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Abstract
Decision-making based on noisy evidence requires accumulating evidence and categorizing it to
form a choice. Here we evaluate a proposed feedforward and modular mapping of this process
in rats: evidence accumulated in anterodorsal striatum (ADS) is categorized in prefrontal cortex
(frontal orienting fields, FOF). Contrary to this, we show that both regions appear to be indis-
tinguishable in their encoding/decoding of accumulator value and communicate this information
bidirectionally. Consistent with a role for FOF in accumulation, silencing FOF to ADS projections
impacted behavior throughout the accumulation period, even while nonselective FOF silencing did
not. We synthesize these findings into a multi-region recurrent neural network trained with a novel
approach. In-silico experiments reveal that multiple scales of recurrence in the cortico-striatal cir-
cuit rescue computation upon nonselective FOF perturbations. These results suggest that ADS
and FOF accumulate evidence in a recurrent and distributed manner, yielding redundant represen-
tations and robustness to certain perturbations.
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Introduction

Decision-making based on noisy perceptual evidence is a core cognitive process that is often con-
ceptualized as a sequence of two sub-computations: gradual accumulation of evidence, followed
by thresholding to commit to a categorical choice. Both theoretical1,2,3,4 and empirical5,6,7,8 studies
of the neural implementation of this process have proposed candidate circuits with feedforward
information flow, by mapping the two sub-computations onto distinct brain areas. Such a mod-
ular implementation offers several adaptive advantages9; for instance it allows for easy dynamic
modulation of decision thresholds based on behavioral demands while leaving the accumulation
process unchanged10,11,12,3,13.

In rats, the anterior dorsal striatum (ADS) and the frontal orienting fields (FOF) have been
mapped onto these two theoretically defined sub-computations. ADS is known to represent the
graded accumulated evidence and is causally required throughout the accumulation process14,
whereas FOF is known to represent the categorical choice and is causally necessary only at the
very end of accumulation period when the graded evidence needs to be thresholded15,16,17,18. These
observations provide an intriguing, yet untested, neural implementation of the decision process,
in which ADS and FOF form a feedforward functional hierarchy - with evidence accumulated in
ADS being thresholded in FOF.

While appealing, this proposal is surprising in several ways. First, the fact that FOF projects
monosynaptically to ADS, but ADS does not project directly back to FOF, implies that this pro-
posed implementation must map onto a multisynaptic pathway in which signals from ADS must be
relayed through other basal ganglia nuclei, thalamus and/or superior colliculus before they reach
FOF. Furthermore, FOF is one of the main cortical inputs to ADS, but this salient FOF → ADS
projection plays no role in the proposed implementation. Anatomically connected brain areas
can selectively communicate information to their downstream targets19,20, so it is certainly possi-
ble that the information flow during evidence accumulation renders the monosynaptic projection
from FOF to ADS non-functional and only involves the multisynaptic pathway from ADS to FOF.
However, the substantial heterogeneity in neural encoding within FOF, with neurons representing
both graded evidence and categorical choice16, along with FOF’s anatomical placement, strongly
suggests that FOF might have a role in gradual accumulation as well.

Second, some recent studies challenge the interpretation of transient unilateral optogenetic
perturbations of FOF16, which had previously provided compelling evidence for confining FOF’s
role to the thresholding epoch of decision-making. It has been observed that, unlike its response to
bilateral perturbations, the cortex can be robust to transient unilateral perturbations – with the net-
work recovering through information from the other hemisphere21. Since the network has enough
time to recover early in the accumulation period but not towards the end, this interhemispheric
compensation might underlie the lack of impairment observed during FOF’s inactivations early
in the decision process, obscuring its role. Furthermore, whole-region non-specific perturbations
have been shown to conceal effects that can be revealed by more specific perturbations that target
a particular projection22,23,24. This suggests that the previous unilateral inactivation studies may
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have missed aspects of FOF’s involvement in the decision process by not using projection-specific
and/or bilateral manipulations.

Therefore, it is crucial to directly evaluate the hypothesized feedforward and modular mapping
of the decision process onto ADS and FOF. Testing this would require recording activity from both
areas simultaneously25,26 to determine if the distinct representations as well as the transformations
and latencies expected from feedforward communication, are present across the two areas. Such
a comparison would also control for slight differences in cognitive strategies or training histories
between subjects that can vary neural representations and dynamics27,28,29,30,31. Additionally, con-
firming that the feedback projection under this hypothesis i.e. the FOF → ADS projection plays
no causal role in evidence accumulation would add substantial support in favor of this hypothe-
sis. Similarly, demonstrating undisrupted evidence accumulation during bilateral manipulations
of FOF activity would address the aforementioned confounds and further validate that FOF’s role
is confined to the thresholding sub-computation.

Here, we follow this logic and apply simultaneous multi-region population recordings, bilat-
eral, and projection-specific perturbations in rats performing an evidence accumulation task. The
resulting data provide evidence against the modular, feedforward hypothesis in which evidence
accumulated in ADS is thresholded in FOF. We find that ADS does not have privileged infor-
mation about evidence, rather both regions carry similar amounts of information that evolves at
comparable timescales. Further, simultaneous population recordings let us define the feedforward
(ADS → FOF) and feedback (FOF → ADS) communication subspaces under this hypothesis.
We find that evidence can be substantially decoded from both these subspaces, in contradiction
to the hypothesized information flow. Moreover, with projection-specific inactivations we show
that this “feedback” communication is necessary during the accumulation process for unimpaired
decision-making.

Therefore, we revise the feedforward hypothesis and advocate for an alternate distributed im-
plementation of the evidence accumulation process in the cortico-striatal circuitry. We instantiate
this proposal using a multi-region recurrent neural network model with biological constraints on
connectivity. The model successfully reproduces empirical representational redundancies and ef-
fects of held-out perturbations, when trained with a novel approach of capturing patterns of an-
imal behavior on optogenetic perturbation trials alongside control trials. Finally, leveraging the
RNN’s observability and controllability, we predict that recovery dynamics are at play during
non-selective silencing of FOF neurons and perform a number of in-silico experiments to under-
stand the contributions of different projections to this phenomenon. We show that recovery is
supported by multiple scales of recurrence - including self-recurrence, inter-hemispheric recur-
rence and striato-cortical recurrence. Taken together, our approach of using projection-specific
perturbations in conjunction with multi-region RNN modeling offers a useful method to decipher
the contributions of distributed and recurrently connected networks of brain regions to cognitive
processes.
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Results

In order to test whether the hypothesized transformation between ADS and FOF holds on single
trials (Figure 1B-C), we recorded simultaneous population activity from ADS and FOF of rats
trained to perform a previously developed decision-making task32 (Fig 1A). This task requires
accumulation of auditory evidence over hundreds of milliseconds for good performance. On any
given trial, rats are presented with two streams of randomly timed auditory clicks, one played from
a speaker to their left and the other from a speaker to their right. At the end of the stimulus, rats
are rewarded with a drop of water for correctly reporting the side which played the greater number
of clicks.

