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Abstract
Motivation: The inference of cellular compositions from bulk and spatial transcriptomics data increasingly complements data analyses. Multiple 
computational approaches were suggested and recently, machine learning techniques were developed to systematically improve estimates. Such 
approaches allow to infer additional, less abundant cell types. However, they rely on training data which do not capture the full biological diversity 
encountered in transcriptomics analyses; data can contain cellular contributions not seen in the training data and as such, analyses can be biased 
or blurred. Thus, computational approaches have to deal with unknown, hidden contributions. Moreover, most methods are based on cellular 
archetypes which serve as a reference; e.g. a generic T-cell profile is used to infer the proportion of T-cells. It is well known that cells adapt their 
molecular phenotype to the environment and that pre-specified cell archetypes can distort the inference of cellular compositions.
Results: We propose Adaptive Digital Tissue Deconvolution (ADTD) to estimate cellular proportions of pre-selected cell types together with 
possibly unknown and hidden background contributions. Moreover, ADTD adapts prototypic reference profiles to the molecular environment of 
the cells, which further resolves cell-type specific gene regulation from bulk transcriptomics data. We verify this in simulation studies and dem-
onstrate that ADTD improves existing approaches in estimating cellular compositions. In an application to bulk transcriptomics data from breast 
cancer patients, we demonstrate that ADTD provides insights into cell-type specific molecular differences between breast cancer subtypes.
Availability and implementation: A python implementation of ADTD and a tutorial are available at Gitlab and zenodo (doi:10.5281/ 
zenodo.7548362).

1 Introduction
Bulk transcriptomics profiles are a complex linear combina-
tion of diverse molecular contributions of multiple individual 
cells. Many analyses, such as the screening for differentially 
expressed genes, can be confounded by the underlying cellu-
lar compositions. Consequently, if compositions are un-
known, we cannot resolve the source of differential gene 
expression. Multiple approaches were suggested to estimate 
cellular proportions from bulk transcriptomics data, ranging 
from traditional, regression-based approaches to machine- 
learning techniques, including generalized regression 
(Altboum et al. 2014, Chen et al. 2018, Du et al. 2019) as 
well as deep learning approaches (Menden et al. 2020, Lin 
et al. 2022). In recent years, the advent of spatial transcrip-
tomics has generated an additional need for reliable cell-type 
deconvolution (Dong and Yuan 2021, Ma and Zhou 2022).

Single-cell RNA sequencing data can substantially improve 
estimates of cellular proportions via improved reference 
matrices as well as collections thereof, and via optimized 
gene selection or weighting, as demonstrated by work of 
us and others (Tsoucas et al. 2019, Wang et al. 2019, 

G€ortler et al. 2020, Jew et al. 2020, Dong et al. 2021). The 
latter can be facilitated via artificial mixtures of known cellu-
lar composition generated from single-cell data. For instance, 
MuSiC (Wang et al. 2019) and Digital Tissue Deconvolution 
(DTD) (G€ortler et al. 2020) learn a gene weighting, and 
Bisque (Jew et al. 2020) learns gene-specific bulk expression 
transformations.

A recent comprehensive benchmarking of different meth-
ods for cell-type deconvolution resolved the marker gene se-
lection as a major determinant of model performance and it 
was pointed out that if cell types are missing in the reference 
profiles results become substantially worse (Avila Cobos 
et al. 2020). The latter statement is in line with the observa-
tion that MuSiC, Non-Negative Least Squares (NNLS), and 
CIBERSORT (Chen et al. 2018) did not produce accurate 
results in a validation study using artificial bulk data of six 
pancreatic cell types if one cell type was removed from the 
reference single-cell expression dataset (Wang et al. 2019). 
Consequently, all cell types which are contained in the bulk 
mixtures should ideally also be included in the reference ma-
trix (Avila Cobos et al. 2020). This, however, represents a 
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major issue in practical applications, since bulk profiles likely 
contain signals of cell types not originally considered for 
model development.

Another, related issue is the origin of reference profiles. It 
is well known that the cell’s molecular phenotype depends on 
its environment. This also affects the results of digital tissue 
dissection, as shown by (Racle et al. 2017, Schelker et al. 
2017), where it was pointed out that the references should be 
selected from niches similar to the investigated bulks.

Although many different approaches were meanwhile sug-
gested for cell-type deconvolution, they rarely account for hid-
den cell type contributions and cellular environmental effects. 
Here, we systematically address both issues within a single ap-
proach named Adaptive Digital Tissue Deconvolution 
(ADTD). First, ADTD builds on our previous work on DTD 
and uses gene weights for optimized deconvolution. Second, it 
augments the deconvolution by estimates of a background 
profile together with corresponding cellular proportions across 
a set of investigated bulks. Third, ADTD adapts its reference 
profiles to the investigated bulks. Intriguingly, the latter also 
resolves cell-type specific regulation from bulk transcriptomics 
data. We verified ADTD in simulations based on single-cell 
RNA sequencing data, illustrating that ADTD out-competes 
state-of-the-art baselines. This particularly holds true if models 
are transferred to another domain, as shown for the transfer 
from healthy breast tissue to breast cancer. We finally illus-
trate how ADTD complements routine data analysis in an ap-
plication to bulk transcriptomics data from The Cancer 
Genome Atlas (TCGA; https://www.cancer.gov/tcg) revealing 
patterns of cell-type specific gene regulation in breast cancer.

2 Methods
Adaptive Digital Tissue Deconvolution (ADTD) builds on 
loss-function learning for DTD introduced previously by 
G€ortler et al. (2020) and extends it by both accounting for 
unknown background contributions and adaptive reference 
profiles. We will first recapitulate DTD and will then intro-
duce ADTD.

2.1 Loss-function learning for digital tissue 
deconvolution
Bulk gene expression profiles can be modeled as a linear com-
bination of cell-type-specific reference profiles, 

Y ¼ XCþ ɛ; (1) 

where Y 2 Rp×n
þ is a matrix with n bulk gene expression pro-

files and X 2 Rp×q
þ a matrix with q cell-type specific reference 

profiles in their columns, both containing expression values 
of p genes in their rows. The columns of C 2 Rq×n

þ contain 
cellular weights corresponding to the columns (bulks) of Y. 
The values Cki can be interpreted as semi-quantitative meas-
urements of the number of cells of type k in bulk profile i. 
The residuals between the observed bulks Y and the fitted 
bulks Ŷ ¼ XĈ are given by ɛ 2 Rp×n.

