’s modular design ensures adaptability and com-
patibility with various single-cell data analysis packages 
(Fig. 1a). Available for community use and collaboration, 
GraphCompass can be accessed at https://github.com/thei 
slab/graphcompass/, where we provide extensive function 
documentation and tutorials. We adapted the methods to 
make them flexible enough to handle large feature spaces 
(>20 000 genes), different resolutions (e.g. spot or single- 
cell), and multiple modalities of spatial omics data (Fig. 1b). 
To showcase the broad applicability of the methods in our 
suite, we curate datasets from three different spatial omics 
techniques and show that our methods recapitulate experi-
mental results, additionally providing novel insights into the 
global changes in tissue organization under different disease 

and developmental stages. The collection of omics-adapted 
methods we present are an effective hypothesis-generating 
tool that may inform the development of new diagnostic 
methods and therapeutic targets.

To the best of our knowledge, GraphCompass is the first 
method to enable differential analysis of spatial organization 
across conditions at three levels of abstraction: cell-type- 
specific subgraphs (Fig. 1d), multi-cell niches (Fig. 1e), and 
entire graphs (Fig. 1f). Though other methods, such as 
CellCharter (Varrone et al. 2023) and MENDER 
(Supplementary Table S1), also attempt to differentiate sam-
ples based on their neighborhood composition, they rely on 
clustering algorithms, and hence a well-chosen number of 
clusters. Here, we propose to perform differential niche 
analysis by studying enriched pairs of neighbor cells. We also 
present approaches that have never been applied to spatial 
omics before, such as the Wasserstein Weisfeiler–Lehman 
(WL) kernel and filtration curves. We adapt them to large 
continuous feature spaces, a typical characteristic of spatial 
omics data, and show that these metrics are powerful tools to 
compare samples and sample groups, capturing both local 
and global information. In this manuscript, we demonstrate 
the capacity of our methods to reproduce results consistent 
with previously published findings, as well as provide novel 
mechanistic hypotheses. To date, GraphCompass is the most 
comprehensive toolkit aimed at differential neighborhood 

(a) (b)

(d) (e) (f)

(c)

Figure 1. GraphCompass offers graph and statistical analysis methods to compare the spatial organization of cells across different conditions. (a) 
GraphCompass workflow. All spatial omics datasets that are stored as AnnData objects are currently supported. Support for SpatialData objects 
(Marconato et al. 2024) will be added in the near future. Select a region of interest (ROI) with napari (https://github.com/napari/napari) or use the entire 
tissue section. We use Squidpy to encode spatial omics measurements as graphs. If available, add node labels, such as cell types. Then, compare 
graphs across conditions or samples using any of the methods implemented in GraphCompass. (b) The example datasets covered here represent various 
technologies and different modalities. (c) In our framework, samples are represented as cellular graphs in which nodes correspond to cells or spots and 
edges denote spatial proximity. Nodes may be labeled (colored) based on their cell type and samples representing the same condition are grouped 
together to account for sample variation. (d–f) GraphCompass integrates multiple spatial metrics to find statistically significant differences in spatial 
organization across experimental conditions, utilizing spatial information at various abstraction levels. (d) Analyse graphs that consist of a single cell type 
and compare them between conditions using graph distance metrics (cell-type-specific subgraphs comparison). (e) Perform neighborhood analysis by 
retrieving cell-type neighbors enriched in one condition compared to another (cellular neighborhood comparison). (f) Using a holistic approach, compare 
entire graphs representing data obtained under two or more conditions (entire graphs comparison).
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composition and spatial organization analysis in the context 
of spatial omics technologies applied to disease studies. We 
hope that this framework will empower significant advance-
ments in understanding the complexities of cell organization 
within the spatial context of tissues, both in health 
and disease.

