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Abstract

Understanding the mechanisms that underlie de novo mutations (DNMs) can be essential

for interpreting human evolution, including aspects such as rapidly diverging genes, conser-

vation of non-coding regulatory elements, and somatic DNA adaptation, among others.

DNM accumulation in Homo sapiens is often limited to evaluation of human trios or quads

across a single generation. Moreover, human SNPs in exons, pseudogenes, or other non-

coding elements can be ancient and difficult to date, including polymorphisms attributable to

founder effects and identity by descent. In this report, we describe multigenerational evolu-

tion of a human coding locus devoid of natural selection, and delineate patterns and princi-

ples by which DNMs have accumulated over the past few thousand years. We apply a data

set comprising cystic fibrosis transmembrane conductance regulator (CFTR) alleles from

2,393 individuals homozygous for the F508del defect. Additional polymorphism on the

F508del background diversified subsequent to a single mutational event during recent

human history. Because F508del CFTR is without function, SNPs observed on this haplo-

type are effectively attributable to factors that govern accumulating de novo mutations. We

show profound enhancement of transition, synonymous, and positionally repetitive polymor-

phisms, indicating appearance of DNMs in a manner evolutionarily designed to protect pro-

tein coding DNA against mutational attrition while promoting diversity.

Introduction

Tabulations of non-synonymous and synonymous human single nucleotide polymorphisms

(SNPs) have been applied to a large body of scientific literature as the best available means to

characterize rates of gene evolution and other features of DNA diversification. Knowledge in

this area is derived from a reasonable assumption that de novo SNPs appear in essentially ran-

dom fashion, and that SNP distribution patterns revealed by sequence analysis—whether for

an individual or population—are best attributed to natural selection, drift, or related processes.

Such an assumption has recently been questioned by a growing number of reports, including

studies from Homo sapiens, Arabidopsis, single cell organisms, and viral pathogens [1–9].

Measurements of DNMs in large human cohorts, for example, show variation in SNP
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frequency that may differ by 100-fold at certain loci—a far greater magnitude than more mod-

est differences commonly used to infer effects of evolutionary selection. Quantitative argu-

ments and assemblages of DNA sequence data indicate that conclusions based on non-

synonymous to synonymous proportions (e.g., dN/dS) or other widely used metrics may need

to be revisited [1, 2, 5, 6, 9].

Testing the extent to which SNPs originate randomly (either at a particular position or

throughout human DNA) is problematic. For exonic SNPs identified by next-generation

sequencing initiatives such as gnomAD, for example, whether a specific mutational scenario is

evolutionarily advantageous or simply the result of mutational “hot spots” or “cold zones” usu-

ally remains unknown [9, 10]. Frequency of certain SNP categories such as pLOF (potential

loss of function) variants comprise part of the raison d’être for gnomAD, based on the notion

that low pLOF frequency in a particular gene should reflect purifying selection and provide a

method for identifying loci that are essential (i.e., poor targets for pharmacologic interven-

tion). However, many human genes with low pLOF counts are non-essential or expendable

[9]. Moreover, determining whether human de novo SNP formation can skew ratios of transi-

tion, synonymous, pLOF, or other polymorphisms is complicated by extreme rarity of these

events (approximately 100 de novo point mutations per 3 billion human nucleotide positions

per generation). Although many hundreds of published reports have assumed DNMs (synony-

mous versus non-synonymous; transition versus transversion) are sufficiently random to

apply dN/dS, pLOF frequency, or comparable statistical tools, it has been quantitatively diffi-

cult (or impossible) to formally test that assertion.

The present study applied a unique DNA database together with emerging functional geno-

mic, biochemical, and phenotypic knowledge regarding the cystic fibrosis transmembrane

conductance regulator (CFTR) to address a number of key evolutionary questions. In particu-

lar, the common F508del mutation abolishes CFTR function in human, murine, rat, ferret,

rabbit, and porcine cells, tissues, and organisms [11–17]. The pathogenic mechanism is unam-

biguous and attributable to premature endoplasmic reticulum-associated degradation. As a

consequence, negligible F508del CFTR arrives in a functional form at the plasma membrane,

and if mutant protein is rescued to the cell surface (e.g., using small molecules that overcome

the F508del maturational processing abnormality), F508del nonetheless confers severe gating

and cell surface stability defects [12, 18–20]. Because F508del CFTR is without significant

activity, it would be extremely unlikely for new SNPs on the mutant protein background to be

the subject of further positive or negative selection. (The protein is inactive; an argument that

new SNPs on an F508del allele might elicit additional fitness effects would contradict much of

what has been learned regarding CFTR during the past 30 years.) Moreover, the F508del pro-

tein has been extensively evaluated for partial suppressor mutations, and although a few such

SNPs are known, none are germane to analysis presented here [21, 22] (see also below).