One possible way to estimate C is by 

Ĉ ¼ argmin
C
jjY−XCjj2F; (2) 

where jj:jjF is the Frobenius norm and Ĉ the estimate of C for 
given X and Y. Equation (2) can be solved for each column 

(bulk) in Y, individually. In G€ortler et al. (2020) and Sch€on 
et al. (2020), Equation (2) was augmented by gene weights 
g ¼ ðg1; g2; . . . ; gpÞ

T , yielding 

Ĉ ¼ argmin
C
jjdiagðg1; g2; . . . ; gpÞðY−XCÞjj2F; (3) 

where the weights gi can be chosen to improve estimates of 
C. They can be either specified by prior knowledge or can be 
learned from cellular mixtures with known cellular contribu-
tions, such as annotated bulk profiles or artificial mixtures 
generated from single-cell RNA sequencing data (G€ortler 
et al. 2020; Sch€on et al. 2020). To optimize the gene weights, 
we defined the outer loss function 

LðgÞ ¼ −
Xq

j¼1

corðCj;�; Ĉj;�ðgÞÞ subject to jjgjj2 ¼ 1; (4) 

where Cj;� is the jth row (cell type) of C and Ĉj;� its corre-
sponding estimate. Thus, minimizing loss function Equation 
(4) with respect to the gis, maximizes the Pearson’s correla-
tion between the ground truths Cj;� and its estimates Ĉj;� for 
all cell types of interest j, simultaneously. In contrast to the 
original implementation of loss-function learning (G€ortler 
et al. 2020), we now additionally restrict the optimization 
problem to non-negative (physical) solutions Ĉ � 0q;n. The 
corresponding algorithm uses the PyTorch machine learning 
library (Paszke et al. 2019).

2.2 Estimates of background contributions
One major drawback of reference-based cell-type deconvolu-
tion methods is that they do not necessarily capture all cellu-
lar contributions present in complex biospecimens. For 
instance, let X consist of a set of immune cell reference pro-
files and let Y be the bulk profile of a tumor specimen. Then, 
although immune cell contributions can be estimated, their 
values might be biased or blurred by the contributions from 
cancer cells to Y. In seminal work by Racle et al. (2017), this 
issue was addressed by a method called EPIC (Estimating the 
Proportion of Immune and Cancer cells), as outlined in the 
following. Let Y�;i be an individual bulk profile corresponding 
to the ith column of Y. Then, we have 

Y�;i ¼ XC�;iþxciþ ɛ�;i; (5) 

where we made the contribution from a potential 
background explicit by adding the term xci. Here, x 2 Rp×1 

represents the “hidden” background profile and ci its 
corresponding scalar weight. We further assume that the bulk 
profiles, the reference profiles, and the background profile are 
normalized by 

Xp

j¼1

Yji ¼ 1; for i ¼ 1; . . . ;n;
Xp

j¼1

xj1 ¼ 1;

Xp

j¼1

Xjk ¼ 1; for k ¼ 1; . . . ;q;

(6) 

which gives 1 ¼
Pp

j¼1 Yji ¼
Pp

j¼1

Pq
k¼1 XjkCkiþ

Pp
j¼1 xj1ciþPp

j¼1 ɛji ¼
Pq

k¼1 Ckiþciþɛi with ɛi ¼
Pp

j¼1 ɛji. This implies 
ci ¼ 1−

Pq
k¼1 Cki−ɛi and motivates that ci can be directly esti-

mated as 
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ĉi ¼ max 0; 1−
Xq

k¼1

Ĉki

( )

: (7) 

Thus, EPIC intrinsically assumes that C can be estimated in-
dependently from the background profile x and that all ɛi 

are small.

2.3 Adaptive digital tissue deconvolution
2.3.1 Background estimation
ADTD relaxes EPIC’s assumptions and directly takes into ac-
count that the inference of C also depends on the background 
profile x. To achieve this, we replace ci in the residuals ɛ ¼
Y − XC − xc of Equation (5) by ci ¼ 1−

Pq
k¼1 Cki (assuming 

that the ɛis are small), and minimize their squared sum with 
respect to C and x. The corresponding optimization problem 
taking into account the gene weights determined via loss- 
function learning and non-negativity constraints becomes 

argmin
C�0q;n ;x�0p;1

jjGðY−XC−xðJ1;n−J1;qCÞÞjj2Fþλ1jjC−C0jj
2
F; (8) 

subject to J1;qC � J1;n and 
Pp

j¼1 xj1 ¼ 1, where 
G ¼ diagðg1; g2; . . . ; gpÞ, C0 is the estimate of C using an or-
dinary NNLS estimate weighted by γj ¼ g2

j , and Ja;b denotes a 
matrix of ones of dimension a × b. The regularization param-
eter λ1 calibrates between two solutions. For λ1 !1, the na-
ive solution is retrieved, where the hidden cell proportions 
are given by Equation (7). For λ1 ! 0, x and C are estimated 
simultaneously. With growing λ1 values, the solutions are 
more strongly biased toward the naive solution Ĉ ¼ C0. Note 
that the naive solution can be determined for each cellular 
mixture individually, while the latter solution requires a suffi-
cient amount of bulk samples, however, providing the advan-
tage that a consensus background is learned across a set of 
bulk specimens. We solved the optimization problem 
Equation (8) by iteratively optimizing with respect to C and x 
using quadratic programming, until convergence is reached.