2 Materials and methods
2.1 Graph construction
Spatial omics data can be represented as graphs, where nodes 
in the graph represent either individual cells or predefined 
spots, and edges represent proximity between cells or spots 
(Dries et al. 2021, Palla et al. 2022a, Wu et al. 2022, Fischer 
et al. 2023). The nature of the node depends on the type of 
spatial omics technology used:

1) Cell-Based Data: For single-cell resolution techniques, 
each node corresponds to an individual cell. Every node 
is associated with a node attribute, namely the cell’s 
transcriptomic profile. 

2) Spot-Based Data: Technologies like Visium provide data 
at the level of spots, which are predefined, regularly 
spaced areas on a tissue section, each containing multi-
ple cells. In this scenario, each spot, with its aggregated 
gene expression information, forms a node. 

Edges represent spatial proximity between nodes. The edge 
construction method depends on the data’s layout:

1) Grid Layout: In spot-based technologies like Visium, 
where spots are arranged in a fixed grid, edge construc-
tion is relatively straightforward. Graph edges are typi-
cally defined based on direct neighbors in this grid, 
leading to a structured, regular graph topology (Dries 
et al. 2021, Palla et al. 2022b, Sona et al. 2023). 

2) Irregular Layouts: For data not laid out in a grid, defin-
ing node adjacency requires more sophisticated meth-
ods. Delaunay triangulation is a common approach used 
here. It involves creating a triangulated mesh such that 
no node lies inside the circumcircle of any triangle. This 
method effectively captures the proximity between irreg-
ularly spaced cells (Dries et al. 2021, Palla et al. 2022b, 
Zhang et al. 2022). Though distance thresholds and 
k-nearest neighbors have also been used to generate 
graphs from irregularly spaced nodes, they require that 
users tune the threshold or k appropriately, which neces-
sitates prior knowledge of the average size of cells in the 
profiled tissue, for example. Delaunay triangulation, on 
the other hand, is parameter-free and hence straightfor-
ward to use. 

Once the graph is constructed, it serves as a foundational 
structure for various differential analyses: comparing cell- 
type-specific subgraphs, cellular neighborhoods, and entire 
graphs between experimental conditions, developmental 
stages, or disease states. We use existing methods within 
Squidpy to compute a spatial graph from various types of 
spatial omics data. These graphs serve as the input for the 
analysis and visualization algorithms implemented in our 
package. We describe these analysis functions in the next sec-
tions. Broadly speaking, our criteria for our choice of meth-
ods are versatility, ease of use, and interpretability. Each 

method returns a different and complementary type of infor-
mation, which we explain in greater detail below. Most are 
parameter-free, eliminating the need for hyperpara-
meter tuning.

2.2 Comparing cell-type-specific subgraphs
We introduce two graph distance metrics to compare cell- 
type-specific graphs between different conditions: portrait 
and diffusion methods (Supplementary Data A.1).

2.2.1 Portrait method
This method creates a so-called “portrait” of a graph, which 
is a way to represent the overall structure of the graph 
(Bagrow and Bollt 2019). The portrait of a graph typically 
includes information about the distribution of distances be-
tween nodes and degree distribution. The idea behind the 
portrait method is to capture the essence of the graph’s topol-
ogy in a comprehensive snapshot. The portrait method is ro-
bust to graph size and computationally efficient, focusing on 
the global graph structure. These characteristics make it suit-
able for handling cell-type-specific graphs of different sizes. 
Moreover, the portrait method offers an information- 
theoretic interpretation, facilitating the extraction of biologi-
cal insights.

Given two graphs G and G0, we first define the network 
portrait B of each graph as an array with l × k elements, 
such that 

Blk ¼ jðvi; vjÞ : Dij ¼ l; degreeðiÞ ¼ kj: (1) 

Here, (vi, vj) are node pairs of graph G such that the short-
est path between vi and vj, Dij, equals l. The degree of a node 
is defined as the number of edges incident to that node. We 
do not compare G and G0 directly. Instead, we compare their 
network portraits B and B0, such that �ðG;G0Þ � �ðB;B0Þ
(that is, such that the difference between the network por-
traits approximates the difference between the graphs). To 
compare the network portraits, we calculate the weighted dis-
tributions P(k, l) and Q(k, l), such that 