F508del is associated with a single CFTR haplotype and believed to have originated only

once–somewhere between ~1,100 and 52,000 years ago in a human from Northern Europe

[23, 24]. Homozygosity for F508del CFTR causes the disease cystic fibrosis, which is fatal in

childhood if untreated, and (in the absence of in vitro fertilization technology) precludes

reproduction among males [25]. In addition, since F508del is quite recent in evolutionary

terms, epistasis and small changes in fitness over a protracted time scale are less relevant.

Moreover, CF is an autosomal recessive condition, and complete loss of one allele (approxi-

mately 1 in 30 Caucasians is a silent CF carrier) has minimal effect on human health (i.e.,

CFTR overwhelmingly exhibits haplosufficiency). A novel SNP on an F508del background,

therefore, would not confer additional deleterious effects (F508del is already non-functional)

and would be extremely unlikely to elicit positive selection in a CF carrier (the wt CFTR at this

locus is already fully functional; i.e., there is no dominant negative effect). Studying recent
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SNPs on the F508del haplotype therefore provides a powerful opportunity to observe human

missense mutations that have accumulated at an otherwise intact and active protein coding

locus over a comparatively brief time interval and limited number of H. sapiens generations.

Such an analysis minimizes confounding effects of epistasis or natural selection in a species for

which cellular and tissue physiology is unlikely to have changed much since the original

F508del mutation occurred.

In this report, we examined SNP formation bias and the premise that DNMs are sufficiently

random to allow accurate and meaningful evolutionary conclusions to be drawn. We describe

the types and locations of SNPs that have accumulated in 2,393 patients with CF homozygous

for the F508del variant. Our results show strongly non-random patterns of SNP accrual that:

1) cannot be attributed to natural selection, 2) indicate pronounced bias in de novo SNP for-

mation, and 3) belie the time-honored and broadly utilized assumption that SNPs are gener-

ated in a manner suitable for evolutionary inference.

Methods

Next-generation sequencing and high stringency validation of CFTR DNA from over 5,000

individuals with cystic fibrosis has been reported previously by Raraigh et al. [26]. Workflow

for analysis of F508del alleles from that data repository and used by the present study is sum-

marized in Fig 1. Sequence and SNP curation by investigators at five collaborating institutions

is available to the scientific community [26]. Computer code for our project is provided under

Supporting information, and discussed below.

Computer modeling

A computer simulation was performed using Python and 184,202 potential DNA positions

(size of CFTR) to model locations at which a SNP might occur. Single nucleotide changes were

simulated one at a time and placed randomly in the target sequence. After 969 SNPs had been

modeled for each run (see Table 1), the simulation was checked for numbers of residues

receiving more than a single point mutation.

To assess SNP distribution ratios and types of mutations occurring in CFTR exons, every

coding SNP generated by simulation was recorded and the amino acid produced determined.

Computer-generated mutations were next categorized as to whether the modified position led

to a transition or a transversion, and whether the resulting amino acid was synonymous, non-

synonymous, or a nonsense variant. Mutation placement for each simulation used the human

CFTR DNA sequence with each codon referenced against codon usage [9].

Statistical analysis

SNPs generated by random computer simulation were distinct from those experimentally

observed for F508del CFTR alleles. A binomial distribution calculator was used to determine

probability of observed SNP ratios in comparison to computer modeling data. p-value < 0.05

was taken as significant.

Results and discussion

SNP accumulation findings are described in Fig 2 and Table 1.