2.3.2 Adaptive reference profiles
Reference profiles can be generated using external data from 
purified cellular mixtures or from single-cell data. However, 
cells adapt their molecular phenotype to their environment 
and as a consequence, global and static reference profiles 
might be inappropriate for most applications. ADTD dynam-
ically adapts reference profiles to the specific application to 
improve inferred cellular contributions and to reveal poten-
tial regulatory effects on cell populations. This is achieved by 
replacing the reference matrix X by Δ �X, where Δ is a p × q 
matrix of rescaling factors which are applied component- 
wise to X (� is the Hadamard product). The full ADTD loss 
function is defined as 

LADTDðC; x;ΔÞ

¼

�
�
�

�
�
�G
�

Y−ðΔ �XÞC−xðJ1;n−J1;pðΔ �XÞCÞ
��
�
�

�
�
�
2

F

þλ1jjC−C0jj
2
Fþλ2jjJp;q−Δjj2F;

(9) 

which is optimized with respect to C, x, and Δ, subject to the 
constraints 

C � 0q;n; J1;qðΔ �XÞC � J1;n; x � 0p;1;

Δ � 0p;q;
Xp

j¼1

xj1 ¼ 1: (10) 

In Equation (9), we replaced c ¼ ðc1; c2; . . . ; cnÞ 2 R1×n
þ by 

J1;n−J1;pðΔ �XÞC as derived in Supplementary Section 1.1. 
The regularization term λ2jjJp;q−Δjj2F controls overfitting with 
respect to the parameters Δjk. For λ2 !1, we get Δ ¼ Jp;q. 
Thus, the limit λ2 !1 corresponds to ADTD without cellu-
lar adaptation. Further C0 is determined via DTD with non- 
negativity constraint. Thus, the DTD limit is retrieved 
for λ1 !1.

2.3.3 Implementation
The ADTD optimization problem was solved by iteratively 
optimizing the loss LADTDðC; x;ΔÞ with respect to C, x, and Δ 
until convergence is reached. The minimization with respect 
to C and x was addressed by quadratic programming (see 
Supplementary Subsections 1.2 and 1.3). The optimization 
with respect to Δ was performed iteratively for the rows Δj;�

(Supplementary Subsection 1.4). The full algorithm is sum-
marized below (Algorithm 1).

2.4 Data processing, simulation studies, 
and analyses
2.4.1 Artificial bulks from single-cell data of healthy breast 
tissue—training data
We generated artificial mixtures of known cellular composi-
tions for model training using single-cell data from healthy 
breast tissue (GSE164898) (Bhat-Nakshatri et al. 2021), rep-
resenting women of different race, age, parity, menstrual 
phase, Tyrer-Cuzick score, and Body Mass Index (BMI). We 
denote these data as “training data” throughout the article. 
Cell types were labeled using Seurat (Hao et al. 2021), fol-
lowing the workflow of (Wu et al. 2021) to remain consistent 
with the test data described below. We averaged across all re-
spective single-cell profiles of individual patients to derive 
archetypic reference profiles of B-cells, endothelial cells, mye-
loid cells, epithelial cells, perivascular-like cells (PVL), and 
T-cells, yielding a reference matrix for each patient. These 
were subsequently averaged to yield a global reference matrix 
X. Cells which were not labeled as one of these six cell types 
were removed from the training set. We further reduced the 
gene space to in total 1000, as follows. We first included the 

Algorithm 1 Adaptive Digital Tissue Deconvolution

1: procedure ADTD(X ;Y ; γ; λ1; λ2)
2:  Normalize X and Y such that 

P
j Xjk ¼ 1;

P
j Yji ¼ 1

3:  Initialize C ¼ C0, Δ ¼ Jp;q, and x ¼ x0, and
4:  for iteration ¼ 1; 2; . . . ; imax do

5:   update C (see Supplementary Subsection 1.2)
6:   update x (see Supplementary Subsection 1.3)
7:   for k ¼ 1;2; . . . ; p do

8:    update Δk;� (see Supplementary Subsection 1.4)
9:   end for

10:   Terminate when desired precision is achieved
11:  end for

12: end procedure
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top 30 genes of every Seurat main cluster. Of the main clus-
ters, we further investigated those containing predominantly 
endothelial cells and mesenchymal cells. These were re- 
clustered to yield 18 subclusters and of each of those, we fur-
ther included the top 10 genes. This yielded in total 524 
unique genes (genes representing multiple cluster were in-
cluded only once). We further ranked all genes according to 
their variance calculated with respect to X and selected the 
476 most variable genes to yield in total 1000 selected genes. 
We generated individual mixtures (n ¼ 5000) by randomly 
drawing 100 single-cell profiles each and by averaging 
their expression.

2.4.2 Artificial bulks from single-cell data of healthy breast 
tissue—validation data
For a first validation of ADTD, we generated validation mix-
tures from the same single-cell profiles as previously, but now 
also using the hold-out single-cell profiles; the mixtures now 
include hidden background contributions from cells not 
assigned to one of the six major cell types (� 15% of all cells). 
To also study ADTD’s capability to reconstruct cell-type spe-
cific regulation from bulk transcriptomics data, we further 
artificially modified gene-expression levels in a cell-type spe-
cific way. For this, we modified the expression of gene j in 
mixture i by (1) drawing a modification factor ai from the set 
f−1;−0:5; 1;2g, followed by (2) adding aiXkjCki to the origi-
nal expression Yij (values Yij < 0 were set to zero), where k 
corresponds to the cell profile. In each simulation run, we 
modified 60 genes; 30 genes randomly drawn from the 20 
most specific genes for each cell type (in total 120 genes, se-
lected via maxkfXjk=meanðXj;�Þg) and 30 genes randomly 
drawn from the 120 most unspecific genes (selected accord-
ing to minimal values of varðXj;�Þ=meanðXj;�Þ). Thus, we ma-
nipulated both genes which are particularly relevant for a 
given cell type and genes which are rather unspecific for cell 
types. We refer to the so generated data as “validation data” 
throughout the article.

2.4.3 Artificial bulks from single-cell data of breast cancer tis-
sue—test data
Artificial test mixtures of known cellular compositions were 
generated analogously to the training data, but now using 
single-cell data of breast cancer specimens (Wu et al. 2021). 
Thus, these data specifically allow us to study the domain 
transfer to completely unseen data, generated within a differ-
ent experiment, and capturing a substantially different tissue 
as a consequence of cancer cell admixtures. In total, single- 
cell data of 26 different tumors were available with corre-
sponding cell-type labels. We extracted B-cells, endothelial 
cells, myeloid cells, epithelial cells, PVL cells, and T-cells, as 
described above, and additionally cancer epithelial cells. 
These profiles were used to generate n ¼ 5000 artificial bulk 
mixtures by randomly drawing 100 single-cell profiles each. 
In this process, we further added cell-type specific gene regu-
lation, as previously done for the healthy validation data.