Pðk; lÞ ¼
kBlkP

c nc
2 ;

Qðk; lÞ ¼
kB0lkP

c nc
2 ;

(2) 

where nc represents the number of nodes within a given con-
nected component c, and 

P
c nc ¼ N, with N being the total 

number of nodes in the graph. We subsequently compare the 
two distributions using the Jensen–Shannon divergence: 

DJS ¼
1
2

KLðPjjMÞþ
1
2

KLðQjjMÞ; (3) 

where KL is the Kullback–Leibler divergence and M ¼
1
2 PþQÞð . 0 ≤ DJS ≤ 1 is the dissimilarity score between the 
cell-type-specific graphs G and G0, each representing a differ-
ent experimental condition or co-variate. Here, a high dissim-
ilarity score implies maximally different graphs, and a low 
score implies that graphs are highly similar. This comparison 
is repeated for every cell type present in both graphs. Cell- 
type-specific dissimilarity scores are jointly visualized to 
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determine which cell types are most similarly organized 
across both conditions.

2.3 Comparing cellular neighborhoods
Neighborhood analysis allows users to compare the count 
and composition of niches between samples, accounting for 
batch effects. To this end, we leverage interpretable linear 
models and Generalized Linear Models (GLMs). These mod-
els allow us to determine statistically significant changes in 
the neighborhood enrichment (i.e. the enrichment of spatial 
proximity between two cell types) across multiple conditions, 
offering a deeper understanding of the spatial density and dis-
tribution of specific cell types relative to others under a given 
condition. Here, we refer to a pair of cell types as “enriched” 
if they neighbor each other more often than we would expect 
based on random chance. We first compute neighborhood 
enrichment in each sample separately using Squidpy’s 
nhood_enrichment function. This function calculates the 
observed number of each cell type pair, which is then 
compared against the expected frequency. This expected 
frequency is determined through permutation tests.

The nhood_enrichment function returns a n × n matrix 
Z containing enrichment z-scores. Zij represents the enrich-
ment of the pair that consists of cell type i and cell type j. 
Since this matrix is symmetric, we extract the upper triangu-
lar portion, which we flatten to obtain a row vector of shape 
1 × nðnþ1Þ=2 representing neighborhood enrichment in a 
single sample. Given m samples, we concatenate their corre-
sponding vectors to obtain an m × nðnþ1Þ=2 enrichment 
score matrix. By default, we fit a linear model to the neigh-
borhood enrichment z-scores. However, if one or more pairs 
of cell types are sparse, we instead fit a Quasi-Poisson model 
to the count of each observed cell type pair. Both the linear 
model and the Quasi-Poisson GLM include a fixed linear 
term to account for the “batch/subject/patient” co-variate, 
and an interaction term between all levels of the condition 
and cell type pair factors. The model functions perform a 
t-test to test if the coefficient for a given predictor is signifi-
cant. In neighborhood analysis figures, we report the P-values 
of the significant interaction terms.

2.4 Comparing entire graphs
We present two methods to perform holistic graph comparisons: 
filtration curves and WL graph kernels. Both methods result in 
graph embeddings that can be compared against one another to 
obtain a broad measure of tissue architecture similarity.

2.4.1 Filtration curves
In the context of Topological Data Analysis (TDA), filtra-
tions are a fundamental concept used to understand the shape 
of data (O’Bray et al. 2021). The basic idea is to gradually 
“grow” or “filter” the data and observe how topological fea-
tures such as connected components, holes, and voids evolve. 
Filtration curves capture both differential abundance and 
density, providing users an overall understanding of tissue 
homogeneity. We define a graph filtration as a sequence of 
nested subgraphs ∅ � G1 � G2 . . .Gm � G, ordered by edge 
weights. Let G ¼ ðV;E;wÞ be a weighted graph, where w :