Transition versus transversion polymorphisms

Transition SNPs (T$C, G$A) have been measured in numerous previous studies of species

comparison, DNM trios, tumor genomes, etc., and are typically present at far higher numbers
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than would be expected by chance alone. CpG methylation can be invoked to explain such

findings, but accounts for only a fraction of transitions, based on experiments in yeast (where

DNA methylation is very rare) and DNM analysis in humans (where transition SNPs are

strongly enhanced at both CpG and non-CpG locations) [9, 27]. On the F508del haplotype,

transition SNPs have accumulated in marked preference to transversions (585 intronic transi-

tion SNPs versus 344 transversions (63% transition); 24 exonic transition SNPs versus 16

transversions (60% transition)). The expected proportion, which favors transversions by a

ratio of 2 to 1, has therefore nearly been reversed (Table 1).

What is the significance of transition SNP enhancement? Among other features, transitions

confer synonymous polymorphism as programmed by the genetic code [1, 28, 29]. The ten-

dency to elicit synonymous mutations is especially pronounced for transitions at the 3rd nucle-

otide position of a codon (the preferred site for transition polymorphisms), where 94% of

transitions lead to a synonymous amino acid change. Transition preference as shown in

Table 1 cannot be accounted for by purifying selection of a functionless CFTR protein (note

also that strong transition preference in coding DNA is very similar to non-coding elements,

Fig 1. Overall study design, including methods to identify polymorphisms on an F508del CFTR allelic background.

https://doi.org/10.1371/journal.pone.0305832.g001
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further arguing against recent selective pressure as an explanation). The increase of transition

SNPs on an F508del CFTR background also agrees with a previous study of human DNMs

among 283 trios, where ~65% of DNMs were transitions [27]. Such findings strongly contra-

dict the notion of random SNP production. DNM bias of this type would serve evolutionarily

to preserve protein coding sequences by favoring synonymous SNPs (Table 1) and limit geno-

mic attrition (so called “meltdown”) [1, 2, 9].

Non-synonymous versus synonymous SNPs

Over the past 50 years (and continuing at present), very large numbers of published reports

have drawn conclusions about human genomic evolution based on adjusted non-synonymous

to synonymous SNP ratios (dN/dS) or similar quantitative methods. An unproven supposition

for these studies has been that diminished numbers of non-synonymous SNPs reflect purifying

selection that removes deleterious mutations from the gene pool.

Data from sequence analysis of 2,393 individuals with CF who are homozygous for F508del

CFTR establishes a synonymous SNP incidence of ~38%. This result has meaning, since the

percentage of synonymous DNMs genome-wide in human DNA has been reported previously

to be of the same magnitude (approximately 30–44%) among normal controls and patients

with autism [30–32]. Our findings therefore indicate that in contrast to many traditional appli-

cations, the primary determinant for non-synonymous to synonymous SNP ratios may simply

Table 1. Polymorphisms identified in 4,786 F508del CFTR alleles.

Exonic Observed Expected* Expected**
Non-synonymous:synonymous 25:15 = 38% syn. 3.2:1 = 24% syn. 3.3:1 = 23% syn.

Transition:transversion 24:16 (includes one stop codon) = 60% transition 0.5:1 = 33% transition 0.5:1 = 33% transition

% of coding transition mutations leading to synonymous SNPs 11/24 = 46% 34% 34%

Intronic Observed Expected*
Transition:transversion 585:344 = 63% transition 0.5:1 = 33% transition

*If stochastic and based on genetic code corrected for codon usage

**Computer modeling of all possible mutations at every CFTR exonic position

Non-synonymous:synonymous (observed versus expected) p = 0.027

Transition:transversion (observed versus expected) p = 0.00049

Observed

Non-coding versus coding mutations (from a total of 969 SNPs) 929:40 = 23 times increased non-coding compared to coding SNPs

https://doi.org/10.1371/journal.pone.0305832.t001

Fig 2. Distribution of SNPs identified in 2,393 patients with cystic fibrosis homozygous for F508del CFTR. SNP counts are shown as orange

triangles (exonic) or blue circles (intronic and 3’ UTR).

https://doi.org/10.1371/journal.pone.0305832.g002
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reflect de novo mutation bias (as opposed to purifying selection or classic constraint). We note

that in semblance to human DNM data (indicating up to 100-fold differences in mutational

frequency at specific loci genome-wide), our findings further contradict use of non-synony-

mous SNP depletion as a routine means for evaluating DNA evolution. Note that for human

genes reportedly subject to either rapid evolution or strong negative selection, values of non-

synonymous SNPs may only be a few percentage points from “expected”. Data from gnomAD,

for example, indicates typical synonymous SNP percentages of 29–40% across many loci

(including both essential and non-essential genes)—a value used to indicate magnitude of con-

straint but very similar to the F508del synonymous proportion shown here—despite clear evi-

dence that DNM formation bias (and not purifying selection) is responsible in the present

study.