2.4.4. TCGA breast cancer analysis
We retrieved the BRCA bulk transcriptomics data generated 
by the TCGA Research Network (The Cancer Genome Atlas, 
https://www.cancer.gov/tcga), containing, in total, 1083 sam-
ples: 190 triple-negative breast cancers (TNBC; ER–, PR–, 
HER2–), 82 human epidermal growth factor receptor 2-posi-
tive breast cancer (HER2þ), 562 luminal A (LumA; ERþ, 
PRþ, HER2–, and low levels of Ki-67), 209 luminal B 

(LumB; ERþ, PRþ=−, and HER2þ), and 40 breast cancer 
free tissue samples (normal). To compensate systematic dif-
ferences between the measurement technologies, we further 
normalized the TCGA data gene-wise to the single-cell train-
ing data. Gene-wise re-scaling factors were calculated by di-
viding the respective mean expression in the single cell 
pseudo bulks of the training set by those derived for the 
TCGA controls.

2.4.5 Competing methods
We compared ADTD to several competing methods. First, we 
compared it to two different implementations of EPIC (Racle 
et al. 2017), one using our own reference matrix X generated 
from the training data (EPIC1) and the originally suggested 
version using the EPIC built-in reference matrix (EPIC2). 
EPIC2 returns only estimates for B-cells, endothelial cells, 
macrophages, PVLs, and T-cells. Therefore, we associated es-
timated macrophage contributions of EPIC2 with the ground 
truth of myeloid lineage cells. Second, we compared it to 
CIBERSORTx (Newman et al. 2019), where we used our 
own reference matrix, since the built-in matrix did not resem-
ble the herein investigated cell types sufficiently. Third, we 
compared it to Scaden, which is a deep-learning based ap-
proach to estimate cellular proportions. Thus, similar as we 
trained the DTD gene weighting, we learned Scaden to disen-
tangle the training data. For the latter, healthy single-cell 
profiles of our training data were provided for model 
development.

3 Results
3.1 Model training and validation
3.1.1 Model development and competing methods
It was repeatedly shown that gene selection strongly affects 
the performance of bulk deconvolution methods (Racle et al. 
2017, G€ortler et al. 2020), and the importance of a stringent 
marker gene selection was thoroughly demonstrated (Avila 
Cobos et al. 2020). ADTD involves a two step procedure. In 
a first step, it uses DTD (G€ortler et al. 2020) on the training 
data to optimize cell-type deconvolution via gene weights gi 

in Equation (3). Thus, DTD does not select marker genes but 
weighs them. Here, DTD was trained on the training data to 
disentangle B-cells, endothelial cells, myeloid cells, normal 
epithelial cells, PVLs, and T-cells. Thus, to this point, the 
training process did not see any cellular background and all 
cells in the mixtures are also represented by the reference ma-
trix X. Supplementary Table S1 summarizes the training per-
formance for ADTD and the competing methods, where we 
evaluated the models by drawing n ¼ 1000 samples. The 
results show that both ADTD and Scaden perform substan-
tially better than the competitors. However, both were opti-
mized to fit the data while the others were not.

3.1.1.1 ADTD hyper-parameters have little effect on training 
performance 
ADTD requires specification of the hyper-parameters λ1 

and λ2. While those do not affect the DTD prior learning, 
they affect predictions. We evaluated a comprehensive 
parameter grid consisting of all combinations of λ1 2

f0;10−5;10−4; . . . ; 1;10;1g with λ2 2 f10−9;10−8; . . . ;

10;1g, showing that ADTD is little sensitive to the explicit 
choice of the regularization terms, including the solutions 
with C ¼ C0 for λ1 !1 and Δ ¼ Jp;q for λ2 !1, which 
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also performed remarkably well (Supplementary Fig. S1). 
The only exception is when both regularization parameters 
are extremely small <10−7, simultaneously, or when λ1 ¼ 0. 
The ADTD results in Supplementary Table S1 correspond to 
λ1 ¼ 10−1 and λ2 ¼ 10−8. This explicit choice was motivated 
using the validation data and subsequently verified on the in-
dependent breast cancer test data, as outlined in 
the following.

3.1.2 Validation performance
In a next step, we verified ADTD’s and the competitors’ per-
formance on the artificial validation data. Those were gener-
ated from the same measurement batch (healthy tissue) but 
additionally included contributions from single-cell profiles 
which could not be assigned to any of the major cell clusters 
and as such represent a cellular background (see methods). 
Deconvolution algorithms have to deal with such unknown 
cellular contributions and among the investigated methods, 
only ADTD and EPIC are able to estimate background 
contributions, while CIBERSORTx and Scaden are not. 
Nevertheless, the latter two were included as additional state- 
of-the-art baselines for comparison.

Table 1 gives the performance of ADTD and the competi-
tors in estimating the ground truth cellular compositions for 
each of the cell types included in the reference matrix for n ¼
1000 mixtures. We observe that ADTD translates best to 
these first validation data with minimal performance 
losses compared to the training data (mean Pearson’s 
correlation over all cell types; �r ¼ 0:864 6 0:004). ADTD is 
followed by Scaden (�r ¼ 0:73660:006), and both perform 
substantially better than CIBERSORTx (�r ¼ 0:64760:01), 
EPIC1 (�r ¼ 0:6260:008), and EPIC2 (�r ¼ 0:52360:014), 
respectively.

We further evaluated ADTD and EPIC1;2 with respect to 
their performance in inferring the hidden cellular background 
(Table 2). Respective cellular proportions were estimated 
with a Pearson’s correlation of r ¼ 0:84060:010 for ADTD 
and r ¼ 0:26260:014 for EPIC1. Here, EPIC2 was not evalu-
ated since it captures a different set of cell types via X, which 
also affects the reconstructed backgrounds. As such, a fair 
comparison would not be possible. Additionally, ADTD pro-
vides estimates of the hidden-cell profile x, which could be 
also reliably reconstructed (r ¼ 0:75460:007).