E! R is the weight function assigning a real number to each 
edge, here defined as the Euclidean distance between the gene 
expression matrices associated with neighboring nodes 
(O’Bray et al. 2021). To generate the filtration curve, we or-
der the edges based on their weights, obtaining a series of 

weights w1 ≤ w2 . . . wm−1 ≤ wm. O’Bray et al. (2021) define 
the ith graph in the filtration, Gi, as the subgraph that 
includes all edges whose weight is less than or equal to wi as 
well as all nodes connected by said edges. Since our distance 
function can take on any positive real number, we compute 
10 threshold values from the collection of edge weights to re-
strict the algorithm’s computation time. We define the thresh-
old values as the 10th, 20th, … , 90th, and 100th percentile. 
At every filtration step, the algorithm analyzes the properties 
of the subgraph by evaluating a graph descriptor function. 
Assuming every node has been assigned a node label (i.e. a 
cell type), we can simply compute the number of each cell 
type present in the subgraphs. Computing and comparing fil-
tration curves is an efficient approach for representing graphs 
and contrasting two graphs or sets of graphs.

2.4.2 Weisfeiler–Lehman graph kernels
The WL graph kernel is a powerful technique used in graph 
theory and machine learning, particularly in the context of 
graph classification and similarity analysis. Boris Weisfeiler 
and Andrei Lehman introduced it in the late 20th century as 
a graph isomorphism test (Weisfeiler and Leman 1968). 
Though it has been shown that there are non-isomorphic 
graphs that cannot be distinguished by this algorithm, it has 
been successfully implemented as a graph similarity measure 
(Shervashidze et al. 2011). Broadly speaking, the algorithm 
consists of three steps: node label augmentation, iteration, 
and kernel computation. In each iteration, the node label of a 
given node is transformed into an augmented label, or multi- 
set of labels, that contains the original label as well as the 
labels of the given node’s neighbors. The augmented label is 
subsequently hashed, resulting in a new, compressed node la-
bel. Given a graph G ¼ ðV;EÞ, where V is a set of nodes (ver-
tices) and E is a set of edges, we can define the node label 
augmentation step as 

ahþ1ðvÞ ¼ hashðahðvÞ;N h
ðvÞÞ; (4) 

We define ahðvÞ as the compressed label of node v at itera-
tion h. Similarly, N h

ðvÞ represents the neighbor labels at itera-
tion h. Lastly, we define a0ðvÞ as the original label of node v. 
The node labeling step is repeated for a pre-specified number of 
iterations. After the iteration process, the labels assigned to the 
nodes are used to compute a kernel matrix. This matrix quanti-
fies the structural similarity between pairs of graphs. The origi-
nal formulation of the algorithm restricts its use to graphs with 
discrete labels. However, some of the more common spatial 
omics methods, most notably Visium, do not produce single- 
cell-resolved data. Each spot may contain more than one cell, 
complicating cell type assignment. The spot is best represented 
by its associated gene expression matrix. The Wasserstein WL 
kernel (Togninalli et al. 2019) extends the WL kernel from the 
discrete to the continuous case. We define ahðvÞ as the attribute 
of node v at iteration h. Let w(v, u) be the weight of the edge 
between nodes v and u. Then, the updated node attribute at it-
eration hþ1 is computed as 

ahþ1ðvÞ ¼
1
2

ahðvÞþ
1

degðvÞ

X

u2NðvÞ

wðv; uÞ � ahðuÞ
 !

: (5) 

Once the maximum number of iterations has been reached, 
the algorithm evaluates the distance between pairs of nodes 
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ðvi; v0jÞ for each vi 2 V and each v0j 2 V0, resulting in distance 
matrix D. Here, we set the number of iterations to three as 
suggested by the original authors (Togninalli et al. 2019) and 
define the distance between nodes vi and v0j as the Euclidean 
distance between their corresponding gene expression matri-
ces (O’Bray et al. 2021). Lastly, the algorithm quantifies the 
similarity of graphs G and G0 by measuring the Wasserstein 
distance between them as 

W ¼ min
T 2Γ
hT ;Di; (6) 

where T 2 Γ is a transport matrix and h�; �i is the Frobenius 
dot product. Note that the Wasserstein WL kernel can be 
applied to data obtained at single-cell resolution as well as 
spot-based data. It does not require cell type annotations and 
provides a global view of tissue architecture similarity.