While rats (n = 5) performed this task, we used Neuropixels probes33,34 to record neural activ-
ity from FOF and ADS simultaneously (Fig 1D-E). We recorded from 765 FOF and 1583 ADS
neurons across 12 sessions. Cells with a mean firing rate of at least 1Hz during the stimulus period
were considered active and included for further analysis (462 FOF, 559 ADS neurons). In both
FOF and ADS, we found that neurons that significantly modulated their activity in a side-selective
manner on average exhibited firing rates that ramped upwards for stimuli favoring their preferred
side with a slope proportional to the stimulus strength (Fig 1F). These trial-averaged stimulus-
dependent ramping responses have long been interpreted as a neural correlate of the evidence
accumulation process5 and are consistent with previous reports in rats from FOF16 and ADS14,
and analogous regions in primates (FEF35 and caudate36). However, both graded and categori-
cal representations of accumulated evidence can give rise to such ramping responses37,16, hence
to distinguish between these possibilities we characterized the encoding and decoding profiles of
task-relevant variables in the two regions with more directed analysis.

FOF and ADS carry redundant bidirectionally communicated task-related information
The feedforward functional hypothesis posits that ADS has graded encoding of evidence that

is relayed to FOF where this evidence is thresholded and the categorical choice is represented.
Therefore, the hypothesis predicts that evidence can be decoded from ADS earlier and with higher
accuracy compared to FOF.

To test the validity of this hypothesis, first we sought to compare the differences in the extent
of graded encoding between FOF and ADS. For this we use the method developed in Hanks
201516. This method computes the accumulator ‘tuning curves’ i.e. maps of how firing rates
of neurons vary as a function of the accumulator value. To do so, it leverages the behavioral
model from Brunton 201332 to obtain trial-by-trial, moment-by-moment estimates of the subject’s
accumulator value and relates it to the simultaneously observed firing rates of neurons. Previous
application of this method had found that tuning curves in FOF had high slopes, i.e. were more
step-like or categorical, with accumulator values on one side of the decision boundary giving rise
to one cluster of firing rates, and the values on the other side of the decision boundary giving rise
to another cluster16. On the other hand, previous application of this method in ADS had found a
prevalence of neurons whose firing rates had lower slopes i.e. varied smoothly with the graded
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Figure 1 Experimental setup and simultaneous recordings from FOF and ADS (A) Schematic of the
events in the rat evidence accumulation task (adapted from Brunton et al. 2013). From left to right: rats
initiate a trial by poking their nose into the center port, two streams of randomly timed auditory clicks play
from speakers on their left and right side, rats are rewarded for choosing the side with the greater number
of clicks. (B) Schematic showing proposed implementation of the decision-making process16,14,38. The
anterior dorsal part of striatum (ADS, pink) is thought to be involved in gradual accumulation of sensory
evidence and represents this accumulated value “a” in a graded fashion14. The accumulated evidence is
thought to be thresholded, and represented in categorical form in the frontal orienting fields (FOF, blue), a
part of the rat secondary motor cortex16,15,17. (C) The pathway from ADS to FOF involves a multi-synaptic
pathway (grey arrows through olive-green regions) through basal ganglia (BG) nuclei, the thalamus and
the superior colliculus (SC) that could potentially support this transformation. (D) Schematic showing
neuropixels targeting (AP 1.9, ML 1.15 at a 15 degrees angle in the coronal plane) to record simultaneously
from FOF and ADS, overlaid on histology from an example rat. Brain atlas was adapted from Paxinos and
Watson, 2006 (E) Spike rasters showing simultaneous neural activity recorded with a neuropixels probe
from two example correct trials (left and right) from one session. Neurons are arranged in order of their
estimated depth from the brain surface. Aqua blue shades represent FOF neurons and pink shades represent
ADS neurons. (F) Average FOF (top) and ADS (bottom) population responses during stimulus period for
different strengths of sensory evidence. Brown and green colors correspond to stimuli from preferred and
non-preferred sides of the neurons, respectively. Darker hues correspond to easier trials and greyish hues
correspond to harder trials. Both areas show stimulus strength dependent ramping activity. (FOF n = 219
neurons, ADS n = 235 active side-selective neurons from 5 rats).

value of the accumulator14. Here, simultaneous recordings allowed us to perform comparisons
controlled for inter-subject variability.

When applying this analysis to side-selective neurons in our data, we found examples of both
graded and categorically tuned neurons in FOF as well as ADS (Fig 2A). Surprisingly, we found
no significant differences between FOF and ADS (Fig 2B, P = 0.13 Mann-Whitney U test). If
anything, the median slope was slightly higher in ADS (0.32 ± 0.25, median ± std) compared to
FOF (0.29± 0.22). Contrary to expectations from previous studies, these results demonstrate that
when neural measurements from the two areas are made in the same subjects, the two regions do
not appear to differ in their encoding of the accumulator variable.
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Next, we compared the decodability of information about the stimulus and other task variables
in the population activity of FOF and ADS. Despite the similarity in trial-averaged tuning to the
accumulator variable (Fig 2B), it is still possible that this information is decodable earlier in ADS,
and/or with higher accuracy. For each region, we trained separate linear decoders to predict the
cumulative difference in the number of right and left clicks at each time point during the trial
(Supp Fig 1A). Interestingly, both regions showed comparable decoding performance over time,
as measured by the correlation between the true and predicted cumulative stimulus on held out time
points, with no significant differences between the regions (Fig 2C; two way repeated measures
ANOVA, P = 0.93 for region and P = 0.36 for region x time). These results did not change when
choice information was controlled for, by separately decoding the stimulus on left and right choice
trials (Supp Fig 1B). The results were similar also when instead of the veridical stimulus, the mean
accumulated evidence inferred with the behavioral model was decoded from the two populations
(not shown).

Additionally, we trained logistic decoders to predict other binary task-relevant variables such
as choice and trial-history from the two regions. The two regions showed high decoding of choice
(Supp Fig 1C) but once again with no significant differences in decoding performance over time
(two way repeated measures ANOVA, P = 0.90 for region and P = 0.54 for region x time). The past
trial’s choice could be decoded well into the current trial with substantial accuracy from both re-
gions (Supp Fig 1D), however there were no significant differences between the two regions (two
way repeated measures ANOVA, P = 0.13 for region and P = 0.37 for region x time). Altogether,
these results show that, at least under the analyses carried out here, the two regions have indistin-
guishable representations of task relevant variables, leading us to believe that their involvement in
decision-making may be strongly related.

Our conclusions about the simultaneous evolution of evidence-related representations in FOF
and ADS are also supported by an independent analysis that decodes the decision variable from
neural population activity. The distance of a population firing rate vector from the decision hy-
perplane of a logistic decoder that is trained to predict choice, reflects the model’s prediction
confidence. This neurally inferred variable, known as the decision variable (DV), estimates the
animal’s internal decision variable (log odds of making a choice) capturing the influence of sen-
sory evidence and other choice determinants39,21,40. This complements our previous analyses by
relaxing assumptions of the behavioral model and not assuming a fixed stimulus encoding lag in
the two regions. We sought to examine if these neurally inferred DVs from the two regions exhibit
any systematic lead-lag relationships in their evolution, in order to infer the dominant direction
of task-related information flow within the frontal cortico-striatal circuitry. We used the logistic
decoder trained to predict the eventual choice (from Supp Fig 1C) and estimated the DV on single
trials from the two regions (Supp Fig 2A). DVs from FOF and ADS showed good correspondence
with each other and with the eventual true choice of the animal on both correct and error trials
(Supp Fig 2B). Averaged across trials of different difficulties, DV values (unsigned) increased
over the trial, with the rate of increase dependent on the strength of sensory evidence – exhibiting
the classic ramping signature expected from evidence accumulation (Supp Fig 2C). Consistent

6

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 11, 2024. ; https://doi.org/10.1101/2024.07.08.602544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.08.602544
http://creativecommons.org/licenses/by-nc/4.0/


with our previous analyses, we did not find any lead-lag relationship in the evolution of DV in
the two regions (Fig 2D). While the DVs showed high correlations at short latencies on average,
the cross-correlogram of these DVs averaged over rats and sessions had a peak at a latency not
significantly different from zero (mean latency ± sem = −0.01± 0.02s; P = 0.47 one-sided t-test,
n = 12). This is consistent with no dominant feedforward or feedback relationship41. We con-
ducted extensive simulations to validate our ability to infer lead-lag relationships in evolution of
DV across varying number of simultaneously recorded neurons, trials and interaction lags (Supp
Fig 3).

