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Abstract
Motivation: Many diseases are complex heterogeneous conditions that affect multiple organs in the body and depend on the interplay be-
tween several factors that include molecular and environmental factors, requiring a holistic approach to better understand disease pathobiology. 
Most existing methods for integrating data from multiple sources and classifying individuals into one of multiple classes or disease groups have 
mainly focused on linear relationships despite the complexity of these relationships. On the other hand, methods for nonlinear association and 
classification studies are limited in their ability to identify variables to aid in our understanding of the complexity of the disease or can be applied 
to only two data types.
Results: We propose Deep Integrative Discriminant Analysis (IDA), a deep learning method to learn complex nonlinear transformations of two 
or more views such that resulting projections have maximum association and maximum separation. Further, we propose a feature ranking 
approach based on ensemble learning for interpretable results. We test Deep IDA on both simulated data and two large real-world datasets, 
including RNA sequencing, metabolomics, and proteomics data pertaining to COVID-19 severity. We identified signatures that better discrimi-
nated COVID-19 patient groups, and related to neurological conditions, cancer, and metabolic diseases, corroborating current research findings 
and heightening the need to study the post sequelae effects of COVID-19 to devise effective treatments and to improve patient care.
Availability and implementation: Our algorithms are implemented in PyTorch and available at: https://github.com/JiuzhouW/DeepIDA

1 Introduction
Many diseases are complex heterogeneous conditions that af-
fect multiple organs in the body and depend on the interplay 
between several factors that include molecular and environ-
mental factors. Research studies continue to demonstrate 
that a better understanding of the complexity and heteroge-
neity in complex diseases requires analytical approach that 
goes beyond individual analysis of different types of data or 
views (e.g. genetics, proteomics, lipidomics). It is also widely 
recognized that deep learning methods are flexible in learning 
complex nonlinear relationships in data. However, most 
existing deep learning methods for integrative analysis are 
limited in their ability to produce clinically meaningful find-
ings that shed light on the parthenogenesis of complex dis-
eases. In this article, we develop a deep learning method for 
modeling complex nonlinear associations and separation in 
two or more data types while producing clinically meaningful 
results. In the literature, data from multiple sources are some-
times termed “views.” We use views, data types, and multiple 
sources interchangeably in this work.

1.1 Motivating application: a COVID-19 study
COVID-19 is due to complications from severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) but the clinical 

course of the infection varies for each individual. In particu-
lar, research suggests that patients with and without severe 
COVID-19 have different genetic, pathological, and clinical 
signatures (Severe-Covid-19-GWAS-Group 2020, Overmyer 
et al. 2021), highlighting the need to use multiple molecular 
data to better understand the disease. Our work is motivated 
by a study conducted by Overmyer et al. (2021) that used 
multi-omics data to understand COVID-19 mechanisms. 
Blood samples were collected from 128 patients admitted to 
Albany Medical Center, NY from 6 April 2020 to 1 May 
2020 for moderate to severe respiratory problems. These 
samples were quantified for metabolomics, RNA sequencing 
(RNA-seq), proteomics, and lipidomics. In addition to molec-
ular data, various demographic and clinical data were 
obtained at the time of enrollment. For eligibility, subjects 
had to be at least 18 years old and admitted to the hospital 
for COVID-19-like symptoms. Of the eligible, 102 had 
COVID-19 and 26 did not have COVID-19. Of those with 
COVID-19, 51 were admitted to the Intensive Care Unit 
(ICU) and 51 were not admitted to the ICU (i.e. Non-ICU). 
Of those without COVID-19, 10 were Non-ICU patients and 
16 were ICU patients.

In Overmyer et al. (2021), the primary analyses involved 
separately associating each omics data with disease severity. 
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Secondary analyses considered pairwise associations of the 
molecular data. Their findings suggest that the severity of 
COVID-19 could be related to dysregulation of the lipid 
transport system. In this article, we take a holistic approach 
to integrate molecular data and disease severity, defined in 
terms of COVID-19 status and ICU status. In particular, in-
stead of assessing pairwise associations and using unsuper-
vised statistical methods to correlate the different views, we 
aim to model the overall dependency structure among the 
views while simultaneously modeling separation between the 
COVID-19 patient groups. Ultimately, our goal is to eluci-
date the molecular architecture of COVID-19 by identifying 
molecular signatures that can discriminate between patients 
with and without COVID who were or were not admitted to 
the ICU.

1.2 Existing methods
Many linear methods have been proposed in the literature 
that could be used to associate molecular data. For example, 
canonical correlation analysis (CCA) methods have been pro-
posed to learn linear projections of two views that are maxi-
mally correlated (Hotelling 1936, Carroll 1968, Safo et al. 
2018). CCA with deep neural networks (DNN) (Deep CCA) 
(Andrew et al. 2013), and its variations (e.g. Wang et al. 
2015, Benton et al. 2019), have been proposed to learn non-
linear projections of two or more views that are maximally 
correlated. Refer to Guo and Wu (2019) for a review of some 
CCA methods. These association-based methods are all unsu-
pervised, and they do not use an outcome data (i.e. class 
labels) when learning the low-dimensional representations.

Methods have been proposed to learn linear projections of 
two or more views that simultaneously maximize association 
between views and separation between classes in each view 
(Safo et al. 2021, Zhang and Gaynanova 2021). For example, 
in Safo et al. (2021), a method that combined linear discrimi-
nant analysis (LDA) and CCA was proposed to maximize as-
sociation of multiple views and separation of classes in each 
view. These methods have focused primarily on learning linear 
relationships. But the relationships among the multiple views 
and classes are oftentimes complex to be understood solely by 
linear methods. Nonlinear methods such as deep learning 
methods, could be used to model complex nonlinear structure 
among the views and between a view and the outcome.

Nonlinear methods have also been proposed to jointly mul-
tiview data and discriminate between classes (Hu et al. 2019, 
Gao et al. 2022, Moon and Lee 2022, Gao and Shang 2023). 
In Hu et al. (2019), a DNN method, named MvLDAN, was 
proposed to learn nonlinear projections of multiple views 
that maximally correlate the views and separate the classes in 
each view but the convergence of MvLDAN is not 
guaranteed. Importantly, MvLDAN and similar nonlinear 
association-based methods are not capable of ranking or 
selecting features, impacting interpretability and clinical ap-
plicability. For instance, applying MvLDAN to our motivat-
ing COVID-19 data would constrain our ability to identify 
key molecules driving the association between views and sep-
aration of the COVID-19 patient groups. Recently, a data in-
tegration and classification method (MOMA) for multiview 
learning that uses the attention mechanism for interpretabil-
ity has been proposed (Moon and Lee 2022). Of note, the al-
gorithm developed for MOMA is applicable to two views, 

which is very restrictive, and cannot be used for our motivat-
ing application with three views. In Mirzaei et al. (2019), a 
two-step approach for feature ranking that is based on a 
teacher-student (TS) framework was proposed. The “teacher” 
step obtains the best low-dimensional representation of the 
data using any dimension reduction method (e.g. Deep CCA). 
The “student” step performs feature ranking based on these 
low-dimensional representations. In particular, a single-layer 
network with sparse weights is trained to reconstruct the low- 
dimensional representations obtained from the “teacher” 
step, and the features are ranked based on the weights. The 
TS framework is limited because model training (i.e. identify-
ing low-dimensional representations of the data) and feature 
ranking steps are separated, thus one cannot ensure that the 
top-ranked features identified are meaningful.