3 Results
In the next sections, we demonstrate the utility of 
GraphCompass methods by analyzing three datasets derived 
from three different technologies and spatial systems [MIBI- 
TOF breast cancer (Risom et al. 2022), 10× Genomics 
Visium heart (Kuppe et al. 2022), and Stereo-seq axolotl 
(Wei et al. 2022)]. We only use analysis and visualization 
functions implemented in GraphCompass, highlighting what 
can be learned from each function.

3.1 Spatial organization of the tumor 
microenvironment and breast cancer progression
Risom et al. (2022) used MIBI-TOF (Keren et al. 2019) with 
a 37-plex antibody staining panel to study changes in the tu-
mor microenvironment during the transition from ductal car-
cinoma in situ (DCIS) to invasive breast cancer (IBC), 
allowing them to identify spatial and functional changes in 
various cell types, including myoepithelial cells (MYOEP), 
fibroblasts, and immune cells (Fig. 2a). They compared nor-
mal samples to both DCIS samples and IBC patient samples. 
DCIS samples can be further divided into progressors (sam-
ples that progress from DCIS to IBC) and non-progressors. 
The subset of data we analyze consists of 67 samples 
(NNormal ¼ 9, NProgressors ¼ 14, NNon−progressors ¼ 44). As part 
of their effort to identify features that distinguish transition-
ing samples from non-transitioning samples, the authors used 
a masking approach to gauge the thickness and continuity of 
the myoepithelial barrier in multiplexed images. An impor-
tant, yet surprising, finding of this experiment is that myoepi-
thelial disruption occurs in lesions that did not become 
invasive (non-progressors), while the myoepithelium of DCIS 
patients that do develop IBC (progressors) stayed mostly in-
tact. A robust myoepithelial barrier is a key feature of healthy 
breast tissue, meaning that progressor samples more closely 
resemble normal breast samples in terms of myoepithelial ro-
bustness than non-progressor samples do. Risom et al. (2022)
suggest that myoepithelial disruption may be a protective 
mechanism against progression to invasive cancer.

We employed GraphCompass to further investigate the 
downstream effects of myoepithelial disruption on breast tis-
sue architecture at different scales. We first used a holistic ap-
proach, WL Graph Kernels (Section 2.4.2), to assess the 
overall similarity between the architecture of normal breast 
tissue and the spatial organization of non-progressor and 
progressor samples. Based on this holistic view of breast 

cellular organizational structure, we find that normal tissue 
resembles non-progressor samples more closely than progres-
sor samples (Fig. 2b). Next, we generated cell-type-specific 
subgraphs and calculated the dissimilarity scores of the sub-
graphs using the portrait distance method (Section 2.2.1). 
These subgraphs indeed suggest that the spatial organization 
of MYOEP in normal breast tissue is significantly more simi-
lar to that in progressor tissue than that in non-progressor tis-
sue (p ¼ 7:9e−4, Student’s t-test comparing Wasserstein 
distance means between (i) normal versus progressor and (ii) 
normal versus non-progressor) (Fig. 2c). GraphCompass was 
thus able to confirm the previously reported finding that non- 
progressor tissue is characterized by its compromised myoe-
pithelial layer, distinguishing it from healthy and progres-
sor tissue.