Random SNP accrual is further confounded by “parallel” evolution

Studies of congenic mice indicate a remarkably high level of parallel evolution (i.e., DNMs

observed at the same codon in distinct animal lineages represent approximately 20% of all

newly formed SNPs) [2]. Similar evidence of strong parallelism has been noted in human

DNA. In one study, for example, 43% of de novo SNPs among 1756 trios were found to have

occurred more than once when compared to the ExAc mutation dataset [33] (on a ‘random’

basis, <1% of DNMs would have been expected to show recurrence). Among 2,393 patients

with CF studied here, 40 exonic SNPs were observed on the F508del background, and at least 5

of these occurred at the same position twice. For intronic DNA encoding 929 mutations on an

F508del background, at least 28 overlapped in the same manner. Such findings contradict a

notion of “random” DNM production required by dN/dS or pLOF-type analyses, and indicate

that other features—such as biased SNP formation—contribute much more prominently than

acknowledged previously. Note the stochastic likelihood of observing parallel evolution of the

magnitude shown here is infinitesimal. For example, computer simulation of the process indi-

cates that when 969 total SNPs were placed randomly across 184,202 DNA locations (the

approximate size of CFTR), the number of positions receiving more than one SNP never

exceeded 14 when the simulation was conducted 10 million times. Moreover, while two dis-

tinct point mutations (e.g., G!A or G!T) at the same codon occur with surprising frequency

and can be readily quantified by the present analysis, repeat occurrence of the same base

replacement at the same position is not easily distinguished from a single mutation simply

inherited by multiple individuals (which would only be counted once). In other words, the

present analysis is likely to underestimate both frequency and extent of repetitive SNP

formation.

As part of the F508del DNA sequence analysis, we also observed pronounced clustering of

“parallel” SNPs. For example, in CFTR intron 20 (total size 2804 base pairs (bp)), while 59

mutations (29 of these being SNPs) were observed, at least 43 (including 12 SNPs) occurred

more than once at the same position (i.e.,� 41% of SNPs were found at the same location as a

different SNP; Fig 2). Such findings strongly defy random SNP production, and do not result

from recent positive selection involving intron 20.

Origin of the F508del variant

CFTR is ancient—over 450 million years old [34]—with thousands of polymorphisms noted in

the wildtype protein across numerous ethnicities. Many of the polymorphisms in human

CFTR may have markedly predated Homo sapiens evolution and remain evident because of

founder-type effects. The occurrence of F508del on a single CFTR haplotype [23, 24, 35, 36]

provides compelling evidence for one-time establishment of the variant.
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Previous studies using distinct methodology have verified a mutation rate in Homo sapiens
of approximately 100 SNPs per generation per genome [3, 27, 37–39]. This frequency corre-

sponds to one new SNP per generation for every 30 million bp of human DNA. A total of

1,460 new mutations (~970 SNPs plus small indels, etc.) were noted in the present study when

the 184,000-nucleotides of CFTR were evaluated across 4,786 alleles (total of 880,624,000 bp).

Thirty-eight generations or ~800 years (at 20 years per generation) would be required to

achieve the level of diversity in F508del shown here. A similar analysis based on exonic muta-

tions indicates 57 generations (~1,100 years) of F508del SNP accumulation. Note that these

timeframe projections may represent a modest underestimate due to consanguinity or other

causes of F508del CFTR homozygosity, leading to loss of mutant alleles from the gene pool.

Moreover, the analysis requires that CFTR conforms reasonably well to genome-wide esti-

mates of SNP formation, whereas mutation rates are not yet known with certainty for any indi-

vidual human gene. In either case, previous estimates place original occurrence of F508del

between ~1,100 and 52,000 years ago [23, 36, 40, 41], and our findings support the shorter

time line proposed by Serre [41] and Farrell [36]. In the same context, it should be noted that

invoking small, epistatic or other recent fitness effects to explain transition, non-synonymous,

or parallel mutation preferences on the F508del background over such a short time period

would be naive, based on an extensive body of knowledge—and low likelihood that CFTR or

its role in human physiology have changed substantially over the past few thousand years.