Next, we probed the content of the interaction between FOF and ADS during decision-making
more generally, rather than restricting ourselves to activity along the decision hyperplane. To
measure such interactions we used a generalized linear model with coupling filters across the
two populations (similar to Pillow 200842) in addition to temporally-extended kernels for left and
right clicks and other major task events. To overcome the explosion in the number of parame-
ters with increasing numbers of cells, instead of modeling pairwise coupling terms, we projected
the activity of the regressor population onto a (learnt) lower dimensional subspace, over which
the coupling filters were learnt (Methods; Supp Fig 4A). We estimated the number of such latent
factors required by evaluating the cross-validated log-likelihood of models fit with varying dimen-
sions (Supp Fig 4B). The resultant model captured a high percentage of variance in average firing
rates for most of the neurons in both areas (Supp Fig 4C). We compared the information content of
activity in FOF → ADS and ADS → FOF communication subspaces (CS) to the whole population
activity space by measuring the decoding accuracy of stimulus (Fig 2E). Remarkably, we found
that a sizeable fraction of stimulus information in the two regions could also be decoded from the
CS and this fraction increased over the course of the trial, with FOF sharing a slightly higher frac-
tion of its information in its CS (mean = 0.36 (ADS→FOF )

ADS
; mean = 0.45 (FOF→ADS)

FOF
). Altogether,

these results indicate that the representations of evidence in the two regions exist in the space that
captures the shared trial-by-trial noise fluctuations and therefore are likely communicated between
the two.

Silencing FOF inputs to ADS disrupts decision-making
From the analysis of simultaneous activity of FOF and ADS we observed that the two regions

have remarkably similar encoding and decoding of decision-relevant variables, this information
is shared in their communication subspaces, and that there is no discernible lead-lag relationship
between the representations of the evolving decision variable in the two regions. This redundancy
could indicate that these signals are inherited by both FOF and ADS from a third (unknown) brain
region. However, given the causal involvement of these regions during decision-making, a more
interesting and likely possibility is that this redundancy reflects ongoing recurrent interactions41

between FOF and ADS. Are these interactions necessary for making decisions? Establishing
whether or not these interactions are important would put strong constraints on the network mech-
anisms that underlie decision-making and help further assess the feedforward, modular hypothesis.

We sought to probe this question in the experimentally tractable monosynaptic projection
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Figure 2 FOF and ADS carry redundant bidirectionally communicated task-related information (A)
Tuning to the behaviorally inferred accumulator variable of two example neurons from FOF (left) and ADS
(right) each. (Top panel) neuron exhibits a graded response to the accumulator variable, signified by the
shallow slope of its tuning curve. (Bottom panel) exhibits a sharp dependence on the sign of the accumulator
variable, reflected in the steeper slope of its tuning curve. (B) Histogram of tuning curve slopes in FOF (aqua
blue; n = 144) and ADS (pink; n = 130). Dashed lines indicate the median slopes for the two populations
(FOF = 0.29± 0.22; ADS = 0.32± 0.25 , median ± std). The two populations have similar distribution of
tuning to the accumulator variable, with neurons representing the accumulator value in both graded (smaller
slopes) and categorical (larger slopes) fashion. The medians of the two populations were not significantly
different (P = 0.13, Mann Whitney U test). (C) Stimulus decoding performance (mean ± sem) of the linear
decoder on held-out time points as a function of time from stimulus onset (n = 12 sessions). Linear decoders
were fit independently to the two populations (FOF: aqua blue; ADS: pink) while controlling for the number
of neurons from the two regions. Performance is measured as the correlation between the actual trajectory
of difference in number of clicks and the prediction from linear decoding of neural responses. Decoding
performance and its timecourse did not significantly differ between FOF and ADS (P = 0.36, two-way RM
ANOVA) (D) Time-lagged cross-correlogram between decision-variable trajectories decoded from FOF and
ADS, showing the correlation coefficient (y-axis) at different time lags (x-axis: positive (negative) values
represent FOF trajectories leading (lagging) ADS). Solid black line indicates mean across sessions and rats,
with dark-gray shaded region representing S.E.M. Light gray region indicates a shuffled control, computed
by cross-correlating FOF activity with ADS activity on trials with shuffled (rather than matched) identities.
(Caption continued on next page)
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Figure 2 (Continued from previous page) The cross-correlogram is symmetric with a wide peak at a latency
not significantly different from zero (mean latency ± sem = −0.01 ± 0.02s; P = 0.47 one-sided t-test, n =
12), hence showing no strong evidence of any lead-lag relationships. (E) Time-course of stimulus decoding
accuracy present in the ADS → FOF (pink) and FOF → ADS (blue) communication subspaces (CSs),
plotted as a fraction of stimulus decoding accuracy from the entire region’s population activity. A fraction
of 1 indicates that the decoding from CS is just as good as the entire population. Stimulus information is
present in both regions’ CS and increases over the course of the trial, with FOF sharing a slightly higher
fraction of its information in the CS.

from FOF to ADS using unilateral optogenetic inactivations. We injected the inhibitory opsin,
halorhodopsin (AAV5-CaMKIIα-eNpHR3.0-eYFP) bilaterally in FOF and delivered light (25-
33mW, 594nm) via a sharp fiber optic implanted in ADS to silence the activity of the FOF-ADS
projection neurons’ axon terminals (Fig 3A).

First, to test whether this projection has any role in the decision-making process, we silenced
the activity of FOF→ADS terminals in either hemisphere during the whole trial (2s inactivation
starting 500ms before the stimulus period and ending 500ms after stimulus offset when the animal
is free to make their response; Fig 3B,C) on a random subset of trials (25%). This inactivation
significantly increased the proportion of choices ipsilateral to the laser side in rats injected with
eNpHR3.0 expressing virus (Fig 3C; P < 0.001, nonparametric bootstrap test), with no significant
effects on the controls injected with eYFP expressing virus (Fig 3C; P = 0.78, nonparametric
boostrap test), suggesting that the projection is involved in the decision process.