To further attempt to explain the protective quality of the 
disintegrating myoepithelial barrier, we executed a neighbor-
hood analysis (Section 2.3) to determine which types of cells 
are more likely to co-occur in non-progressor samples than in 
progressor samples and normal breast samples. To this end, 
we fit a linear model to the cell type pair enrichment scores. 
Interestingly, immune cells were more likely to neighbor 
other immune cells in non-progressor samples compared to 
normal breast samples, indicating that non-progressors 
mount an immune response to the tumor, recruiting T lym-
phocytes (TCELL), B lymphocytes (BCELL), and dendritic 
cells (DC) to the site of the tumor. Indeed, CD4T–CD4T, 
CD4T–CD8T, B cell–T cell, and CD4T–DC were all enriched 
in non-progressor samples compared to normal samples 
(Fig. 2f). Notably, we did not observe an enrichment of these 
neighbor pairs in progressor samples. We hence hypothesize 
that a thinner myoepithelial barrier protects against the tran-
sition to IBC by contributing to the development of a “hot” 
tumor, i.e. a tumor that presents with a microenvironment 
characterized by heightened immune activity, often featuring 
tumor-infiltrating lymphocytes (Duan et al. 2020). The 
“temperature” of immune environments has indeed been 
shown to play a crucial role in shaping the trajectory of dis-
ease progression from pre-invasive lesions to invasive cancer 
(Galon et al. 2010, Fridman et al. 2017). The compromised 
myoepithelial barrier in non-progressor samples may allow 
immune cells, particularly T lymphocytes, greater access to 
the tumor microenvironment, increasing their presence 
around tumors. Our analysis suggests that these tumor- 
infiltrating T cells may eventually trigger cancer cell death, 
preventing progression to IBC.

In addition, we found that monocyte (MONO) organiza-
tion in normal tissue is more similar to monocyte organiza-
tion in non-progressors than that in progressors (p ¼ 7:6e−3, 
Student’s t-test comparing Wasserstein distance means be-
tween (i) normal versus progressor and (ii) normal versus 
non-progressor) (Fig. 2c). Furthermore, the filtration curves 
(Section 2.4.1) show that the average number of macro-
phages (MACS) is higher in progressor samples than in non- 
progressors and control samples (Fig. 2e). In mouse models 
of cancer, monocytes have been observed to migrate to the 
site of the tumor, where they differentiate into tumor- 
associated macrophages (TAMs). Multiple independent 
breast cancer studies have identified the TAM signature and 
density as markers of tumor progression (Lin et al. 2003, 
Arwert et al. 2018, Cassetta et al. 2019). Our results suggest 
that progressor monocytes have differentiated into macro-
phages, which may affect progressor prognosis (Fig. 2d and 
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e). We could not establish differences in the organization of 
luminal tumor cells between progressors and non-progressors 
(Fig. 2c). Therefore, tumor spatial organization neither seems 
to cause nor appears to be immediately affected by myoepi-
thelial integrity.

Understanding and manipulating the immune environment 
is essential for developing targeted therapeutic strategies to 
enhance immune responses and restrain cancer progression. 
Though further experimental validation is beyond the scope 
of our manuscript, we have shown that the algorithms imple-
mented in GraphCompass generate results consistent with 
previously published findings, namely that myoepithelial bar-
rier disintegration is associated with favorable disease out-
comes. We have also demonstrated the use of GraphCompass 
as a hypothesis-generating tool, offering a potential explana-
tion as to why myoepithelial loss protects against tumor 
progression.

3.2 Myocardial tissue reorganization following 
ischemic injury
Kuppe et al. (2022) conducted a comprehensive study to ex-
amine the changes that occur in the cardiac transcriptome 
and epigenome following a heart attack. They integrated data 
from three different modalities: single-cell RNA-seq, chroma-
tin accessibility data, and spatial transcriptomics data gener-
ated by the Visium platform (Ståhl et al. 2016). Their data 
contain samples from patients who experienced myocardial 
infarction and healthy individuals. Samples were taken from 
different physiological zones of the myocardium (RZ, remote 
zone; BZ, border zone; IZ, ischemic zone; FZ, fibrotic zone) 
(Fig. 3a). Here, we focus on the experiments that were based 
on spatial transcriptomics data. These experiments show 
changes in the organization of cardiomyocytes and myeloid 
cells after ischemic injury.