1.3 Our approach
Motivated by our goal of elucidating the molecular architec-
ture of COVID-19 severity through the use of only few multi- 
omics features, we propose Deep Integrative Discriminant 
Analysis (IDA) to learn complex nonlinear relationships in 
these data. Our work makes several contributions in both 
methods and applications. First, the proposed method com-
bines the flexibility of deep learning with advantages of CCA 
and LDA to simultaneously model complex nonlinear associ-
ations between two or more views and separations between 
classes in every view. Because we incorporate LDA in our 
framework for discrimination, we do not need any further so-
phisticated methods for classification such as support vector 
machine (SVM), which reduces the level of computational 
complexity. Second, since we want to identify molecular fea-
tures that may shed light on the pathogenesis of COVID-19, 
we propose a feature ranking framework based on resam-
pling techniques to identify features contributing most to the 
overall association of the views and the separation of the clas-
ses within a view. We emphasize that our feature ranking 
framework can be implemented in other classification prob-
lems. Third, we develop an algorithm that can handle high di-
mensional problems convergence guaranteed. Finally, our 
simulations and real data analyses demonstrate that the per-
formance of the proposed approach is similar to or better 
than several existing deep learning methods even when the 
sample size is small relative to the number of variables. 
Supplementary Table S1 highlights the key features of 
Deep IDA.

The rest of the article is organized as follows. In Section 2, 
we introduce the proposed method and algorithms for imple-
menting the method. In the Section 3, we use simulations to 
demonstrate the effectiveness of Deep IDA where there is 
“ground truth.” We also showcase the performance of Deep 
IDA on the motivating data, under small sample size setting. 
We include an additional application using MNIST hand-
writing data to primarily assess the classification perfor-
mance of the proposed method without feature ranking, 
under large sample size setting. Application of our method to 
the motivating data will assess classification performance of 
Deep IDA and also demonstrate that Deep IDA can identify 
biologically relevant features. We end with a conclusion 
remark in Section 4. Due to space constraints, all proofs, op-
timization, linear simulations and parts of the real data analy-
sis are given in the Supplementary material.
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2 Methods

Let Xd 2 Rn×pd be the data matrix for view d, d ¼ 1; . . . ;D (e. 
g. proeotimcs, metabolomics, RNA-seq, lipidomics data). 
Each view, Xd, has pd variables, all measured on the same set 
of n individuals or units. Suppose that each unit belongs to 
one of two or more classes, K. Let yi; i ¼ 1; . . . ;n be the class 
membership for unit i. For each view, let Xd be a concatena-
tion of data from each class, i.e. Xd ¼ ½Xd

1;X
d
2; . . . ;Xd

K�
T, 

where Xd
k 2 Rnk×pd ;k ¼ 1; . . . ;K and n ¼

PK
k¼1 nk. For the 

k-th class in the d-th view, Xd
k ¼ ½x

d
k;1;x

d
k;2; . . . ; xd

k;nk
�
T, where 

xd
k;i 2 Rpd is a column vector denoting the view d data values 

for the i-th unit in the k-th class. Given the views and data on 
class membership, we wish to explore the association among 
the views and the separation of the classes simultaneously, and 
also to predict the class membership of a new unit using the 
unit’s data from all views or from some of the views. 
Additionally, we wish to identify features that contribute most 
to the overall association among the views and the separation 
of classes within each view. Recently, Safo et al. (2021) pro-
posed sparse SIDA, a joint method that combines the integra-
tion step with the separation step. They showed that this joint 
method often leads to better classification accuracy compared 
to two-step methods: association followed by classification. 
We briefly describe this method in Supplementary material as 
it is relevant to the principles we propose here.

2.1 Deep integrative discriminant analysis
We extend the joint association and classification linear method 
in Safo et al. (2021) to learn nonlinear relationships between 
two or more views and between a view and a binary or multi-
class outcome. We follow notations in Andrew et al. (2013) to 
define our deep learning network. Assume that the DNN has 
m ¼ 1; . . . ;M layers for view d (each view can have its own 
number of layers), and each layer has cd

m nodes, for 
m ¼ 1; . . . ;M − 1. Let o1;o2; . . . ;oD be the dimensions of the 

final(Mth) layer for the D views. Let hd
1 ¼ sðWd

1xdþbd
1Þ 2 Rcd

1 

be the output of the first layer for view d. Here, xd is a length- 

pd vector representing a row in Xd, Wd
1 2 Rcd

1×pd 
is a matrix of 

weights for view d, bd
1 2 Rcd

1 is a vector of biases for view d in 
the first layer, and s 2 R! R is a nonlinear activation function. 
Using hd

1 as an input for the second layer, let the output of the 

second layer be denoted as hd
2 ¼ sðWd

2hd
1þ bd

2Þ 2 Rcd
2 , Wd

2 2

Rcd
2×cd

1 and bd
2 2 Rcd

2 . Continuing in this fashion, let the output 

of the ðm−1Þth layer be hd
m−1 ¼ sðWd

m−1hd
m−2þbd

m−1Þ 2 Rcd
m−1 , 

Wd
m−1 2 Rcd

m−1×cd
m−2 and bd

m−1 2 Rcd
m−1 . Denote the output of the 

final layer as f dðxd; θdÞ ¼ sðWd
Mhd

M−1þbd
MÞ 2 Rod , where θd is 

a collection of all weights, Wd
m, and biases, bd

m for m ¼
1; . . . ;M and d ¼ 1; . . . ;D. In matrix notation, the output of 
the final layer of the d-th view is denoted as 
Hd ¼ f dðXdÞ 2 Rn×od , where it is clear that f d depends on 
the network parameters. On this final layer, we propose 
to solve a modified IDA optimization problem to obtain 
projection matrices that maximally associate the views 
and separate the classes. Specifically, we propose to find a set of 
linear transformations Ad ¼ ½ad;1; ad;2; . . . ; ad;l� 2 Rod×l, 
l≤minfK−1;o1; . . . ;oDg such that when the nonlinearly trans-
formed data are projected onto these linear spaces, the views 
will have maximum linear association and the classes within 

each view will be maximally linearly separated. Figure 1 is a vi-
sual representation of Deep IDA.