Next, we assessed the temporal extent of involvement of this projection, by restricting the
inactivation to either early (first half of a 1s long stimulus) or late (second half of a 1s long stimu-
lus) epochs of the evidence accumulation or stimulus period (Fig 3B-C; similar to16,14). With this
design, it is predicted that if the FOF→ADS projection is involved in conversion of the graded
evidence to a categorical choice, then the inactivation should have an effect on behavior only
at the end of the stimulus presentation i.e. during the late epoch. Whereas, if the projection is
involved in evidence accumulation, a process that occurs throughout the stimulus presentation,
inactivations during both early and late epochs should have an effect. Much to our surprise, when
we restricted inactivations of the FOF→ADS projection to the early and late epochs, we found
that the inactivations led to an ipsilateral bias in both epochs (Fig 3C; early, P = 0.002; late, P =
0.007, nonparametric bootstrap test) with no significant differences in the degree of impairment (P
= 0.49) between the two. This is in stark contrast to the effect of whole region FOF inactivations16

which caused an ipsilateral bias only during the late epoch. Instead, these results resemble ADS
inactivations14 which caused an ipsilateral bias in both early and late epochs. Altogether, these
results implicate the FOF→ADS projection (i.e. feedback flow under the hypothesis) in the grad-
ual accumulation process, revealing a previously obscured role for FOF neurons. Consistent with
this, the involvement of cortico-striatal neurons throughout the stimulus period was also recently
reported in mice performing a similar task using somatic inhibition43.

Finally, we also examined the effect of inactivations on movements (Supp Fig 5). Terminal
silencing slightly but significantly reduced mean movement times for choices both ipsiversive (P
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Figure 3 Silencing FOF inputs to ADS disrupts decision-making (A) Silencing FOF axon terminals
in ADS: experimental setup (Left) Schematic showing viral delivery of Halorhodophsin (eNpHR3.0) to
FOF and sharp optical fiber implant in ADS. Virus was injected bilaterally and 594mm wavelength laser
(25-33mW) was delivered unilaterally through the fiber optic cable on 25% of trials to silence FOF axon
terminals in ADS. (Right) Example histology from a rat expressing eNpHR3.0 bilaterally in FOF. (B) Time-
line of task events showing perturbation epochs: FOF axon terminals in ADS were perturbed during one
of three epochs: Whole-trial (grey bar) started as soon as the rat entered the center port and terminated
500ms after the stimulus ended. Early (yellow) spanned the first half of a 1s long stimulus and late (green)
spanned the second half of a 1s long stimulus. It is predicted that if the FOF→ADS projection is involved
in conversion of the graded evidence to a categorical choice, then the inactivation should have an effect on
behavior only at the end of the stimulus presentation i.e. during the late epoch. Whereas, if the projection
is involved in evidence accumulation, a process that occurs throughout the stimulus presentation, inactiva-
tions during both early and late epochs should have an effect. (C) The ipsilateral bias, or the difference in
percentage of trials the rat went to the side ipsilateral to the laser on inactivation v.s. control trials plotted
for different inactivation epochs. Circles represent the mean ipsilateral bias and error bars represent 95%
bootstrap confidence intervals. Whole-trial inactivations (6rats, 10 hemispheres) in rats injected with NpHR
produced a significant impairment in behavior (P<0.001, non-parametric bootstrap test) and no significant
effects in the eYFP controls (P=0.78) (2rats, 3 hemispheres). Early and late inactivations (5 rats, 8 hemi-
spheres) also produced significant impairments (P<0.005 non-parametric bootstrap test) with no significant
differences between the effects of the two epochs (P=0.49) suggesting that FOF-ADS projections are in-
volved throughout the accumulation process. (D) Difference in accuracy between control and inactivation
trials, plotted for temporally specific bilateral inactivations of FOF in early (yellow) or late (green) stimulus
epochs. Circles represent mean accuracy difference across 4 rats, error bars represent 95% bootstrap con-
fidence intervals. Only inactivations in the late epoch produce significant reductions in accuracy (p<0.01,
nonparametric bootstrap test), differing significantly from inactivations in early epochs (p<0.032, nonpara-
metric bootstrap test) in which there is no significant impairment.

= 0.05 Mann-Whitney U test) and contraversive (P = 0.001 Mann-Whitney U test) to the laser
(Supp Fig 5A). However, silencing did not increase rates of fixation violations (P = 0.58, nonpara-
metric bootstrap test; Supp Fig 5B). This indicates that the laser did not induce any gross motor
impairments affecting animals’ ability to successfully complete trials.

Bilateral perturbations of FOF have effects similar to unilateral FOF
Optogenetic inhibition of FOF inputs to ADS impairs decisions both in early and late stimulus

epochs (Fig 3B-C), indicating a role for FOF in the gradual accumulation process, much like ADS.
This is consistent with the highly similar neural representations observed in the two regions (Figs
1, 2) and suggests that rather than being incidental, evidence representations in FOF might be im-
portant for decision-making behavior. Interestingly, this result also raises the question: why don’t
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the unilateral whole-region FOF inactivations disrupt decisions during the accumulation period?
In mouse M2 interhemispheric recovery was shown to be the reason for lack of impairments ob-
served during transient unilateral inactivations in early task periods21,44. So one hypothesis is that
the FOFs in the two hemispheres are coupled and can support each other’s recovery when aber-
rant inputs from the other hemisphere are detected. The localized nature of terminal inhibition
(targeting FOF inputs just to ADS, and not to the other FOF) might bypass such a recovery.

We tested this hypothesis by carrying out bilateral optogenetic inactivations in a separate co-
hort of rats (Fig 3D). We silenced FOF activity by delivering laser bilaterally either during the
first half of the stimulus (early inactivation epoch), or the second (late inactivation epoch; same
as Fig 3B). We observed a significant decrement in performance only in the late epoch (P < 0.01,
nonparametric bootstrap test), while inactivation during the early accumulation epoch did not sig-
nificantly hamper the performance (P > 0.05, nonparametric bootstrap test). The decrement in
performance due to early epoch inactivations was significantly smaller than the decrement in re-
sponse to late epoch inactivation (P = 0.032, nonparametric bootstrap test). This implies that
interhemispheric compensation does not underlie the lack of impairment observed on inactivating
FOF early during evidence accumulation. So the question of why projection specific inactivations
impair decisions early during accumulation but nonspecific whole region FOF inactivations don’t,
remains outstanding.

A model of distributed implementation of evidence accumulation in corticostriatal circuitry
Our experimental findings are difficult to reconcile with a feedforward organisation of these

brain regions, wherein regions have localized functions (as previously hypothesized). They might
however be concordant with a circuit that accumulates evidence in a distributed fashion through re-
currence and feedback, which allows for adaptive rescue of computations upon perturbation45,21,46,47,48.
Therefore, we translated our findings into a mechanistic multi-region recurrent neural network
(RNN) model that instantiates a recurrent circuit between FOF and ADS, building on the suc-
cess of RNN models in capturing animal behavior and neural representations during decision-
making49,50,51,52,53. We sought to analyze the behavior of this RNN in unperturbed and perturbed
states, so as to identify mechanism(s) through which it can be sensitive to projection specific in-
activations but resilient to nonselective whole region FOF inactivations during the accumulation
period.