To study the effect of ischemic injury beyond the initial site 
of the injury, we performed a comparison of samples taken 
from three physiological regions: the IZ, the unaffected left 
ventricular myocardium (RZ), and control cardiac tissue 
(NIZ ¼ 8, NRZ ¼ 5, NControl ¼ 4). We focused our analysis on 
these three regions to better understand whether RZ is af-
fected by the ischemic injury and therefore more similar to 
the IZ or is protected from the injury and thus more similar 
to control tissue. Using the entire graph comparison ap-
proach (Section 2.4.2), we show that the spatial arrangement 
of the RZ is not significantly more similar to the arrangement 
of the IZ than that of the control (Fig. 3b). This indicates that 
the remote zone might not be impacted, or only partially im-
pacted, by the myocardial infarction. To further study the 
effects of ischemic injury at the cellular organization level, we 
utilized the cell-type-specific portrait method (Section 2.2.1). 
We found that the organization of cardiomyocytes in the RZ 
differed from that in the normal tissue samples. It also dif-
fered from cardiomyocyte organization in the IZ. Overall, the 
spatial arrangement of cardiomyocytes in the RZ is slightly 
more similar to the arrangement in the control samples than 
to the arrangement in the IZ, though the effect is not signifi-
cant (P¼ .25, Student’s t-test comparing Wasserstein distance 
means between (i) RZ versus control and (ii) RZ versus IZ) 
(Fig. 3c). This finding indicates that the cardiomyocytes in 
the remote ventricular myocardium are impacted by the in-
jury, though to a lesser extent than the cardiomyocytes in the 
IZ. Our results also suggest that the arrangement of myeloid 
cells in the RZ is significantly more similar to that in the 

control tissue than that in the IZ (p ¼ 2:2e−7, Student’s t-test 
comparing Wasserstein distance means between (i) RZ versus 
control and (ii) RZ versus IZ) (Fig. 3c). This supports the no-
tion that the damage inflicted by ischemic injury on myeloid 
cells is localized at the injury site. The filtration curves also 
show that cardiomyocyte organization in the RZ is affected 
by the injury (Fig. 3d), while myeloid organization is not 
(Fig. 3e). In particular, the curves show that both the number 
and density of cardiomyocytes in the RZ have been impacted 
by the infarction.

Collectively, our results support the finding that myocar-
dial infarction can have localized or systemic impacts on dif-
ferent cell types. Though damage typically originates in a 
specific area of the heart, we observe that the consequences 
can extend beyond the initial site of injury. Indeed, experi-
mental studies have suggested that the size of the infarct 
depends on the post-infarct inflammatory response 
(Frangogiannis 2014).

3.3 Restoration of axolotl brain function upon 
injury: comparing healthy and regenerated brains
Wei et al. (2022) used the Stereo-seq technology (Chen et al. 
2022) to generate spatial omics data spanning six axolotl de-
velopmental stages and seven regeneration phases. The axo-
lotl is a type of salamander, known for its remarkable ability 
to regenerate lost body parts. This ability makes them an in-
valuable model for studying tissue regeneration and wound 
healing, potentially offering insights applicable to human 
medicine (Fig. 4a). To shed light on the molecular events that 
precede regeneration, the authors removed a part of the brain 
and then collected spatial transcriptomics data 2, 5, 10, 15, 
20, 30, and 60 days post-injury. They claim that 60 days 
post-injury, brain cell composition, and the spatial distribu-
tion of cell types are restored.