For a specific view d, Hd ¼ ½Hd
1;H

d
2; . . . ;Hd

K�
T
;Hd

k 2

Rnk×od ; k ¼ 1; . . . ;K and n ¼
PK

k¼1 nk. For the k-th class in the 

d-th final output, Hd
k ¼ ½h

d
k;1;h

d
k;2; . . . ;hd

k;nk
�
T, where hd

k;i 2 Rod 

is a column vector representing the output for subject i in the kth 
class for view d. Using Hd, the output of the final layer, as the 
data matrix for view d, we define the between-class covariance (i. 
e. Sd

b 2 Rod×od ), the total covariance (i.e. Sd
t 2 Rod×od ), and the 

cross-covariance between view d and j (Sdj 2 Rod×oj ), respec-

tively, as: Sd
b ¼

1
n−1

PK
k¼1 nkðl

d
k−ldÞ ðld

k−ldÞ
T; Sd

t ¼
1

n−1 
Pn

i¼1ðh
d
k;i−ldÞðhd

k;i−ldÞ
T
¼ 1

n−1 ðHdT
−ld � 1ÞðHdT

−ld � 1ÞT, 

and Sdj ¼
1

n−1 ðH
dT

−ld � 1Þ ðHjT −lj � 1ÞT. Here, 1 is an all-ones 

row vector of dimension n, ld
k ¼

1
nk

Pnk
i¼1 hd

k;i 2 Rod is the k-th 

class mean, and ld ¼ 1
K

PK
i¼1 ld

k 2 Rod is the mean for projected 
view d.

To obtain the linear transformations A1;A2; . . . ;AD 
and the parameters of Deep IDA defining the functions f d, 
(i.e. the weights and biases), we propose to solve 
the following: 

argmax
A1;...;AD ;f1;...;f D

(
ρ
D

XD

d¼1

tr½AT
d Sd

bAd�þ
2ð1−ρÞ

DðD−1Þ

XD

d¼1

XD

j;j6¼d

tr½AT
d SdjAjA

T
j ST

djAd�

)

subject to tr½AT
d Sd

t Ad� ¼ l; 8d:

(1) 

where tr[] is the trace of a matrix and ρ is a hyper- 
parameter that controls the relative contribution of the sep-
aration and the association to the optimization problem. 
Through extensive simulations, we have found that a ρ 
value of 0.5 yields good classification performance. 
However, users can perform cross-validation to find the 
best ρ. Here, the first term is an average of the separation 
for the D views, and the second term is an average of pair-
wise squared correlations between two different views 
(DðD−1Þ

2 measures in total).
For fixed Deep IDA parameters, (i.e. weights and biases), 

(1) reduces to solving the optimization problem: 

argmax
A1;...;AD

(
ρ
D

XD

d¼1

tr½AT
d Sd

bAd�þ
2ð1−ρÞ

DðD−1Þ

XD

d¼1

XD

j;j6¼d

tr½AT
d SdjAjA

T
j ST

djAd�

)

subject to tr½AT
d Sd

t Ad� ¼ l; 8d:

(2) 

Denote Sd
t

−1
2 as the square root of the inverse of Sd

t . With 
the assumption that od<n, Sd

t is non-singular, as such we can 
take the inverse. Let Md ¼ Sd

t
−1

2Sd
bSd

t
−1

2, N dj ¼ Sd
t

−1
2SdjS

j
t
−1

2 and 
Cd ¼ Sd

t
1
2Ad. Then, the optimization problem in (2) is 

equivalently 

argmax
C1;C2;...;CD

(
ρ
D

XD

d¼1

tr½CT
dM

dCd�þ
2ð1−ρÞ

DðD−1Þ

XD

d¼1

XD

j;j6¼d

tr½CT
dN djCjC

T
j N

T
djCd�

)

subject to tr½CT
dCd� ¼ l; 8d:

(3) 

and the solution reduces to solving a system of eigenvalue 
problems. More formally, we have the following theorem.
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Theorem 1 Let Sd
t and Sd

b respectively be the total 
covariance and the between-class covariance for the 
top-level representations Hd;d ¼ 1; . . . ;D. Let Sdj be 
the cross-covariance between top-level representations 
d and j. Assume Sd

t � 0. Define Md ¼ Sd
t

−1
2Sd

bSd
t

−1
2 and 

N dj ¼ Sd
t

−1
2SdjS

j
t
−1

2. Then Cd 2 R
od×l, l≤minfK−1;

o1; . . . ;oDg in (3) are eigenvectors corresponding 
respectively to eigenvalues Kd ¼diagðλdk

; . . . ; λdl
Þ, 

λdk
> � � �>λdl

>0 that iteratively solve the eigensystem 

problems: ðc1M
dþc2 

PD
j6¼dN djCjC

T
j N

T
djÞCd ¼ KdCd;

8d ¼ 1; . . . ;D; where c1 ¼
ρ
D and c2 ¼

2ð1−ρÞ
DðD−1Þ.   

The proof of Theorem 1 is in the Supplementary material. We 
can initialize the algorithm using any arbitrary normalized non-
zero matrix. After iteratively solving D eigensystem problems un-
til convergence, we obtain the optimized linear transformations 
eC1; . . . ; eCD which maximize both separation of classes in the 
top-level representations, Hd, and the association among the 
top-level representations. Since we find the eigenvector- 
eigenvalue pairs of ðc1M

dþc2
PD

j¼1;j6¼dN djCjC
T
j NT

djÞ, the col-
umns of eCd, d ¼ 1; . . . ;D are orthogonal and provide unique in-
formation that contributes to the association and separation in 
the top-level representations. Given the optimized linear trans-
formations eC1; . . . ; eCD, we construct the objective function for 
the D DNNs as: 

argmax
f 1;f 2;...;f D

(

c1

XD

d¼1

tr½eC
T
dM

deCd�þc2

XD

d¼1

XD

j;j6¼d

tr½eC
T
dN dj

eCjeC
T
j N

T
dj
eCd�

)

:

(4) 

Theorem 2 For d fixed, let ηd;1; . . . ; ηd;l, l≤minfK−1;
o1; . . . ;oDg be the largest l eigenvalues of: 
c1M

dþc2
PD

j6¼dN djCjC
T
j N

T
dj. Then the solution ef

d 
to 

the optimization problem in (4) for view d 
maximizes: 

Pl
r¼1 ηd;r.   

The proof of Theorem 2 is in the Supplementary material. 
The objective function in Theorem 2 aims to maximize the sum 
of the l largest eigenvalues for each view. In obtaining the view- 
specific eigenvalues, we use the cross-covariances between that 
view and each of the other views, and the total and between- 
class covariances for that view. Thus, by maximizing the sum of 
the eigenvalues, we are estimating corresponding eigenvectors 
that maximize both the association of the views and the separa-
tion of the classes within each view. By Theorem 2, the solution 
ef

1
; . . . ;ef

D
, i.e. weights and biases for the D neural networks of 

the optimization problem (4) is also given by the following: 

argmax
f 1;f2;...;f D

XD

d¼1

Xl

r¼1

ηd;r: (5) 

The objectives (3) and (5) are naturally bounded because 
the characteristic roots of every Sd

t
−1Sd

b (and hence 
Sd

t
−1

2Sd
bSd

t
−1

2) is bounded and every squared correlation is also 
bounded. This guarantees convergent solutions of the loss 
function in (5) compared to the method in (Dorfer et al. 
2015) that constrain the within-group covariance and has un-
bounded loss function. We optimize the objective in (5) with 
respect to the weights and biases for each layer and each view 
to obtain ef 1 ; . . . ;ff D . The estimates ef 1ðX1Þ; . . . ;ff DðXDÞ are 
used as the low-dimensional representation to classify events.