3.1.2.1 ADTD hyper-parameter dependency
As for the training data, we systematically evaluated ADTD’s 
performance for different choices of λ1 and λ2 with results 
shown in Supplementary Fig. S2a and b, providing the aver-
age performance for estimating cellular proportions of the 

included cell types (Supplementary Fig. S2a) and the hidden 
cells (Supplementary Fig. S2b). We confirmed a negligible de-
pendence of the ADTD’s prediction performance with respect 
to λ1 and λ2. As previously on the training data, the only 
exception is the case when both λ1 and λ2 are very small, 
simultaneously.

3.1.2.2 Reverse engineering of cell-type specific gene regulation 
and hyper-parameter dependency
In contrast to the competing methods, ADTD adapts the ref-
erence matrix via re-scaling factors encoded by Δ. Our artifi-
cial validation mixtures were generated to contain such 
effects, resembling potential cell-type specific gene-regulatory 
contributions to gene expression. We verified that ADTD is 
able to resolve cell-type specific gene regulation by evaluating 
areas under the Receiver Operating Characteristic (AUC) 
curves. As previously, we evaluated ADTD for different 
choices of λ1 and λ2 (Supplementary Fig. S2c). In contrast to 
the previous prediction tasks, an appropriate choice of the 
hyper-parameters turns out to be much more important in 
this context. We observed that for large values of λ2 the 
AUCs approach 0.5, corresponding to random predictions. 
This might be expected, since Δ ¼ Jp;q for λ2 !1. For 
smaller values of λ2, ADTD increasingly shows its capability 
to resolve cell-type specific gene expression, yielding AUCs 
up to approximately 0.9. Importantly, performance is little 
dependent on the explicit choice of λ2, providing reasonable 
performance in the full range from 10−9 (AUC� :9) to 10−3 

(AUC� :8) given that λ1>0:3. Again, if both are very small, 
performance is compromised, indicating potential issues with 
over-fitting. This is also supported by Supplementary Figs S3 
and S4, where performance with respect to λ2 is studied in de-
tail for the two explicit choices λ1 ¼ 10−1 and λ1 ¼ 10−3.

3.1.2.3 Hyper-parameter selection
Given the outlined performance evaluations, we decided to 
fix λ1 ¼ 10−1 and λ2 ¼ 10−8, since for this choice validation 
performance is good with respect to all investigated 
measures. The performance for alternative choices is given in 
Supplementary Figs S2a–c (validation data) and S2d–f (test 
data, and see below).

3.1.3 Domain transfer to breast cancer
Next, we systematically studied the domain transfer to breast 
cancer tissue. For this purpose, we generated artificial cellular 
mixtures using single-cell data from breast cancer specimens 
(Wu et al. 2021). Thus, the test mixtures are generated from 
a different single-cell experiment and address a different tis-
sue context, namely breast tissue infiltrated by cancer cells. 

Table 1. Performance of ADTD, EPIC, CIBERSORTx, and Scaden on validation data (healthy tissue).a

ADTD EPIC1 EPIC2 CIBERSORTx Scaden

B-cells 0.744 ± 0.015 0.094 ± 0.034 0.419 ± 0.028 0.126 ± 0.037 0.551 ± 0.020
Endo.b 0.908 ± 0.003 0.839 ± 0.008 0.712 ± 0.017 0.824 ± 0.009 0.830 ± 0.009
Myel.c 0.929 ± 0.004 0.825 ± 0.006 0.678 ± 0.018 0.835 ± 0.018 0.801 ± 0.013
Epith.d 0.906 ± 0.007 0.647 ± 0.010 - 0.760 ± 0.019 0.781 ± 0.019
PVLe 0.773 ± 0.016 0.530 ± 0.026 - 0.569 ± 0.013 0.693 ± 0.020
T-cells 0.925 ± 0.003 0.782 ± 0.011 0.284 ± 0.032 0.768 ± 0.012 0.759 ± 0.015
Mean 0.864 ± 0.004 0.620 ± 0.008 0.523 ± 0.014 0.647 ± 0.010 0.736 ± 0.006

a Observed Pearson’s correlations obtained by comparing estimated with true cellular proportions for artificial mixtures generated from single-cell data of 
healthy breast tissue (see Methods). The error bars correspond to ±1 SD obtained over 10 simulation runs. Correlations > 0.8 are highlighted in bold.

b Endo., endothelial cells.
c Myel., myeloid cells.
d Epith., epithelial cells;
e PVL, perivascular-like cells.
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Thus, the artificial mixtures contain a substantial proportion 
of cells not seen in the training data.

3.1.3.1 Performance comparison to competing methods
Table 3 summarizes the results for ADTD and the competing 
methods. We observe a substantially better performance 
of ADTD compared to the competitors for each individual 
cell type, with the only exception of normal epithelial 
cells. The latter were slightly better estimated by Scaden 
(r ¼ 0:34960:022 for ADTD versus r ¼ 0:37860:03 for 
Scaden). ADTD’s average performance was 
�r ¼ 0:78760:006, followed by Scaden (�r ¼ 0:7160:005), 
EPIC2 (�r ¼ 0:66660:01), EPIC1 (�r ¼ 0:52060:003), and 
CIBERSORTx (�r ¼ 0:50860:035). Considering estimates of 
hidden cellular contributions (see Table 4), ADTD performs 
clearly better than EPIC2 (r ¼ 0:44960:031 for ADTD versus 
r ¼ 0:2460:017 for EPIC2). For the outlined reasons, a com-
parison to other approaches was not possible here. One ex-
emplary scatter plot contrasting ADTD predictions with 
the corresponding ground truth is shown in Supplementary 
Fig. S5. The comparatively low performance for estimating 
epithelial and cancer epithelial contributions might be 
explained by the fact that both belong to a continuum of 
cells, consisting of cancer cells, epithelial cells, but also a 
number of boundary cases which resemble molecular charac-
teristics of both. To determine the ground truth, we used 
the labelling provided by (Wu et al. 2021) based on a scoring 
system to annotate cancerous cells (the genomic instabil-
ity score).