To assess tissue restoration success, we focused on studying 
the last two regenerative stages using two samples collected 
30 and 60 days post-injury (30 DPI and 60 DPI). We com-
pared the 60 DPI sample against the 30 DPI sample as well as 
a control adult sample from the development dataset 
(N30DPI ¼ 1; N60DPI ¼ 1, NAdult ¼ 1). The aim of our analy-
sis is to understand whether, after 60 days, the regenerating 
axolotl brain is more similar to the unharmed adult brain or 
the 30 DPI brain. If the axolotl brain has indeed completely 
regenerated, we would expect to see that both the distribu-
tion of cell types and their spatial organization have been re-
stored, mimicking that of the control adult sample. 
Comparing the 30 DPI, 60 DPI, and control sections at the 
sample level (Section 2.4.2), we show that the 60 DPI brain is 
slightly more similar to the 30 DPI brain than to the adult 
brain, indicating that the arrangement of cells has not been 
fully restored post-injury (Fig. 4b), though the differences 
are subtle.

Comparison of the cell-type-specific subgraphs further sup-
ports our conclusion that the spatial organization of the 
regenerated brain differs from the organization of the healthy 
brain. Indeed, the portrait graph (Section 2.2.1) indicates that 
the organization of multiple cell types in the 60 DPI sample 
resembles the 30 DPI organization more so than the adult 
brain organization. For example, one cell type that is ar-
ranged similarly in the 30 DPI and 60 DPI samples is the tel-
encephalon neuroblast (tlNBL), which has been shown to 
have a role in telencephalon neurogenesis during regeneration 
(Lust et al. 2022) (Fig. 4c), indicating that regeneration may 
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not yet be complete 60 days after the injury. However, the 
portrait plot also shows several cell types in the 60 DPI sam-
ple whose spatial organization is similar to that of adult cells. 
These cell types include dorsal pallium excitatory neurons 
(dpEX) and Sfrpþ ependymal glial cells (sfrpEGC). This sug-
gests that the arrangement of dpEX and sfrpEGC cells is re-
stored 60 days post-injury.

Wei et al. (2022) observe that development and regenera-
tion are characterized by many of the same processes, includ-
ing neuronal differentiation and migration, but that several 
pathways were uniquely upregulated in regenerating brains. 
In addition, they identify two subtypes of ependymoglial cells 
(EGCs), one of which is present in the developing brain, 
while the other is found only in the regenerating brain. It is 

possible that these biological differences underlie the incom-
plete restoration of cell spatial organization in regenerating 
brains, but more data is needed to draw robust conclusions.

To summarize, we find that the arrangement of some cell 
types is successfully restored in the 60 days following brain 
injury. However, we also highlighted differences in the orga-
nization of the 60 DPI brain and the healthy adult brain, indi-
cating that the former had not been fully regenerated at the 
60-day mark.

4 Discussion
GraphCompass is a comprehensive graph analysis framework 
that provides quantitative methods to compare cell spatial 
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organization across physiological systems, pathological 
states, and developmental stages. Compatible with spatially 
resolved transcriptomics and proteomics data, 
GraphCompass integrates multiple graph-based and statisti-
cal approaches for investigating spatial graphs at three differ-
ent levels of abstraction: individual cell types, multi-cell 
neighborhoods, and entire samples. These methods were 
adapted for spatial omics data, such that they can handle 
high-dimensional features, flexible node identities (spot or 
single cell), and variable edge weight definitions.

Differences in cell spatial organization can be indicators of 
disease states, or correlate with how patients respond to 
treatments. Studying cell spatial organization across individu-
als can provide insights into developmental and regenerative 
processes, which can guide the development of engineered tis-
sues and organoids. We believe that GraphCompass will sig-
nificantly advance our understanding of the role of tissue 
architecture in healthy development, disease onset, 
and recovery.

In this manuscript, we have demonstrated the capabilities 
of GraphCompass through its application to datasets derived 
from diverse technologies, highlighting the biological insights 
that can be obtained from the various metrics it implements. 
Developed in Python, GraphCompass interfaces seamlessly 
with Squidpy and AnnData, enhancing its scalability and 
the potential for expansion with new methodologies. With 
GraphCompass, our aim is to offer the computational biol-
ogy community user-friendly and accessible graph compari-
son methods, empowering both experimental and 

computational scientists in the analysis and interpretation of 
tissue architecture differences across different biologi-
cal phenotypes.
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