We imposed biological constraints on the RNN, by initializing its weights with possible anatom-
ical connections while following Dale’s law and maintained these constraints on the architecture
throughout training (following methods developed in Song 201654). The model’s architecture is
schematized in Fig. 4A (also see Supp Fig 6A-B). Briefly, the network included two modules for
the two brain hemispheres and each module in turn consisted of three submodules with 50 all-
to-all connected neural units each - representing FOF, ADS and the multi-synaptic relay between
ADS and FOF (i.e. other basal ganglia nuclei, thalamus, SC, etc.). In the FOF submodules 20%
of the neurons were inhibitory whereas in ADS submodules 100% of the neurons were inhibitory,
approximating the known distribution of E-I neurons in these brain regions. We modeled long-
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Figure 4 Multiregion recurrent neural network model successfully recapitulates empirical represen-
tational and robustness properties (A) Schematized model architecture. The model has two modules
that represent the two brain hemispheres. Within each module are three submodules that correspond to
FOF, ADS and the striato-cortical relay. Inhibitory projections and units are depicted in red, and excita-
tory projections and units are depicted in green. All units in the model followed Dale’s law. The inputs
were sent to all excitatory units in FOF and ADS and the outputs were read out from all units in the two
hemispheres. (B) Psychometric curve for RNN model-produced choices (grey; n = 10) overlayed on target
psychometric produced by the target choices from the Brunton model (red). (C) Average bias towards the
ipsilateral choices exhibited upon unilateral (uni) inactivations of FOF, FOF→ADS projections and ADS
(left to right) during either the first or second half of the stimulus. Bars represent the mean ± CI across
10 trained networks, each dot represents results from inactivations in one of the hemispheres of the trained
networks. The network recapitulates empirical data and shows high ipsilateral bias upon inactivation of
FOF in the 2nd half compared to the 1st half. FOF→ADS and ADS inactivations produce ipsilateral bias
both in the 1st and 2nd halves, resembling rat data. (D) PSTHs (aligned to stimulus onset, conditioned on
stimulus difficulty) for example units from the model. Model units show variable timecourses and diversity
in when the strength of evidence is encoded. (E) Model FOF and ADS have similar timecourse of stimulus
and choice decoding (Left) Correlation between the true cumulative difference in number of right and left
clicks at any time point during the trial and that predicted by a linear decoder trained on either model FOF
activity (aqua blue) or model ADS activity (pink), as a function of time from stimulus onset. (Right) Accu-
racy of a logistic decoder trained to predict the eventual choice from responses of either model FOF (aqua
blue) or ADS (pink) during the stimulus. (F) Model successfully predicts response to novel perturbations:
difference in accuracy between model’s choices on control trials and trials in which model FOF was inac-
tivated bilaterally either during the first (orange) or the second (green) half of the stimulus. Bars represent
the mean ± CI across 10 trained networks, dots represent the difference for individual networks.
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range projection patterns after empirical observations. The FOF submodule’s projection patterns
followed that of cortical long-range pyramidal neurons (IT and PT neurons), ADS projected unilat-
erally to the relay module and the relay module projected bilaterally to the two FOFs, completing
the recurrent loop. The sensory inputs were sent to both FOF and ADS submodules, since it is
known that the auditory cortex projects diffusely to both FOF and ADS in the rat brain. Outputs
were read out from all neural units in the FOF, ADS and striato-cortical relay submodules.

In addition to this multi-region modular structure, our use of the RNN model differs from
previous studies in two ways. First, we trained the RNN weights (using backpropagation through
time) to perform the evidence accumulation task in a way that matches animal behavior, rather than
like an ideal observer (Supp Fig 6B-D). To achieve this, we generated training data by sampling
trials from the behavioral model of Brunton 201332. Second, on a quarter of trials during training,
we turned down the gain on weights either within an FOF submodule, ADS submodule or FOF
inputs to an ADS submodule during either the first or the second half of the stimulus, essentially
mimicking our unilateral inactivation experiments (Supp Fig 6E). On these inactivation trials we
trained the network to produce an ipsilateral choice, if upon inactivation such a bias was observed
empirically. Our use of perturbation data to introduce structure and specialization within a multi-
region RNN model is novel, and complements previous approaches that have relied either on
differences in neural representations or just the architecture to lend RNNs area-specific identities55.

We trained the model to successfully reproduce choice behavior on control (Fig 4B) and inacti-
vation trials (Fig 4C). In the model - much like the experimental data - unilateral FOF inactivations
introduced an ipsilateral bias only in the second half of the stimulus, but inactivations of FOF to
ADS projections and of ADS caused a bias throughout the stimulus. We probed the dynamical
structure of these trained models in unperturbed states using the reverse-engineering approach
from56 and consistent with previous work modeling accumulation of evidence in RNNs50,57,31,
found approximate line attractors (not shown).

The RNN model’s responses exhibited several features that resembled neural representations,
despite not being explicitly trained to do so. The average firing rate of model units, just like
neurons from FOF and ADS had heterogeneous temporally patterned responses (Fig 4D). Some
neurons encoded the evidence strength transiently whereas other encoded it persistently, capturing
the diversity observed in recorded neurons from FOF and ADS. Moreover, the timecourse of
stimulus and choice decoding were similar across the model FOF and ADS, as we had observed
in our population recordings (Fig. 4E, compare to Fig. 2C and Supp Fig. 1C).

In addition to these similarities in responses, the model was also successful at predicting effects
of held-out perturbation. During training, the network was exposed to unilateral inactivations only,
so bilateral inactivations of model FOF (Supp Fig 6F) formed a good test of the model’s robustness
properties. Prior modeling work comparing the robustness of different architectures21 has shown
that modular and symmetric networks tend to be robust to unilateral inactivations but not bilateral
ones. Therefore, we expected the model to deviate from our experimental findings and show
disrupted performance during bilateral inactivations of FOF in the first half of stimulus - unless
our novel training protocol with perturbation data was successful at instilling some robustness

13

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 11, 2024. ; https://doi.org/10.1101/2024.07.08.602544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.08.602544
http://creativecommons.org/licenses/by-nc/4.0/


properties of the real FOF-ADS circuitry into the network. To our surprise, much like the data, the
model only showed performance disruptions in the second half of bilateral FOF inactivations, and
not in the first half (Fig. 4F, for rat data see Fig. 3D).

In-silico experiments with the multiregion model reveal network recovery determinants
We examined the responses of neural units during different inactivations by projecting pop-

ulation activity from all submodules onto the first three principal components (Fig 5A, B). Ex-
amination of low-dimensional activity trajectories on trials with unilateral inactivation of FOF in
the first half revealed that after an initial perturbation, the network activity recovers during the
second half (Fig 5A), facilitating normal decision-making behavior. Such recovery was absent
during inactivations of FOF projections to an ADS submodule, instead these inactivations sent the
population responses along the path that normally drives ipsilateral choices and subsequently gave
rise to choices biased towards the inactivated side (Fig 5B). A similar pattern is evident in network
outputs, with inactivation trials initially diverging from control trials and subsequently recovering
when FOF was inactivated in the first half (Fig 5C), but not when FOF→ADS projections were
inactivated (Fig 5D).

In order to investigate which parts of the cortico-striatal circuit could potentially be involved
in these recovery dynamics, we took advantage of the precise control we had over RNN activity,
and used it as a testbed for performing several in-silico perturbations that would be time and cost
intensive to run in-vivo.

First, we selectively perturbed different output projections from model FOF during the first
half individually and in combination, to ascertain what subset of these projections needed to be
inactivated to invite the recovery seen in whole-region FOF inactivations. This included self re-
currence, projections to contralateral FOF and projections to the ipsilateral and contralateral ADS
(Fig 6A, Supp Fig 8A). We found that perturbing projections to the ipsilateral ADS had an inacti-
vation effect in the first half, and invited no recovery in the second half (Supp Fig 8B). In contrast,
perturbing projections to contralateral ADS had no inactivation effects at all (Supp Fig 8C). This
suggests that the inactivation effects we had observed when perturbing FOF →ADS projections
(which were projections to a single hemisphere’s ADS from both FOFs; Supp Fig 6E) may have
been largely driven by ipsilateral projections only. Next, we reasoned that inactivating FOF cell
bodies should have an effect on the rest of the circuit equivalent to inactivating all of their outputs.
We therefore asked, when inactivating the ipsilateral FOF→ADS projection, which FOF output
projection inactivations led to the recovery observed when the FOF cells were inactivated. We
found that additionally inactivating either of the self-recurrence or contralateral FOF projections
led to only partial recovery, while additionally inactivating both of these invited complete recovery
(Supp Fig 8D-E). We quantified these effects as the magnitude of the ipsilateral bias caused by
these inactivations, relative to the bias caused by unilateral FOF inactivations. By this measure,
each additional output inactivation invited significantly more recovery (Fig 6B).