Of note, since Deep IDA already implements a discrimi-
nant analysis method when obtaining the low-dimensional 
representations that separate the classes in a view, we do not 
need any sophisticated classification methods (such as SVM 
which tends to be computationally expensive for large sample 
sizes) when predicting future events. Thus, for classifying fu-
ture events, we follow the approach in Safo et al. (2021) and 

Figure 1. The framework of Deep IDA. Classes are represented by shapes and views are represented by colors. The (DNN are used to learn nonlinear 
transformations of the D views, the outputs of the DNN for the views (fd ) are used as inputs in the optimization problem, and we learn linear projections 
Ad ; d ¼ 1; . . . ;D that maximally correlate the nonlinearly transformed views and separate the classes within each view.
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we use nearest centroid to assign events to the class with the 
closest mean. For this purpose, we have the option to use the 
pooled low-dimensional representations f̂ ¼ ð ef 1ðX1Þ; . . . ;
ff DðXDÞÞ or the individual estimates ef dðXdÞ;d ¼ 1; . . . ;D. 
If testing data are available, say Xd

test, we use the learned 
neural network parameters to construct the output of 
the top-level representations for each view, i.e. Hd

test ¼
ef dðXd

testÞ; d ¼ 1; . . . ;D. These are then used in a nearest 
centroid classifier (NCC) to predict the test classes. We em-
phasize that the process of nonlinearly transforming the origi-
nal data using DNNs, estimating parameters for each neural 
network, and obtaining linear projections that jointly maxi-
mize association of the views and separation of the classes is 
what we call Deep IDA. We implement the proposed algo-
rithm as a Python 3.0 package with dependencies on NumPy 
(Oliphant 2006) and PyTorch Paszke et al. (2019) for numer-
ical computations, and Matlab for model visualization. For 
the network’s depth, we recommend 8 layers for datasets 
with both sample and feature sizes larger than 1000, and 3 
layers for simpler scenarios where the sample dimension is 
around 100. Cross-validation can be used to select the struc-
ture with best performance while avoiding overfitting. We in-
clude a thorough comparison of our proposed method with 
existing methods in Supplementary Section S1.3. Details of 
the optimization process and proposed algorithm are dis-
cussed in Supplementary Section S1.3.

2.2 Feature ranking via Bi-Bootstrap sampling
A main limitation of most existing nonlinear methods for in-
tegrating data from multiple views is that it is difficult to in-
terpret the models and this limits their ability to produce 
clinically meaningful findings. This is especially important 
for our motivating application. We propose a general frame-
work for ranking features in deep learning models for data 
from multiple views that is based on ensemble learning. We 
refer to our sampling approach as Bi-Bootstrap Sampling, 
since we get bootstrap samples for both sample index and 
feature index. We implement Deep IDA on different boot-
strap datasets to yield baseline classification accuracy, we 
permute the data and use this data and the Deep IDA learned 
model to investigate and rank variables based on how often a 
variable result in a decrease in classification accuracy when 
permuted. One could also obtain low-dimensional represen-
tations of the data based on the top-ranked variables, which 
would require another Deep IDA training.

We emphasize that while we embed Deep IDA in this fea-
ture ranking procedure, in principle, any method for associat-
ing multiple views can be embedded in this process. This 
makes the proposed approach general. We outline our feature 
ranking steps below. Figure 2 is a visual representation of the 
feature ranking procedure.

1) Generate M bootstrap sets of sample indices of the same 
sample size as the original data by random sampling the 
indices with replacement. Denote the bootstrap sets of 
indices as B1;B2; . . . ;BM. Let the out-of-bag sets of indi-
ces be Bc

1;B
c
2; . . . ;Bc

M. In generating the bootstrap train-
ing sets of indices, we use stratified random sampling to 
ensure that the proportions of samples in each class in 
bootstrap sets of indices are similar to original data. 

2) Draw q bootstrap sets of feature indices for each view. 
For view j, j ¼ 1; . . . ;D, draw 0:8pj samples from the 

index set and denote as Vm;j. Vm ¼

fVm;1;Vm;2; . . . ;Vm;Dg is the m-th bootstrap feature in-
dex for all D views. 

3) Pair sample and feature index sets randomly and denote 
as ðB1;V1Þ; . . . ; ðBM;VMÞ. For each pair ðBm;VmÞ and 
ðBc

m;VmÞ extract corresponding subsets of data. 
4) For the mth pair, denote the bootstrap data as 

Xm;1; . . . ;Xm;D and the out-of-bag data as Xc
m;1; . . . ;

Xc
m;D. Train Deep IDA based on Xm;1; . . . ;Xm;D, and cal-

culate the test classification rate based on Xc
m;1; . . . ;

Xc
m;D. Record this rate as baseline classification rate for 

pair m;m ¼ 1; 2; . . . ;M. 
5) For the dth view in the mth pair, permute the kth vari-

able in Xc
m;d and keep all other variables unchanged. 

Denote the permuted view d data as Xc
m;d;k−permuted. Use 

the learned model from Step 4 and the permuted data 
ðXc

m;1; . . . ;Xc
m;d;k−permuted; . . . ;Xc

m;DÞ to obtain the classi-
fication rate for the permuted data. 

6) Repeat Step 5 for m ¼ 1; . . . ;M, d ¼ 1; . . . ;D, and 
k ¼ 1; . . . ;pd. Record the variables that lead to a de-
crease in classification rate when using the per-
muted data. 

7) For the dth view, calculate the occurrence proportion of 
variable k, k ¼ 1;2; . . . ;pd (i.e. the proportion of times a 
variable leads to a decrease in classification accuracy) as 
nk
Nk

, where nk denotes the number of times that permuting 
variable k leads to a decrease in out-of-bag classification 
rate, and Nk denotes the number of times that variable k 
is permuted (i.e. the total number of times variable k is 
selected in the bootstrap feature index sets). Repeat this 
process for all views. 

8) For each view, rank the variables based on the occur-
rence proportions and select the top-ranked variables as 
the important variables. The top-ranked variables could 
be the top r variables or top r% variables. 

9) (Optional) Once we have obtained the top-ranked varia-
bles for each view, we train Deep IDA on the original 
data but with these top-ranked variables. This step will 
yield classification accuracy based on just the 
top-ranked features, if that is desired. The number of 
variables needs to be specified in advance by domain 
knowledge and 10 % is used by default. To determine 
the optimal number of top features, one can employ 
cross-validation, starting with the top 1% of features 
and incrementally adding more until model accuracy is 
no longer significantly improved. 