3.1.3.2 Sample-size dependency
ADTD solves an optimization problem which simultaneously 
estimates the hidden reference profile x and the cellular pro-
portions. Thus, an accurate estimate of x requires accurate 
estimates of C and vice versa. The hidden background profile 
x can be considered as an average background which is 

observed among different mixtures. Thus, to obtain reliable 
estimates for x and c, one might need to consider multiple 
mixtures. To study the impact of sample size n on ADTD test 
performance, we repeated the performance evaluation for dif-
ferent numbers of samples with results shown in Fig. 1, where 
the observed Pearson’s correlation is plotted versus sample 
size n for the cell types contained in the reference matrix 
(Fig. 1a–f), and for the estimated hidden proportions 
(Fig. 1g). Additionally, Fig. 1h shows the correlations com-
paring the estimated background profile x with the ground 
truth. Strikingly, ADTD achieves already remarkable stable 
performance for sample sizes as low as n ¼ 50.

3.1.3.3 Reconstruction of cellular regulation
We further assessed ADTD’s performance to reverse engi-
neer cell-type specific gene regulation in our breast cancer 
test mixtures. Figure 2a provides respective performance 
evaluation in terms of AUCs for different values of λ2 for a 
fixed value of λ1 ¼ 10−1, containing also the finally selected 
model (λ1 ¼ 10−1; λ2 ¼ 10−8). ADTD remains highly pre-
dictive for the whole range of λ2 values between 10−9 and 
10−4, with best results observed for 10−9, closely followed 
by 10−8. Supplementary Fig. S6 shows a similar behaviour 
for λ1 ¼ 10−3. We further tested how performance depends 
on sample size with results shown in Supplementary Fig. 
S7, where we observed remarkably stable and still reason-
ably high performance for mixtures with sample sizes of 
only n ¼ 125. This was further substantiated for one alter-
native model (λ1 ¼ 10−3; λ2 ¼ 10−6) in Supplementary 
Fig. S8.

Finally, we tested how the recovery of cell-type specific reg-
ulation depends on the abundance of cell types. To study this 
aspect, we repeated the generation of the breast cancer test 
mixtures but now with (1) modified T-cells only, and (2) 
modified PVLs only. T cells are highly abundant, contribut-
ing at average approximately 39.1% of cells to the mixtures, 
while PVLs are rare with an average contribution of 6.0%. 
Respective results are summarized in Supplementary Fig. S9 
for T cells and in Supplementary Fig. S10 for PVLs, suggest-
ing that ADTD infers cellular regulation irrespective of the 
cellular abundance.

3.1.3.4 Hyper-parameter dependency
While we did not utilize the test data to refine the hyper- 
parameters, examining their impact on the results is still in-
sightful. We, therefore, evaluated the performance of ADTD 
for estimating the known cellular contributions, the hidden 

Table 2. Performance of ADTD and EPIC1 in estimating hidden 
contributions on the healthy validation data.a

ADTD EPIC1

Hidden cell type 0.840 ± 0.010 0.262 ± 0.014
Hidden profile 0.754 ± 0.007 -

a Performance in terms of Pearson’s correlation for the estimated hidden 
proportions (hidden cell type) and the hidden profile. Correlations > 0.8 
are highlighted in bold.

Table 3. Performance of ADTD, EPIC, CIBERSORTx, and Scaden on the breast cancer test data.a

ADTD EPIC1 EPIC2 CIBERSORTx Scaden

B-cells 0.824 ± 0.012 0.035 ± 0.022 0.717 ± 0.013 0.315 ± 0.089 0.657 ± 0.018
Endo. 0.832 ± 0.008 0.631 ± 0.011 0.783 ± 0.010 0.633 ± 0.060 0.859 ± 0.010
Myel.b 0.928 ± 0.003 0.867 ± 0.005 0.748 ± 0.012 0.798 ± 0.044 0.794 ± 0.009
Epith.c 0.349 ± 0.022 0.281 ± 0.023 - 0.201 ± 0.092 0.378 ± 0.030
PVLd 0.907 ± 0.005 0.573 ± 0.014 - 0.670 ± 0.062 0.838 ± 0.007
T-cells 0.882 ± 0.007 0.732 ± 0.018 0.419 ± 0.035 0.427 ± 0.096 0.732 ± 0.015
Mean 0.787 ± 0.006 0.520 ± 0.003 0.666 ± 0.010 0.508 ± 0.035 0.710 ± 0.005

a Observed Pearson’s correlations obtained by comparing the estimated cellular proportions of the cell types captured in the reference matrix X with the 
ground truth for artificial cellular mixtures of the breast cancer test dataset, where solely the cancer epithelial cells were hidden in the mixtures and not 
represented as reference profiles (see also Table 4). The error bars correspond to ±1 SD obtained over 10 simulation runs and correlations > 0.8 are 
highlighted in bold.

b Myel., myeloid cells.
c Epith., epithelial cells.
d PVL, perivascular-like cells.
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ones, and the cellular regulation for the full grid of 
hyper-parameters investigated previously (Supplementary 
Fig. S2d–f). As before, considering estimates of cellular con-

tributions, the results were stable and are compromised only 
if both λ1 and λ2 are very small. Moreover, estimates of cellu-
lar regulation were reasonable for a broad range of λ2 values. 
Thus, our results suggest a highly competitive performance of 
ADTD largely independent of the explicit choice of hyper- 
parameters, given that λ2 is in a reasonable range and that 
both are not simultaneously very small.

It is also worth emphasizing an analogy to other regular-
ized regression approaches such as ordinary Lasso or ridge re-
gression (Hoerl and Kennard 1970, Tibshirani 1996). Here, 
larger regularization parameters correspond to models which 
only recover the most dominant effects. As such, the user 
might decide whether it is important to detect the strongest 
regulatory effects with high confidence or the majority of reg-
ulatory effects with low confidence. Here, the former would 

suggest comparatively high values of λ2 and the latter com-
paratively low ones, corresponding to a more conservative 
and a more liberal choice, respectively.