Evolutionary aspects of CFTR adaptation, including significance of the

F508del defect

Earlier studies describing cystic fibrosis-related evolutionary biology have focused on CFTR

as. a member of the ATP binding cassette (ABC) gene family. Other mammalian ABC proteins

utilize ATP hydrolysis as a means to transport solutes across the plasma membrane [11]. CFTR
has evolved specialized adaptations that include establishment of an ion channel pore, ligand

binding interactions, and unique protein kinase A responsive regulatory elements that help

govern overall ion channel function. The ways in which these features represent a response to

evolutionary pressure have been modeled in part using DNA sequence comparisons with

other ABC proteins, such as ABCC4 (in mammals) or YOR1 (in yeast) [42–44]. For example,

specific functional divergence of the sixth transmembrane alpha helix at residue R352 has been

implicated as contributing to evolutionary establishment of the CFTR permeation pathway.

Ancient CFTRs such as those encoded by dogfish shark and sea lamprey (>450 million years

old) have also facilitated evolutionary inference, including features of both ion channel struc-

ture and gating [34]. Some of this earlier work has relied on sequence conservation between

species or features of stochastic SNP formation (across much longer time intervals than evalu-

ated here for F508del CFTR). The interpretation of such findings might therefore be influ-

enced by features of non-random SNP production as described by the present report.

As another example of previous CFTR evolutionary analysis, and in semblance to relation-

ships between sickle cell disease trait and Plasmodium falciparum, a heterozygote advantage is

believed to account for the high prevalence of F508del CFTR carriers in modern-day North

America and Europe. It has been argued that a serious infectious disease (e.g., cholera, salmo-

nella, tuberculosis, or plague), or heavy metal poisoning among European populations during

the past several thousand years, may have been less lethal among heterozygotes for F508del

CFTR. Although physiologic and epidemiologic evidence of heterozygote advantage remain

inconclusive, the present report shows ways in which the high prevalence of F508del heterozy-

gosity (appx. 1 in 30 White individuals in the US) provides a novel means to evaluate de novo
SNP accumulation. Our study utilizes the largest compendium of fully sequenced F508del
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CFTR alleles to date–and furnishes a powerful resource for investigating SNP accumulation in

human DNA [9, 45–49].

Limitations of the current approach

Care was taken in the present study to avoid sequencing artifact or incorrect SNP identifica-

tion by applying a dataset based on state-of-the-art technology and well validated analytic

methods (Fig 1 and [26]). SNP prevalence can be subject to ascertainment bias when specific

populations (such as patient cohorts that include individuals with cystic fibrosis) are being

evaluated, since strong enrichment for “loss of function” alleles is expected. That potential

source of bias has been minimized in the current study by focusing on SNPs that occurred sub-

sequent to a CFTR-null (F508del) mutational event. Another potential confounder involves

the possibility of second site suppressors that partially rescue F508del CFTR. Known suppres-

sors have been studied by our laboratory and others to characterize CFTR molecular abnor-

malities [21, 22, 50–54], and if present in cis with F508del could restore CFTR activity.

Suppressors of F508del include R1070W, F1068M, F1074M, V510D/E/A, I539T, G550E,

R553M/Q, and R555K [21, 22, 50–55]. Importantly, none of these SNPs were observed in the

coding sequences obtained from 2,393 patients homozygous for F508del. Additionally, no syn-

onymous SNP in CFTR has been reported to rescue the F508del defect. As a result, explaining

synonymous SNP enrichment (Table 1) as being caused by numerous synonymous polymor-

phisms that rescue F508del would appear untenable.

Adaptive significance of SNP formation bias

It is worth noting that non-random SNP formation as delineated by the current report could pro-

vide an important evolutionary advantage by favoring transition, synonymous, and parallel exonic

polymorphisms. This mechanism would permit DNA evolutionary adaptiveness and genomic

diversity (essential for overcoming environmental pressures and selective “bottlenecks”), while

also providing an element of protection for vital DNA protein coding elements and blunting the

process of genomic attrition (so-called “mutational meltdown”). Over many hundreds of millions

of years (the period of known CFTR evolution), an advantage of this type could be substantial [9].