The Bi-Bootstrap process provides insights into how each 
variable in each view contributes to the classification per-
formance of our nonlinear model. For each bootstrap sam-
ple, we only need to train Deep IDA once, and then 
every out-of-bag sample with one permuted variable is 
used in the learned Deep IDA model to assess classification 
performance. We note that the permutation step is easily 
parallelizable for computational efficiency. The top- 
ranked variables can also be used in other classification 
methods to enhance classification accuracy. Furthermore, 
the feature ranking procedure is model agnostic and 
intuitive, so step (4) can easily be substituted with 
other classification methods besides Deep IDA. We can 
replace the classification rate with other metrics, such as 
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balanced accuracy or weighted F1 score, for imbal-
anced dataset.

Our optimization algorithm and run time analysis are 
documented in the Supplementary material.

3 Results
3.1 Simulation studies
3.1.1 Set-up
We conduct simulation studies to assess the performance of 
Deep IDA for varying data dimensions, and as the relation-
ship between the views and within a view become more com-
plex. We demonstrate that Deep IDA is capable of (i) 
simultaneous association of data from multiple views and 

discrimination of sample classes and (ii) identifying signal 
variables and eliminating noise variables.

We consider two different simulation Scenarios. In 
Scenario One, we simulate data to have linear relationships 
between views and linear decision boundaries between classes 
(refer to Supplementary material for set-up and results). In 
Scenario Two, we simulate data to have nonlinear relation-
ships between views and nonlinear decision boundaries be-
tween classes. In Scenario One, we explore two different 
settings: one with D ¼ 2 views and another with D ¼ 3 
views, across K ¼ 3 classes. In Scenario Two, there are K ¼ 2 
classes and D ¼ 2 views. In all Scenarios, we generate 20 
Monte Carlo training, validation, and testing sets. We evalu-
ate the proposed and existing methods using the following 

Figure 2. The framework of feature ranking process. (a) Bootstrapping samples and features. It includes Steps 1 and 2. Vm: the m-th bootstrap feature 
index; Bm: the m-th bootstrap sample index; Bc

m: the m-th bootstrap out-of-bag sample index. (b) Pairing data, training the reference model, permuting 
and recording the decrease in classification performance. This includes Steps 3–6. (c) Ranking features based on how often the baseline classification 
accuracy is reduced when permuted. This includes Steps 7 and 8.
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criteria: (i) classification performance [via test accuracy, area 
under the operating characteristic curve (AUROC), precision, 
recall, and F1 measure] and (ii) feature selection performance 
[via true positive rate (TPR), false positive rate (FPR), and 
F1]. For feature selection, we evaluate the methods ability to 
select the true signals (TPRs) while ignoring noise variables 
(FPRs). In Scenario One, the first 20 variables are important, 
and in Scenario Two, the Top 10% of variables in view 1 are 
signals. We compare test accuracy for Deep IDA with and 
without the variable ranking approach proposed in 
this manuscript.

3.1.2 Comparison methods
Deep IDA is compared with association- and classification- 
only methods, allowing us to investigate the advantage of a 
joint association and classification method. For association- 
based methods, we consider the following methods: deep ca-
nonical correlation analysis (Deep CCA) (Andrew et al. 
2013), sparse CCA via penalized-multivariate analysis (PMA) 
[Witten et al. (2009), sparse CCA via SELP (Safo et al. 2018), 
and deep generalized CCA (DGCCA) (Benton et al. 2019) 
when there are three or more views. The association-based 
methods are purely unsupervised, therefore, for classification, 
we use the learned low-dimensional representations from 
these methods as inputs in logistic regression models. For 
classification-only method, we consider SVM (Hastie et al. 
2009) applied on stacked views, allowing us to investigate 
the benefits of data integration. We had wanted to include 
Deep LDA (Dorfer et al. 2015) in our analysis to assess the ef-
fectiveness of a classification-only nonlinear method com-
pared to Deep IDA, a joint integration and classification 
method. However, due to convergence challenges caused by 
its unbounded loss function, we could not obtain valid esti-
mates for a reliable comparison. Therefore, these results are 
excluded from our analyses. In implementing the comparison 
methods, we used Pytorch, for Deep CCA and Deep GCCA, 
and R packages mvlearnR (Palzer and Safo 2024) and PMA 
(Witten et al. 2013), for SELP and PMA, respectively.

To evaluate the impact of feature selection on classification 
performance, we first assessed the feature selection accuracy 
of our Bi-Bootstrap þ Deep IDA framework against existing 
methods. This involves coupling Deep IDA and Deep CCA 
with the TS framework (Mirzaei et al. 2019) for variable 
ranking, and comparing with penalized methods like PMA 
and Sparse CCA via SELP. Similar to the linear setting, the 
top 10% ranked variables are selected for Bi-bootstrap and 
TS. We then implement Deep IDA, Deep CCA, and SVM on 
the training data but with just the Bi-Bootstrap selected varia-
bles. Notably, since PMA and SELP inherently include fea-
ture selection, they are trained using the complete feature set.

All methods are tested on both views, with additional 
results for View 1 only, as it encompasses all significant fea-
tures. We experiment with various numbers of layers and 
nodes for each simulation scenario and choose the optimal 
setup for Deep IDA and Deep CCA. Details of the network 
structures are provided in the Supplementary material. All 
SVM analyses utilize linear kernels, maintaining parity with 
the assumed linearization of the low-rank representations in 
Deep IDA and Deep CCA after DNN processing.

3.1.3 Nonlinear simulations
3.1.3.1 Simulation design
Details of linear simulations are in the Supplementary mate-
rial. In our nonlinear simulations, we explore four distinct 
settings to evaluate the performance of each method under 
various combinations of sample and feature sizes. Let n1 and 
n2 represent the number of samples in each class, with the to-
tal sample size being n ¼ n1þn2. The data in View 1 and 
View 2 are represented as X1 : n×p1 and X2 : n×p2, respec-
tively. The four settings are defined as follows. S1: both num-
ber of features and samples are small, n1 ¼ 200;n2 ¼ 150;
p1 ¼ p2 ¼ 500; S2: large sample size, small feature size, 
n1 ¼ 3000;n2 ¼ 2250; p1 ¼ p2 ¼ 500; S3: small sample size, 
large feature size, n1 ¼ 200; n2 ¼ 150;p1 ¼ p2 ¼ 2000; S4: 
large sample and feature size, n1 ¼ 3000;n2 ¼ 2250;
p1 ¼ p2 ¼ 2000. In each setting, 10% of the variables in the 
first view are signals and the first five signal variables in the 
first view are related to the remaining signal variables in a 
nonlinear way (See Fig. 3). We generate data for View 1 as: 
X1 ¼ eX1 �Wþ0:2E1 where ð�Þ is element-wise multiplication, 
W 2 R

n×p1 ¼ ½10:1×p1 ;00:9×p1 � is a matrix of ones and zeros, 1 
is a matrix of ones, 0 is matrix of zeros, and E1 � Nð0; 1Þ. 
The first five columns (or variables) of eX1 2 R

n×p1 
are simu-

lated from expð0:15hÞ � sinð1:5hÞ. The next 0:1p1−5 varia-
bles are simulated from expð0:15hÞ � cosð1:5hÞ. Here, 
h ¼ ehþ0:5Uð0; 1Þ, and eh is a vector of n evenly spaced points 
between 0 and 3π. The remaining 0:9p1 variables (or col-
umns) in eX1 are generated from the standard normal distri-
bution. View 2 has no signal variables and the variables do 
not have nonlinear relationships. Data for View 2 are gener-
ated as follows. We set each variable in X1 with negative 
entries to zero, normalized each variable to have unit norm 
and added a random number generated from Uð0; 1Þ.