3.2 ADTD breast cancer subtype analysis using bulk 
transcriptomics data from TCGA
To illustrate how ADTD can complement routine data analy-
sis, we performed an exemplary analysis considering breast 
cancer specimens from TCGA (see Methods). We evaluated 
ADTD separately for triple-negative breast cancer (TNBC), 
human epidermal growth factor receptor 2-positive breast 
cancer (HER2þ), luminal A (LumA), and luminal B (LumB) 
breast cancer to study common and complementary cell-type 
specific gene regulation. Our hyper-parameters where se-
lected as λ1 ¼ 0:1 and λ2 ¼ 10−5× ni

1000, where ni equals the 
number of samples of breast-cancer subtype i. The additional 
subtype-specific rescaling factor is necessary to make the esti-
mated cell-type specific regulation comparable. The overall 
scale was motivated by the fact that values between 10−6 and 
10−5 still yielded reasonable performance on the validation 
data, while being considerably more conservative (more regu-
larized). We extracted the matrices Δ and denote them as Δð�Þ
for breast cancer subtype ð�Þ in the following, where the entry 
Δð�Þjk contains the respective re-scaling factor for gene j in cell 
type k. For instance, a ground truth ΔðTNBCÞ

jk ¼ 2 corresponds 
to a gene j being up-regulated by a factor of 2 in TNBC com-
pared to healthy breast tissue. Possible cross-platform issues 
between the single-cell derived reference matrix X and the 
TCGA bulk profiles were addressed by gene-wise rescalings 
(see Methods).

First, we ranked the rows (genes) of Δ from highest to low-
est deviations from one defined by maxk jΔjk−1j. Thus, we 
identified the genes with strongest regulation according to 
ADTD for each of the four cancer subtypes across all cell 
types with included reference profiles. We then extracted the 
top ten genes for each subtype and explored the overlap 
(Fig. 3). We observed a remarkable overlap of five genes (of a 
total of p ¼ 957 genes), which were selected in all four sub-
types, namely B2M, TMSB4X, FTH1, LTB, and RPS27. We 
next verified if these five genes are consistently regulated 
among the four subtypes. B2M shows its highest regulation 
in myeloid cells across all subtypes, with the only exception 
of HER2þ breast cancers, where myeloid cells were also 
upregulated but slightly outcompeted by T-cells 
(ΔðHER2Þ

B2M;myel: ¼ 1:51 versus ΔðHER2Þ
B2M;T� cells ¼ 1:55). B2M encodes 

beta-2-microglobulin, a component of the class I major histo-
compatibility complex (MHC) which is present for all nucle-
ated cells and which serves for antigen presentation. Myeloid 
cells comprise professional antigen presenting cells such as 
dendritic cells and tissue macrophages (Bassler et al. 2019). 
In line with our results, beta-2-microglobulin (β2-M) protein 
expression was significantly higher in breast cancer compared 
to benign breast tumors (Li et al. 2014). Moreover, β2-M 
protein expression was shown to be significantly different in 
the four breast cancer molecular subtypes (Li et al. 2014). 
ADTD adds to this observation the cell-type specific regula-
tion of B2M, also indicating quantitative differences between 
TNBC, HER2þ and Luminal A/B (Supplementary Fig. S11a). 
TMSB4X encodes the protein Thymosin beta-4 and FTH1 
encodes the heavy subunit of ferritin. In our analysis, both 
TMSB4X and FTH1 were consistently upregulated in mye-
loid cells across all subtypes (Supplementary Fig. S11e and f). 
Thymosin beta-4 was repeatedly studied in the context of 

Table 4. Performance of ADTD and EPIC1 in estimating hidden 
contributions on the breast cancer test data.a

ADTD EPIC1

Cancer Epith. 0.449 ± 0.031 0.24 ± 0.017
Hidden profile 0.712 ± 0.004 -

a Performance in terms of Pearson’s correlation for the estimated hidden 
proportions (cancer Epith.) and the hidden profile.

(a) (b) (c)

(d) (e)

(g) (h)

(f)

Figure 1. Simulation illustrating sample-size stability of ADTD on the test 
data. Performance versus sample size n for ADTD in terms of Pearson’s 
correlation for comparing estimates with their ground truth. (a–f) Show 
the performance for cell types captured in the reference matrix X, 
corresponding to B-cells, endothelial cells, myeloid cells, normal 
epithelial, PVLs, and T-cells, respectively. (g) Shows the corresponding n 
dependency for the hidden proportion, corresponding to cancer epithelial 
cells. (h) Shows the Pearson’s correlation for comparing the estimated 
background profile x of cancer epithelial cells with the ground truth. The 
dark shaded bands correspond to ±1 SD and the light shaded bands to ±2 
SD calculated across 10 simulation runs.
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breast cancer (Zhang et al. 2017), and in line with our find-
ings, macrophages showed intense reactivity for Thymosin 
beta-4 antibodies in breast cancer, while cancer cells showed 
a much more variable reactivity (Larsson and Holck 2007). 
Also FTH1 was repeatedly discussed in the context of breast 
cancer and it was shown that ferritin stimulates breast cancer 
cells through an iron-independent mechanism and is localized 
within tumor-associated macrophages (Alkhateeb et al. 
2013). LTB encodes lymphotoxin-beta (LT-beta), also known 
as tumor necrosis factor C (TNF-C). LTB was consistently 
upregulated in B-cells (Supplementary Fig. S11d). B cells can 
produce lymphotoxin, which induces angiogenesis and thus 
promotes tumor growth (Yuen et al. 2016). Finally, RPS27 
encodes ribosomal protein S27. ADTD derived the strongest 
regulation in normal epithelial cells for all subtypes 
except HER2þ. In the latter, RPS27 was slightly stronger 

regulated in myeloid cells (ΔðHER2Þ
RPS27;myel: ¼ 1:52 versus 

ΔðHER2Þ
RPS27;norm:epi: ¼ 1:48), see also Supplementary Fig. S11c. To 

identify genes with a diverse regulation pattern derived by 
ADTD, we globally searched the scaling matrices Δð�Þ for larg-
est deviations from 1. This yielded MFGE8 as top hit, ob-
served in TNBC only. MFGE8 shows a substantial regulation 
of ΔðTNBCÞ

MFGE8;PVL ¼ 2:71 in PVLs, indicating an almost 3-fold in-
crease while the other cell types are basically not affected (see 
also Supplementary Fig. S11b). MFGE8 encodes Milk fat 
globule-EGF factor 8 and its reduction was shown to inhibit 
triple-negative breast cancer cell viability and migration 
(Yang et al. 2019).

