Skip to main content
. 2024 Apr 24;4(1):vbae060. doi: 10.1093/bioadv/vbae060

Table 3.

Evaluating COVID-19 omics data on the testing set: balanced accuracy, weighted F1, precision, and recall.

Method Balanced accuracy Weighted F1 Weighted precision Weighted recall
Deep IDA with top 100 selected features 0.76(0.08) 0.79(0.06) 0.81(0.06) 0.80(0.06)
Deep IDA with top 10% selected features 0.76(0.08) 0.79(0.07) 0.80(0.07) 0.79(0.07)
Deep IDA 0.70(0.07) 0.76(0.05) 0.77(0.06) 0.76(0.05)
Deep GCCA + SVM with top 10% selected features 0.55(0.16) 0.61(0.13) 0.66(0.12) 0.64(0.11)
Deep GCCA +SVM 0.61(0.14) 0.64(0.12) 0.68(0.10) 0.65(0.11)
Deep GCCA + NCC with top 10% selected features 0.60(0.12) 0.64(0.12) 0.68(0.11) 0.64(0.12)
Deep GCCA +NCC 0.67(0.08) 0.67(0.08) 0.70(0.08) 0.67(0.08)
SIDA 0.60(0.11) 0.67(0.10) 0.69(0.10) 0.67(0.11)
PMA + SVM 0.40(0.03) 0.56(0.04) 0.52(0.05) 0.62(0.05)
SVM with top 10% selected features 0.78(0.07) 0.82(0.05) 0.83(0.05) 0.82(0.05)
SVM 0.73(0.09) 0.78(0.06) 0.79(0.06) 0.78(0.06)
NCC with top 10% selected features 0.72(0.07) 0.72(0.06) 0.75(0.06) 0.72(0.06)
NCC 0.65(0.07) 0.67(0.05) 0.70(0.05) 0.67(0.05)

The top selected features are obtained by our proposed Deep IDA + Bi-Bootstrap. Each value is based on 20 random train-test splits of data. Mean value is followed by standard deviation in the parentheses.