3.1.3.2 Simulation results
Table 1 gives variable selection accuracy for the methods 
compared. Bi-Bootstrap has similar TPRs when compared to 
SELP, except for Setting 4 where SELP is slightly better. 
However, the variation in the true positives for SELP is gener-
ally higher. PMA achieves slightly higher TPRs than our ap-
proach in all settings except setting 4 but it suffers from high 
false positives since the optimal loadings are mostly not 
sparse. TS framework hardly selects important variables. Our 
approach consistently selects most of the relevant variables 
with low false positives and negatives. Consequently, we ex-
amine whether this accurate variable selection translates into 
improved classification accuracy when methods are trained 
only on the selected variables by our proposed Bi-bootstrap.

Table 2 gives the classification metrics. Since in this simula-
tion setup, only view 1 had informative features, we expected 
the classification accuracy from view 1 to be better than that 
from both views and this is what we observed across most 
methods. The classification accuracy, the area under the 
ROC curve (AUROC), precision, recall and F1 scores of 
Deep IDA was generally higher than the other methods, ex-
cept in Setting Three where its precision was lower than Deep 
CCA on the whole data. We compared the classification met-
rics of the proposed method with Deep IDA on top selected 
features and without feature ranking by Bi-bootstrap (i.e. 
Deep IDA) to assess the effect variable selection has on classi-
fication estimates from our deep learning models. The 
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improvement is the most significant in Setting 3, where the 
sample size is much lower than the feature size so feature se-
lection can boost up the performance, where in other settings 
the performances are similar. Deep IDA on top selected fea-
tures has competitive or better classification accuracy (espe-
cially when using view 1 only for classification) compared to 
all other non-Deep IDA based methods. Further, the classifi-
cation metrics for Deep IDA on top selected variables or not 
is generally higher than the other methods applied to data 
with variables selected by Deep IDA þ Bootstrap (e.g. Deep 
CCA on top 50 selected features, Setting One). The methods 
with built-in feature selection (PMA and sparse CCA) per-
form worse than Deep IDA as well. SVM applied on both 
views stacked together and on just view 1, either using the 
whole data or using data with variables selected by Deep 
IDA, resulted in similar classification performance, albeit 
lower than the proposed method. Thus, in this example, al-
though only view 1 had signal variables, the classification 

performance from using both views in training was generally 
better than using only view 1 (e.g. SVM on view 1), attesting 
to the benefit of multiview analyses.

Taken together, the classification and variable selection ac-
curacy from both the linear and nonlinear simulations sug-
gest that the proposed method is capable of ranking the 
signal variables higher, and is also able to yield competitive 
or better classification performance, even in situations where 
the sample size is less than the number of variables.

3.2 Applications
3.2.1 Overview
We consider two real datasets: (i) handwriting image data 
(analyzed in the Supplementary material) and (ii) COVID-19 
multi-omics data. The image data was used to primarily as-
sess the classification performance of the proposed method 
without feature ranking while the COVID-19 data was used 
to assess classification performance and to also demonstrate 
that Deep IDA is capable of identifying biologically rele-
vant features.

For the analysis of data from the COVID-19 study, our 
goal is to elucidate the molecular architecture of COVID-19 
severity by identifying molecular signatures that are associ-
ated with each other and can discriminate patients with and 
without COVID-19 who were or were not admitted to 
the ICU.

3.2.2 Data preprocessing and application of deep IDA and 
competing methods
Of the 128 patients, 125 had both omics and clinical data. 
We focused on proteomics, RNA-seq, and metabolomics 
data in our analyses since many lipids were not annotated. 
We formed a four-class classification problem using COVID- 
19 and ICU status. Our four groups were: with COVID-19 
and not admitted to the ICU (COVID Non-ICU), with 
COVID-19 and admitted to the ICU (COVID ICU), no 
COVID-19 and admitted to the ICU (Non-COVID ICU), and 
no COVID-19 and not admitted to the ICU (Non-COVID 
Non-ICU). The frequency distribution of samples in these 
four groups were: 40% COVID ICU, 40% COVID Non-ICU, 
8% Non-COVID Non-ICU, and 12% Non-COVID ICU. The 
initial dataset contained 18, 212 genes, 517 proteins, and 
111 metabolomics features. Prior to applying our method, we 
preprocessed the data (see Supplementary material) to obtain 
a final dataset of X1 2 R

125×2;734 for the RNA-sequencing 

Figure 3. Setting one. (a) Structure of nonlinear relationships between signal variables in view 1. (b) Image plot of view 1 showing the first 50 variables 
as signals.

Table 1. Comparison of feature selection performances across 
four scenarios.

Method TPR FPR F1

Setting1
Bi-Bootstrap þ Deep IDA 1.00(0.00) 0.00(0.00) 1.00(0.00)
TS þ Deep CCA 0.08(0.03) 0.10(0.01) 0.08(0.03)
Sparse CCA via SELP 0.87(0.14) 0.00(0.00) 0.92(0.11)
PMA 1.00(0.00) 1.00(0.00) 0.18(0.00)
Setting2
Bi-Bootstrap þ Deep IDA 0.64(0.06) 0.04(0.01) 0.64(0.06)
TS þ Deep CCA 0.10(0.03) 0.10(0.00) 0.08(0.03)
Sparse CCA via SELP 0.87(0.13) 0.00(0.00) 0.92(0.10)
PMA 1.00(0.00) 1.00(0.00) 0.18(0.00)
Setting3
Bi-Bootstrap þ Deep IDA 0.96(0.02) 0.00(0.00) 0.96(0.02)
TS þ Deep CCA 0.09 (0.02) 0.10(0.00) 0.09(0.02)
Sparse CCA via SELP 0.98(0.00) 0.00(0.00) 0.99(0.00)
PMA 0.84(0.29) 0.73(0.44) 0.27(0.18)
Setting4
Bi-Bootstrap þ Deep IDA 0.83(0.04) 0.02(0.01) 0.83(0.04)
TS þ Deep CCA 0.14(0.06) 0.10(0.01) 0.14(0.06)
Sparse CCA via SELP 0.93(0.21) 0.00(0.00) 0.94(0.00)
PMA 1.00(0.00) 1.00(0.00) 0.18(0.00)

This table presents the TPR, FPR, and F1 Score for various feature selection 
methods across four scenarios in nonlinear simulations. Each entry displays 
the mean values derived from 20 simulations, with the standard deviation 
provided in parentheses. All values rounded to 2 digits.
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data, X2 2 R
125×269 for the protoemics data, and X3 2

R
125×66 for the metabolomics. We randomly split the data 

into training (n ¼ 74) and testing (n ¼ 51) sets while keeping 
the proportions in each group similar to the original data, we 
applied the methods on the training data and we assessed er-
ror rate using the test data. We evaluated Deep IDA with and 
without feature selection. For Deep IDA with feature selec-
tion, we obtained the top 50 and top 10% molecules after 
implementing Algorithm 1, learned the model on the training 
data with only the molecules that were selected, and esti-
mated the test error with the testing data. We also assessed 
the performance of the other methods using variables that 
were selected by Deep IDA. Supplementary Table S9 gives 
the network structure used.