Second, we selectively silenced different inputs to an FOF submodule during the second half,
to ascertain which inputs contributed to the recovery in the second half. These included audi-
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tory stimulus inputs, inputs from the contralateral FOF and inputs from the striato-cortical relay
(Fig 6C). We found that removing any of these inputs individually had minor effects on the ip-
silateral bias, only slightly reducing recovery. However, inactivating pairs of these inputs led to
significantly more loss of recovery (Fig 6D).

Overall, these experiments suggest that recovery following unilateral FOF perturbations is
supported by multiple scales of recurrence in the cortico-striatal circuit - self recurrence within a
single hemisphere’s FOF, inter-hemispheric recurrence and striato-cortical recurrence through the
relay. Since our in-silico experiments target anatomically valid projections, they make empirically
testable predictions about the in-vivo cortico-striatal circuitry.
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Figure 5 Network activity and outputs during nonselective FOF inactivations reveal recovery dynam-
ics. Low-dimensional projections of network activity trajectories (A,B) and network outputs (C,D) during
unilateral (uni; here left hemisphere) inactivations of FOF (A,C) and inactivations of its projections to left
ADS (B,D) in the 1st half of the stimulus period. (A-B) Neural activity on leftward (top) and rightward
(bottom) trials show that inactivation trajectories (lines with red edges, red boxes) diverge from control
ones (lines/boxes with grey edges) for both experiments in the first half (until circle markers). However in
the second half (from circle to square markers), these recover towards control trajectories during unilateral
FOF inactivations (A), but not during FOF→ADS inactivations (B) driving leftward (or ipsilaterally biased)
choices. The effect is more prominent in rightward trials (lower panels) (C-D) A similar pattern is seen in
the network outputs on rightward trials (green lines in C,D), where for both experiments, outputs upon
inactivation (dashed) diverge from control (solid) in the first half, recovering and driving correct choices
during FOF inactivations (C) but not during FOF→ADS inactivations (D).
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Figure 6 In-silico experiments with RNN to investigate contributions to inactivation dynamics (A-B):
Selectively silencing of different FOF outputs in 1st half invites recovery differentially. (A) Schematic of
model FOF output projections from a single hemisphere, targeted for in-silico perturbations in the 1st half.
Different combinations of output projections were silenced to understand their influence on the inactivation
dynamics. (B) Summary of in-silico perturbations, showing the ipsilateral bias observed when perturbing a
subset of FOF output projections in the 1st half, relative to a baseline of perturbing all its outputs - higher
values indicate larger effects and less recovery. Silencing ipsilateral ADS projections has the largest effect
and invites the least recovery, additionally silencing recurrent connections and contralateral FOF projec-
tions invites partial recovery individually and full recovery in combination. Contralateral ADS projections
have no effect to begin with, hence producing less bias than baseline (i.e. negative values). Inset: matrix of
p-values for pairwise comparisons between effects, showing that all experiments have significantly differ-
ent effects. (C-D): Selectively silencing FOF inputs in 2nd half shows multiple contributions to recovery
(C) Schematic of model FOF inputs to a single hemisphere, targeted for in-silico perturbations in the 2nd
half. (D) Summary of in-silico perturbations, showing the impact of silencing different input projections
in the 2nd half on ipsilateral bias, relative to whole FOF silencing in the 1st half. Higher values of bias
when a given projection is silenced mean less recovery, implicating that input projection in the recovery
process. Inputs from contralateral FOF, auditory stimulus, and striato-cortical relay all have partial influ-
ence on recovery, with significantly bigger losses of recovery when they are silenced together. Inset: matrix
of p-values for pairwise comparisons between effects, showing that many of these inputs have comparable
influence on recovery. P-values were computed with posthoc Wilcoxon test with holm correction for mul-
tiple comparisons.
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Discussion

Two separate brain regions in rats, the anterior dorsal stream (ADS) and the frontal orienting fields
(FOF), have been respectively linked to the two distinct computations necessary for decision-
making based on noisy evidence: the gradual accumulation of evidence and the categorization of
that accumulated evidence to reach a final decision14,16. However this implied feedforward func-
tional hierarchy going from ADS to FOF has never been directly evaluated. We sought to fill
this important gap by simultaneously recording population activity from these two regions during
decision-making (Figure 1). Contrary to the feedforward hypothesis, we found that the two re-
gions do not differ in their accumulator encoding, and evidence can be decoded from both regions
with comparable accuracy and at comparable timescales. Moreover, we show that this information
is shared between the two regions and shows no discernible lead-lag relationship, consistent with a
recurrent interaction (Figure 2). Further, we optogenetically silenced FOF axon terminals in ADS
(i.e. the “feedback” projection under the hypothesis) during time periods that differentially overlap
with the two sub-computations, and found that such a manipulation impairs decision-making dur-
ing all accumulation periods, unlike nonselective FOF perturbations (Figure 3). Together, these
results indicate that the cortico-striatal circuitry participates in evidence accumulation in a dis-
tributed manner with ongoing recurrent interactions. We synthesised these findings into a multi-
region recurrent neural network model. We successfully trained this RNN with the novel objective
of reproducing behavior on control and inactivation trials, and found that it recapitulated neural
responses and perturbation effects that it wasn’t trained on (Figure 4). Finally, we investigated
the circuit’s response to perturbations by examining the RNN’s activity (Figure 5) and performing
in-silico experiments on the RNN, targeting different sets of projections (Figure 6). We found that
FOF’s robustness to nonselective perturbations was supported by multiple scales of recurrence in
the cortico-striatal circuit.

The similarities we observed in the encoding of task-relevant features in FOF and its down-
stream target ADS during decision formation are largely consistent with recent reports in mice
in simple decision-making tasks, which found that choice signals in secondary motor cortex (that
FOF is a part of) and striatum emerge at indistinguishable time scales58 and that striatum reflects
summed activity of its cortical inputs59. Moreover, our results about encoding of sensory evidence
in FOF are in agreement with a recent study of dorsal cortex’s role during decision-making in mice
which reported that secondary motor cortex prominently encodes choice independent evidence-
related signals60. In the random dots motion task61, monkey FEF and caudate (the analogues to
rat FOF and ADS) have respectively been reported to carry similar accumulation-related signals
early during the stimulus presentation with comparable prevalence of trial-difficulty and choice
modulated signals during the stimulus epoch (FEF62, caudate36, FEF and caudate35,63,64). This
similarity in evidence representation and functional role of cortex (FOF) and striatum has been
predicted and is therefore consistent with previous theoretical accounts that have sought to embed
the decision-making computation into the cortico-basal ganglia network3,4. However similarities
with Lo 20062 are unclear, which predicts transient rather than sustained responses in striatum and
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models striatum’s role as the setting of evidence thresholds.
Despite these similarities in evidence accumulation signals between the two regions, some

studies have indeed found differences between FEF and caudate during decision making, par-
ticularly in tasks with reward manipulations that require the adaptive tuning of decision thresh-
olds63,64,65. Such results fit with wider studies implicating the striatum in action selection66 and
reward-based habitual learning, and secondary motor cortex in planning goal-directed move-
ments67,68. Such distinctions are important avenues for future study and could reveal wider non-
overlapping roles of the two regions, but are out of scope for our study that involves a task with
fixed, symmetric rewards and is not designed to distinguish between these other functions. More-
over, we have focused our analysis on the encoding and decoding properties of specific task vari-
ables in the two regions, such as accumulator tuning, choice and history. We acknowledge the
possibility that other views of the neural activity have the potential to reveal subtle differences
where we have found none. Indeed work from Luo and Kim69 find differences in the geometry
of dynamics in the two regions. Whether such distinctions influence the functional roles of these
regions is an open question, and one that we leave for future work to investigate.