4 Conclusion and discussion
Multiple methods for digital tissue dissection were suggested 
in recent years, based on different losses such as squared 
residuals, l1 or the support vector regression (Altboum et al. 
2014; Chen et al. 2018). Moreover, machine learning techni-
ques such as deep learning were proposed as an alternative 
and promise improved performance, although adherence to 
strict Standard Operating Procedures (SOPs) might be neces-
sary to achieve such a performance gain (Menden et al. 2020; 
Lin et al. 2022). Here, we approached computational tissue 
dissection from the perspective that strict SOPs are difficult 
(if not impossible) to guarantee and that methods should in-
trinsically account for between-dataset variability. As such, 
we proposed Adaptive Digital Tissue Deconvolution (ADTD) 
as an adaptive method for digital tissue dissection, which 
incorporates two sources of between-dataset variability. 
First, ADTD accounts for possibly hidden cellular back-
ground contributions, which are not represented by archetyp-
ical reference profiles. This allowed us to achieve improved 
out-of-sample performance as demonstrated by artificial test 
mixtures generated from single-cell RNA profiles of breast 
cancer specimens. In fact, both the proportions of back-
ground contributions and their representation as a reference 
profile could be estimated with confidence even for small 
sample sizes of n � 100. Second, ADTD accounts for envi-
ronmental effects; depending on the tissue context, cellular 
phenotypes might be altered (Racle et al. 2017, Schelker et al. 
2017), and therefore, ADTD adapts its reference matrix to 
the specific application. As demonstrated in comprehensive 
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Figure 2. ADTD recovers cellular regulation and retains prediction performance in the breast cancer test scenario. The left Figure shows ROC AUCs for 
recovering cellular regulation simulated in all cell types for different regularization parameters λ2 and fixed value λ1 ¼ 10−1 for ADTD in the breast cancer 
test study. The corresponding performance in terms of Pearson’s correlation for ADTD for estimating the known and hidden cellular contributions is 
shown on the right. AUCs were determined by averaging AUCs for detecting up- and down-regulated genes. Abbreviation: “hidden: c. epi.” ¼ hidden 
cancer epithelial cells.
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Figure 3. ADTD analysis of TCGA breast cancer data. The Venn diagram 
shows the overlap among the top ten regulated genes in negative breast 
cancer (TNBC), human epidermal growth factor receptor 2-positive breast 
cancer (HER2þ), luminal A (LumA), and luminal B (LumB) breast cancer.
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simulation studies, this allows to resolve cell-type specific reg-
ulation from bulk transcriptomics data.

It is worth emphasizing that approaching the former two 
issues requires appropriate strategies to deal with overfitting. 
Here, a common technique from high-dimensional statistics 
was used, namely l2 regularization (Hoerl and Kennard 
1970). Here, ‘2 regularization is not the only possible choice 
and was made for computational reasons, since ADTD 
Equation (9) can be minimized by iteratively solving subpro-
blems using quadratic programming. In principle, ‘1 regulari-
zation could be an interesting alternative to enforce 
sparseness in the cell-regulation parameters, potentially im-
proving the interpretability of the results. However, to fur-
ther explore this option would require appropriate 
implementation strategies. It is also important to point out 
that tuning the strength of the two l2-regularization terms is 
achieved by adjusting two hyper-parameters λ1 and λ2. 
Typically, hyper-parameters are selected by lowest generali-
zation error. This strategy, however, fails for cell-type decon-
volution; we are not interested in a low generalization error 
for the prediction of the bulk profiles Y, but in low errors of 
the underlying parameters C, c, and x. Therefore, we decided 
to perform hyper-parameter selection via a controlled valida-
tion study where the ground truth is available. Surprisingly, 
results were rather insensitive to the explicit choice of λ1 and 
λ2, under the assumption that both are not too small simulta-
neously. This means that a priori parameter choices might be 
appropriate for most applications. Alternatively, one might 
select hyper-paramters as follows: (A) start out with compar-
atively high regularization parameters. This typically yields 
reliable results for estimating cellular proportions, while the 
cell-type specific gene regulation cannot be resolved. Then, 
(B) systematically lower λ2 to resolve gene regulation. While 
doing so, respective estimates for cellular proportions should 
be controlled for deviations from the previous results. In our 
studies, the improvements from further tuning λ1 were negli-
gible and thus it could remain fixed.

It is noteworthy that recent deep-learning based approaches 
can address more complex nonlinear relationships. An exam-
ple is Scaden, which, although it performed substantially bet-
ter than CIBERSORTx and EPIC, could not outperform 
ADTD. The underlying reason could be that bulk profiles are 
inherently linear, as they correspond to a linear combination 
of individual cells’ contributions. Thus, a bias towards linear-
ity could be beneficial in this context. Finally, cell-type decon-
volution is designed to disentangle molecularly diverse cells 
and performance is typically compromised in scenarios where 
many cell types are disentangled. This is particularly the case 
if related cell types are considered. We demonstrated that the 
adapted deconvolution weights g in DTD, which are also in-
cluded in ADTD, improve on this issues (G€ortler et al. 2020). 
However, still it is insufficiently addressed given the fact that 
molecularly similar cells can fulfill highly diverse tasks.

In summary, ADTD represents a substantial step in the devel-
opment of digital tissue dissection methods, as it is to the best 
of our knowledge the first method which tackles two big intrin-
sic model uncertainties simultaneously, namely hidden back-
ground contributions and cellular environmental factors. These 
two aspects might not just be relevant for the analysis of bulk 
transcriptomics data, but also for new data data sources, such 
as spatial transcriptomics data. Also there, accounting for do-
main transfer and hidden variables, such as cellular background 
contributions, might be key for reliable inference.

Supplementary data
Supplementary data are available at Bioinformatics online.
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