Similar methods mentioned in Simulation are used for 
comparisons. The Sparse CCA is only for two views so can-
not be applied here. We also compare Deep IDA to SIDA 
(Safo et al. 2021), a joint association and classification 
method that models linear relationships between views and 
among classes in each view.

3.2.3 Deep IDA is better at discriminating patients with and 
without COVID-19 who were or were not admitted to 
the ICU
Supplementary Fig. S2 in the gives the top 50 genes, proteins, 
and metabolomics features that were highly ranked by Deep 
IDA. Feature importance for each variable was normalized to 
the feature ranked highest for each omics. Table 3 gives the 
balanced accuracy, weighted F1, weighted precision and 
weighted recall on test data for Deep IDA in comparison with 
Deep GCCA, SIDA, and SVM.

We do not include methods only applicable to two views. 
The top 10% (i.e. 273 for view 1, 27 for view 2 and 7 for 
view 3) selected features refer to Deep IDA selected features 
based on the training set. SIDA and PMA þ SVM incorporate 
their own feature selection mechanisms and thus utilize the 
entire datasets for training. Deep IDA, Deep GCCA, SVM, 
and NCC were trained using both the complete set of features 
and the top 10% of selected features. The results of Deep IDA 
from using the top 10% of, and top 100, variables, for feature 
selection were similar, albeit better than the test accuracy 
obtained with other methods, except for SVM applied on the 
selected features. We observed an improved test performance 
of 4−7% across all metrics for Deep IDA, SVM, and NCC 
when we trained these methods with selected features. The 

classification performance of Deep GCCA improved when a 
larger number of variables were included. Compared to 
SIDA, the joint association and classification method that 
assesses linear relationships in the views and among the 
groups, the proposed method has a higher test accuracy. 
Supplementary Fig. S3 gives the discriminant and correlation 
plots from Deep IDA based on the top-ranked 50 molecules 
from each omics. From the discriminant plots of the first 
three discriminant scores, we notice that the samples are 
well-separated in the training data. For the testing data, we 
observe some overlaps in the sample groups but the COVID 
ICU group seems to be separated from the COVID NON- 
ICU and NON-COVID ICU groups. This separation is more 
apparent in the RNA sequencing and proteomics data and 
less apparent in the metabolomics data. Further, based on the 
testing data, the correlation between the metabolomics and 
proteomics data was higher when considering the first and 
third discriminant scores (0.69 and 0.36), respectively. From 
the second discriminant score, the correlation between the 
RNA sequencing and proteomics data was higher (0.49). 
Overall, the mean correlation between the metabolomics and 
proteomics data was highest (0.4) while the mean correlation 
between the metabolomics and RNA sequencing data was 
lowest (0.09). These findings suggest that the proposed 
method is capable of modeling nonlinear relationships among 
the different views and groups, and has potential to identify 
features that can lead to better classification results.

3.2.4 Strong enrichment for neurological, cancer, 
gastrointestinal, inflammatory, and metabolic diseases
We used the Ingenuity Pathway Analysis (IPA) software to in-
vestigate the molecular and cellular functions, pathways, and 
diseases enriched in the proteins, genes, and metabolites that 
were ranked in the top 50 by our variable selection method. 
For the top-ranked metabolomics features, we first used the 
MetaboAnalyst 5.0 (Pang et al. 2021) software to obtain 
their human metabolome database reference ID and then 
used IPA on the mapped data for function enrichment analy-
sis. Of the top 50 ranked features, we were able to map 
25 features.

We observed strong pathways, molecular and cellular func-
tions, and disease enrichment (Supplementary Tables S4–S6). 
The top disease and disorders significantly enriched in our 
list of genes are found in Supplementary Table S5. We note 
that 36 of the biomolecules in our gene list were determined 

Table 3. Evaluating COVID-19 omics data on the testing set: balanced accuracy, weighted F1, precision, and recall.

Method Balanced accuracy Weighted F1 Weighted precision Weighted recall

Deep IDA with top 100 selected features 0.76(0.08) 0.79(0.06) 0.81(0.06) 0.80(0.06)
Deep IDA with top 10% selected features 0.76(0.08) 0.79(0.07) 0.80(0.07) 0.79(0.07)
Deep IDA 0.70(0.07) 0.76(0.05) 0.77(0.06) 0.76(0.05)
Deep GCCA þ SVM with top 10% selected features 0.55(0.16) 0.61(0.13) 0.66(0.12) 0.64(0.11)
Deep GCCA þSVM 0.61(0.14) 0.64(0.12) 0.68(0.10) 0.65(0.11)
Deep GCCA þ NCC with top 10% selected features 0.60(0.12) 0.64(0.12) 0.68(0.11) 0.64(0.12)
Deep GCCA þNCC 0.67(0.08) 0.67(0.08) 0.70(0.08) 0.67(0.08)
SIDA 0.60(0.11) 0.67(0.10) 0.69(0.10) 0.67(0.11)
PMA þ SVM 0.40(0.03) 0.56(0.04) 0.52(0.05) 0.62(0.05)
SVM with top 10% selected features 0.78(0.07) 0.82(0.05) 0.83(0.05) 0.82(0.05)
SVM 0.73(0.09) 0.78(0.06) 0.79(0.06) 0.78(0.06)
NCC with top 10% selected features 0.72(0.07) 0.72(0.06) 0.75(0.06) 0.72(0.06)
NCC 0.65(0.07) 0.67(0.05) 0.70(0.05) 0.67(0.05)

The top selected features are obtained by our proposed Deep IDA þ Bi-Bootstrap. Each value is based on 20 random train-test splits of data. Mean value is 
followed by standard deviation in the parentheses.
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to be associated with neurological diseases. This finding 
aligns with studies that suggest that persons with COVID-19 
are likely to have neurological manifestations such as reduced 
consciousness and stroke (Berlit et al. 2020, Taquet et al. 
2021). Further, 48 genes from our list were determined to be 
associated with cancer. Again, this supports studies suggest-
ing that individuals with immunocompromised system from 
cancer or individuals who recently recovered from cancer, for 
instance, are at higher risk for severe outcomes. As in our 
gene list, 34 proteins were determined to be associated with 
neurological disease. Other significantly enriched diseases 
in our protein list included infectious diseases (such as in-
fection by SARS coronavirus), inflammatory response (such 
as inflammation of organ), and metabolic disease (includ-
ing Alzheimer disease and diabetes mellitus). A recent re-
view (Steenblock et al. 2021) found that up to 50% of those 
who have died from COVID-19 had metabolic and vascular 
disorders. In particular, patients with metabolic dysfunc-
tion (e.g. obesity, and diabetes) have an increased risk for 
developing severe COVID-19. Further, getting infected 
with SARS-CoV-2 can likely lead to new onset of diabetes. 
The top disease and disorders significantly enriched in our 
list of metabolites (Supplementary Table S4) included can-
cer and gastrointestinal disease (such as digestive system, 
and hepatocellular cancer). A recent article found that peo-
ple with SARS-CoV-2 infection have increased risks of gas-
trointestinal disorders in the post-acute phase of COVID- 
19, and even evident in people who did not require hospi-
talization in the acute phase of COVID-19 infection Xu 
et al. (2023).