To understand if the evidence representations in FOF and ADS are related, we used reduced
rank regression to identify dimensions in the neural population space that captured co-fluctuation
in the trial-to-trial activity of FOF and ADS over and above those introduced by external task
events and defined a functional communication subspace70,26,71,72,73,41. We found that during the
stimulus period, the communication subspace carries stimulus-related information such that evi-
dence can be decoded fairly well from just the activity present in the communication subspace.
This did not have to be the case, as using similar approaches recent work has identified patterns
of activity or information that are shared between brain areas as well as those that are kept private
within an area. For instance, it has been reported that majority of the variance in V1 is kept pri-
vate and that V1 only selectively shares information related to a few of its activity patterns with
V220. In rat M1 and M2 it has been shown that shared dynamics across areas identified using a
related method (canconical correlation analysis; CCA) become more related to task performance
with learning74. Similarly in mice, CCA was recently used to show that the content of commu-
nication between A1 and mPFC changes during different contexts based on a control signal from
mPFC, this helps select revelant sensory information during contextual decision making75. Such
communication subspaces defined based on noise correlations do not distinguish between correla-
tions due to direct communication from those induced by communication arriving from common
inputs to the two regions. While our projection-specific inactivations support a causal role for the
interaction from FOF to ADS, our conclusions about communication of evidence between the two
regions can be further strengthened if decrements in evidence-related information are observed
upon perturbation of one of the areas, in paired perturbation and recording experiments.

Through specifically targeting the cortico-striatal pathway and silencing FOF axon terminals
in ADS, we revealed a role for FOF throughout the gradual accumulation process. This finding
might seem at odds with the past work that had concluded using unilateral silencing of FOF somas,
that FOF’s causal role is restricted to the decision commitment period and does not extend to the
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accumulation period16 – however it is in line with recent exciting work highlighting how different
projection pathways from the same cortical region can carry different information and differen-
tially impair behavior upon perturbation22,76,77,78,79,80,43,81,82,83,84 (further discussion66,85) producing
effects that could be otherwise obscured by whole region perturbations. A notable example of
this comes from an auditory frequency discrimination task in rats76, where perturbations of audi-
tory cortex neurons with high (low) frequency tuning did not bias animals’ choices towards high
(low) responses, but selective activation of striatum projecting auditory cortex neurons with high
(low) frequency tuning biased the animals’ choices as predicted. Also of note is a recent study in
mice43, which has also proposed a role for corticostriatal projections from frontal cortex through-
out gradual accumulation of evidence. Our results add an important piece of evidence in favor
of the emerging principle that projection-specific perturbations can unmask effects not visible in
whole-region perturbations22,76,24. Given recent controversies about the causal roles of different
regions in evidence accumulation86,15,25,87,88, our approach might offer a way to further clarify the
roles of these brain regions and help with identifying the key communication channels operant
during decision-making.

While the encoding/decoding properties of units in our network resemble those of the empirical
data, a complementary approach would be to train the RNN such that individual units in the
network additionally match observed neural firing rates89,90,91,92,93. It remains an exciting empirical
question of how these different training objectives, algorithms, and constraints alter the dynamics
of the network and which objectives make better predictions. Past studies seeking to model the
complex web of multi-region interactions that give rise to cognition94,95,96,47,97,48 (reviewed in98,55)
by training RNNs have relied either on differences in neural representations or just the architecture
to lend RNNs area-specific identities. We believe our use of projection-specific perturbation data
to introduce structure is novel and is likely to tighten the correspondence between the models
and data (also see99). We are hopeful that this approach of using multi-region RNNs in tandem
with projection-specific perturbations and simultaneous recording will offer a powerful framework
for generating hypotheses and intuitions about how recurrently connected brain regions perform
decision-making in a distributed fashion.

References

[1] Kong-Fatt Wong and Xiao-Jing Wang. “A Recurrent Network Mechanism of Time Integra-
tion in Perceptual Decisions”. en. In: Journal of Neuroscience 26.4 (2006). Publisher: So-
ciety for Neuroscience Section: Articles, pp. 1314–1328. DOI: 10.1523/JNEUROSCI.
3733-05.2006.

[2] Chung-Chuan Lo and Xiao-Jing Wang. “Cortico–basal ganglia circuit mechanism for a de-
cision threshold in reaction time tasks”. en. In: Nature Neuroscience 9.7 (2006). Number:
7 Publisher: Nature Publishing Group, pp. 956–963. DOI: 10.1038/nn1722.

19

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 11, 2024. ; https://doi.org/10.1101/2024.07.08.602544doi: bioRxiv preprint 

https://doi.org/10.1523/JNEUROSCI.3733-05.2006
https://doi.org/10.1523/JNEUROSCI.3733-05.2006
https://doi.org/10.1038/nn1722
https://doi.org/10.1101/2024.07.08.602544
http://creativecommons.org/licenses/by-nc/4.0/


[3] Rafal Bogacz and Kevin Gurney. “The Basal Ganglia and Cortex Implement Optimal
Decision Making Between Alternative Actions”. In: Neural Computation 19.2 (2007),
pp. 442–477. DOI: 10.1162/neco.2007.19.2.442.

[4] Rajesh P. N. Rao. “Decision Making Under Uncertainty: A Neural Model Based on Par-
tially Observable Markov Decision Processes”. In: Frontiers in Computational Neuro-

science 4 (2010), p. 146. DOI: 10.3389/fncom.2010.00146.

[5] Joshua I. Gold and Michael N. Shadlen. “The Neural Basis of Decision Making”. In:
Annual Review of Neuroscience 30.1 (2007), pp. 535–574. DOI: 10.1146/annurev.
neuro.29.051605.113038.

[6] Timothy D. Hanks and Christopher Summerfield. “Perceptual Decision Making in Ro-
dents, Monkeys, and Humans”. en. In: Neuron 93.1 (2017), pp. 15–31. DOI: 10.1016/
j.neuron.2016.12.003.

[7] Elizabeth J. Jun et al. “Causal role for the primate superior colliculus in the computation
of evidence for perceptual decisions”. en. In: Nature Neuroscience 24.8 (2021). Publisher:
Nature Publishing Group, pp. 1121–1131. DOI: 10.1038/s41593-021-00878-6.

[8] Gabriel M. Stine et al. “A neural mechanism for terminating decisions”. eng. In: Neuron

111.16 (2023), 2601–2613.e5. DOI: 10.1016/j.neuron.2023.05.028.