Conclusions

A large number of reports investigating genomic evolution in H. sapiens and other species are

predicated on an assumption of stochastic de novo SNP formation. Hundreds of previous stud-

ies have used small changes in dN/dS to draw conclusions that assume “randomness” of

DNMs. The F508del haplotype allows a unique test of that premise, and demonstrates strong

bias towards de novo transition and synonymous polymorphisms, as well as pronounced paral-

lel evolution—all of which complicate an otherwise time-honored strategy for elucidating

human adaptation. Taken together with trio and related data indicating considerable variation

of DNM frequency and clustering at distinct loci, evolutionary conclusions based on dN/dS,

constraint, or related SNP ratios should be carefully scrutinized and may not be valid. The

results presented here—in one of the best studied and well characterized human genes—dem-

onstrate SNP formation is not sufficiently random to allow meaningful inference to be drawn

using the standard quantitative tools.
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fibrosis mutation (delta F508) in European populations. Nat Genet. 1994; 7(2):169–75. https://doi.org/

10.1038/ng0694-169 PMID: 7920636.

24. Farrell P. Tracking down the origins of cystic fibrosis in ancient Europe. Smithsonian Magazine. 2018

September 10, 2018.

25. Sorscher EJ. Cystic fibrosis. In: Jameson JL, et al., editor. Harrison’s Principles of Internal Medicine. 21

ed. New York, NY: McGraw-Hill Education/Medical; 2021.

26. Raraigh KS, Aksit MA, Hetrick K, Pace RG, Ling H, O’Neal W, et al. Complete CFTR gene sequencing

in 5,058 individuals with cystic fibrosis informs variant-specific treatment. J Cyst Fibros. 2022; 21

(3):463–70. Epub 20211112. https://doi.org/10.1016/j.jcf.2021.10.011 PMID: 34782259.

27. Besenbacher S, Sulem P, Helgason A, Helgason H, Kristjansson H, Jonasdottir A, et al. Multi-nucleo-

tide de novo Mutations in Humans. PLoS Genet. 2016; 12(11):e1006315. Epub 2016/11/16. https://doi.

org/10.1371/journal.pgen.1006315 PMID: 27846220; PubMed Central PMCID: PMC5147774.

28. Bofkin L, Goldman N. Variation in evolutionary processes at different codon positions. Mol Biol Evol.

2007; 24(2):513–21. Epub 20061121. https://doi.org/10.1093/molbev/msl178 PMID: 17119011.

29. Freeland SJ, Hurst LD. The genetic code is one in a million. J Mol Evol. 1998; 47(3):238–48. Epub

1998/09/11. https://doi.org/10.1007/pl00006381 PMID: 9732450.

30. Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, et al. De novo gene disruptions in chil-

dren on the autistic spectrum. Neuron. 2012; 74(2):285–99. https://doi.org/10.1016/j.neuron.2012.04.

009 PMID: 22542183; PubMed Central PMCID: PMC3619976.

31. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a

highly interconnected protein network of de novo mutations. Nature. 2012; 485(7397):246–50. Epub

2012/04/13. https://doi.org/10.1038/nature10989 PMID: 22495309; PubMed Central PMCID:

PMC3350576.

32. Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE, Sabo A, et al. Patterns and rates of exonic de novo

mutations in autism spectrum disorders. Nature. 2012; 485(7397):242–5. Epub 20120404. https://doi.

org/10.1038/nature11011 PMID: 22495311; PubMed Central PMCID: PMC3613847.

33. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding

genetic variation in 60,706 humans. Nature. 2016; 536(7616):285–91. Epub 2016/08/19. https://doi.org/

10.1038/nature19057 PMID: 27535533; PubMed Central PMCID: PMC5018207.

34. Cui G, Hong J, Chung-Davidson YW, Infield D, Xu X, Li J, et al. An Ancient CFTR Ortholog Informs

Molecular Evolution in ABC Transporters. Dev Cell. 2019; 51(4):421–30.e3. Epub 2019/11/05. https://

doi.org/10.1016/j.devcel.2019.09.017 PMID: 31679858; PubMed Central PMCID: PMC7665244.

35. Vecchio-Pagán B, Blackman SM, Lee M, Atalar M, Pellicore MJ, Pace RG, et al. Deep resequencing of

CFTR in 762 F508del homozygotes reveals clusters of non-coding variants associated with cystic fibro-

sis disease traits. Hum Genome Var. 2016; 3:16038. Epub 20161124. https://doi.org/10.1038/hgv.

2016.38 PMID: 27917292; PubMed Central PMCID: PMC5121184.
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