3.2.5 Enriched pathways related to metabolic processes
The top enriched canonical pathways in our protein list in-
clude the LXR/RXR activation FXR/RXR activation, acute 
phase response signaling, and atherosclerosis signaling 
(Supplementary Table S4). These pathways are involved in 
metabolic processes such as cholesterol metabolism. The 
molecular and cellular functions enriched in our protein 
list include cellular movement and lipid metabolism 
(Supplementary Table S6). Overlapping canonical pathways 
(Fig. 4a and b) in IPA was used to visualize the shared biol-
ogy in pathways through the common molecules participat-
ing in the pathways. The two pathways “FXR/RXR 
Activation” and “LXR/RXR Activation” share a large num-
ber (eight) of molecules (Fig. 4a) in our protein list: AGT, 
ALB, APOA2, APOH, APOM, CLU, PON1, and TF. The 
LXR/RXR pathway is involved in the regulation of lipid me-
tabolism, inflammation, and cholesterol to bile acid catabo-
lism. The farnesoid X receptor (FXR) is a member of the 
nuclear family of receptors and plays a key role in metabolic 
pathways and regulating lipid metabolism, cell growth and 
malignancy (Wang et al. 2008). We observed lower levels of 
ALB, APOM, and TF in patients with COVID-19 (and more 
so in patients with COVID-19 who were admitted to the 
ICU) relative to patients without COVID-19 (Supplementary 
Fig. S4). We also observed higher levels of AGT and CLU in 
patients with COVID-19 admitted to the ICU compared to 
the other groups. The fact that the top enriched pathways, 
and molecular and cellular functions are involved in meta-
bolic processes such as lipid metabolism seem to corroborate 
the findings in Overmyer et al. (2021) that a key signature 
for COVID-19 is likely a dysregulated lipid trans-
port system.

Taken together, these findings suggest that COVID-19 dis-
rupts many biological systems. The relationships found with 
diseases such as cancer, gastrointestinal, neurological condi-
tions, and metabolic diseases (e.g. Alzheimers and diabetes 
mellitus) heighten the need to study the post sequelae effects 
of this disease in order to better understand the mechanisms 
and to develop effective treatments and improve pa-
tient care.

4 Summary and conclusion
We have proposed a deep learning method, Deep IDA, for 
joint integrative analysis and classification studies of multi-
view data. Our framework extends the joint association and 
classification method proposed in Safo et al. (2021) to model 
complex nonlinear relationships among multiple views and 
between classes in a view.

The proposed algorithm, developed in Python 3, is user- 
friendly and will be useful in many data integration applica-
tions. Through simulation studies, we showed that the pro-
posed method outperforms several other linear and nonlinear 
methods for integrating data from multiple views, even in 
high-dimensional scenarios where the sample size is typically 
smaller than the number of variables.

When Deep IDA was applied to proteomics, RNA sequenc-
ing, and metabolomics data obtained from individuals with 
and without COVID-19 who were or were not admitted to 
the ICU, we identified several molecules that better discrimi-
nated the COVID-19 patient groups. We also performed en-
richment analysis of the molecules that were highly ranked 
and we observed strong pathways, molecular and cellular 
functions, and disease enrichment. Our findings have identi-
fied signatures that are related to neurological conditions, 
cancer, and metabolic diseases, corroborating current re-
search findings and heightening the need to study the post se-
quelae effects of this disease to devise effective treatments 
and to improve patient care. The other top-ranked molecules 
from our findings could be further investigated to delineate 
their impact on COVID-19 status and severity.

Our proposed method has several strengths. First, by con-
sidering both relationships between views and separations be-
tween classes, our data integration process is improved, 
leading to better outcomes compared to approaches that fo-
cus solely on either association or classification. Second, un-
like other deep learning models for discriminant analysis 
which have convergence issues, our loss is bounded and guar-
antees convergence. In our analyses, Deep IDA took about 20 
epochs to converge. Third, our framework for feature rank-
ing is general and applicable to other nonlinear methods for 
multiview data integration. Fourth, our algorithm is highly 
flexible, allowing us to handle different levels of data com-
plexity by modifying the number of layers and nodes in 
the networks.

Our work has some limitations. First, the bootstrap tech-
nique proposed is computationally tasking. In our algorithm, 
we use parallelization to mitigate against the computational 
burden, however, more is needed to make the approach less 
expensive. Second, the proposed method has focused on bi-
nary or categorical outcomes. Future work could consider 
other outcome types (e.g. continuous and survival). Third, 
the number (or proportion) of top-ranked features need to be 
specified in advance. Third, the proposed loss function does 
not consider highly unbalanced classes. We can incorporate 
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weighting, such as weighted LDA in Deep IDA’s model con-
struction (1), to balance each class’s contribution. Fourth, the 
method is not designed for partial data, where some part of 
the samples does not have a measurement in one or more 
views. Missing data imputation can be considered in 
the future.

In this work, we applied the proposed method to integrate 
three multi-omics data, leading to biologically meaningful 
findings. As with any data integration method, a key question 
remains: whether more molecular data lead to better predic-
tion performance and clinically meaningful findings. 
Although a holistic approach typically favors using more 
data, it is crucial to also consider the literature, biological 
significance, and clinical relevance of each molecular data-
set in the study of the disease under consideration. Our de-
cision to integrate these specific datasets was driven by the 
current literature and the need to understand the pathobiol-
ogy of COVID-19. In fact, in the proposed method, one can 
assess the individual prediction performance of each view 
using the low-rank representations for that view; this will 
allow to investigate which views contribute most to the 
joint classification performance. It may be helpful to per-
turb the analysis by excluding views with poor classifica-
tion performance.

In conclusion, we have developed a deep learning method 
to jointly model nonlinear relationships between multiple- 
view data and a binary or categorical outcome, while also 
producing highly ranked features contributing most to the 

overall association of the views and separation of the clas-
ses within a view. Despite the stated limitations, the en-
couraging simulations and real data findings, even for 
scenarios with small to moderate sample sizes, motivate 
further applications.
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