[9] Gouki Okazawa and Roozbeh Kiani. “Neural Mechanisms that Make Perceptual Deci-
sions Flexible”. In: Annual Review of Physiology 85.1 (2023), null. DOI: 10.1146/
annurev-physiol-031722-024731.

[10] Joshua I Gold and Michael N Shadlen. “Banburismus and the Brain: Decoding the Re-
lationship between Sensory Stimuli, Decisions, and Reward”. In: Neuron 36.2 (2002),
pp. 299–308.

[11] Rafal Bogacz et al. “The physics of optimal decision making: A formal analysis of models
of performance in two-alternative forced-choice tasks”. In: Psychological Review 113.4
(2006). Place: US Publisher: American Psychological Association, pp. 700–765. DOI: 10.
1037/0033-295X.113.4.700.

[12] Patrick Simen, Jonathan D. Cohen, and Philip Holmes. “Rapid decision threshold modula-
tion by reward rate in a neural network”. In: Neural Networks. Neurobiology of Decision
Making 19.8 (2006), pp. 1013–1026. DOI: 10.1016/j.neunet.2006.05.038.

[13] J. Drugowitsch et al. “The Cost of Accumulating Evidence in Perceptual Decision Mak-
ing”. en. In: Journal of Neuroscience 32.11 (2012), pp. 3612–3628. DOI: 10.1523/
JNEUROSCI.4010-11.2012.

[14] Michael M Yartsev et al. “Causal contribution and dynamical encoding in the striatum
during evidence accumulation”. In: eLife 7 (2018). Ed. by Joshua I Gold et al. Publisher:
eLife Sciences Publications, Ltd, e34929. DOI: 10.7554/eLife.34929.

20

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 11, 2024. ; https://doi.org/10.1101/2024.07.08.602544doi: bioRxiv preprint 

https://doi.org/10.1162/neco.2007.19.2.442
https://doi.org/10.3389/fncom.2010.00146
https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.1016/j.neuron.2016.12.003
https://doi.org/10.1016/j.neuron.2016.12.003
https://doi.org/10.1038/s41593-021-00878-6
https://doi.org/10.1016/j.neuron.2023.05.028
https://doi.org/10.1146/annurev-physiol-031722-024731
https://doi.org/10.1146/annurev-physiol-031722-024731
https://doi.org/10.1037/0033-295X.113.4.700
https://doi.org/10.1037/0033-295X.113.4.700
https://doi.org/10.1016/j.neunet.2006.05.038
https://doi.org/10.1523/JNEUROSCI.4010-11.2012
https://doi.org/10.1523/JNEUROSCI.4010-11.2012
https://doi.org/10.7554/eLife.34929
https://doi.org/10.1101/2024.07.08.602544
http://creativecommons.org/licenses/by-nc/4.0/


[15] Jeffrey C Erlich et al. “Distinct effects of prefrontal and parietal cortex inactivations on an
accumulation of evidence task in the rat”. In: eLife 4 (2015), p. 8166.

[16] Timothy D Hanks et al. “Distinct relationships of parietal and prefrontal cortices to evi-
dence accumulation”. In: Nature 520.7546 (2015), pp. 220–223.

[17] Alex T. Piet et al. “Rat Prefrontal Cortex Inactivations during Decision Making Are Ex-
plained by Bistable Attractor Dynamics”. en. In: Neural Computation 29.11 (2017), pp. 2861–
2886. DOI: 10.1162/neco_a_01005.

[18] J. Tyler Boyd-Meredith et al. “Stable choice coding in rat frontal orienting fields across
model-predicted changes of mind”. en. In: Nature Communications 13.1 (2022). Num-
ber: 1 Publisher: Nature Publishing Group, p. 3235. DOI: 10.1038/s41467-022-
30736-3.

[19] Matthew T. Kaufman et al. “Cortical activity in the null space: permitting preparation
without movement”. en. In: Nature Neuroscience 17.3 (2014). Number: 3 Publisher: Na-
ture Publishing Group, pp. 440–448. DOI: 10.1038/nn.3643.

[20] João D. Semedo et al. “Cortical Areas Interact through a Communication Subspace”. en.
In: Neuron 102.1 (2019), 249–259.e4. DOI: 10.1016/j.neuron.2019.01.026.

[21] Nuo Li et al. “Robust neuronal dynamics in premotor cortex during motor planning”. In:
Nature 532.7600 (2016), pp. 459–464.

[22] Melissa R Warden et al. “A prefrontal cortex-brainstem neuronal projection that controls
response to behavioural challenge”. In: Nature 492.7429 (2012), pp. 428–432.

[23] James M Otis et al. “Prefrontal cortex output circuits guide reward seeking through diver-
gent cue encoding”. In: Nature 543.7643 (2017), pp. 103–107.

[24] Christina K Kim et al. “Molecular and Circuit-Dynamical Identification of Top-Down
Neural Mechanisms for Restraint of Reward Seeking”. In: Cell (2017).

[25] Leor N. Katz et al. “Dissociated functional significance of decision-related activity in the
primate dorsal stream”. en. In: Nature 535.7611 (2016). Number: 7611 Publisher: Nature
Publishing Group, pp. 285–288. DOI: 10.1038/nature18617.

[26] João D Semedo et al. “Statistical methods for dissecting interactions between brain areas”.
en. In: Current Opinion in Neurobiology. Whole-brain interactions between neural circuits
65 (2020), pp. 59–69. DOI: 10.1016/j.conb.2020.09.009.

[27] Ariel Gilad et al. “Behavioral Strategy Determines Frontal or Posterior Location of Short-
Term Memory in Neocortex”. eng. In: Neuron 99.4 (2018), 814–828.e7. DOI: 10.1016/
j.neuron.2018.07.029.

[28] Kenneth W. Latimer and David J. Freedman. Low-dimensional encoding of decisions in

parietal cortex reflects long-term training history. en. Pages: 2021.10.07.463576 Section:
New Results. 2021. DOI: 10.1101/2021.10.07.463576.

21

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 11, 2024. ; https://doi.org/10.1101/2024.07.08.602544doi: bioRxiv preprint 

https://doi.org/10.1162/neco_a_01005
https://doi.org/10.1038/s41467-022-30736-3
https://doi.org/10.1038/s41467-022-30736-3
https://doi.org/10.1038/nn.3643
https://doi.org/10.1016/j.neuron.2019.01.026
https://doi.org/10.1038/nature18617
https://doi.org/10.1016/j.conb.2020.09.009
https://doi.org/10.1016/j.neuron.2018.07.029
https://doi.org/10.1016/j.neuron.2018.07.029
https://doi.org/10.1101/2021.10.07.463576
https://doi.org/10.1101/2024.07.08.602544
http://creativecommons.org/licenses/by-nc/4.0/


[29] Charlotte Arlt et al. “Cognitive experience alters cortical involvement in goal-directed
navigation”. In: eLife 11 (2022). Ed. by Mathieu Wolff, Joshua I Gold, and Mathieu Wolff.
Publisher: eLife Sciences Publications, Ltd, e76051. DOI: 10.7554/eLife.76051.

[30] Scott S. Bolkan et al. “Opponent control of behavior by dorsomedial striatal pathways
depends on task demands and internal state”. en. In: Nature Neuroscience 25.3 (2022).
Number: 3 Publisher: Nature Publishing Group, pp. 345–357. DOI: 10.1038/s41593-
022-01021-9.

[31] Marino Pagan et al. A new theoretical framework jointly explains behavioral and neural

variability across subjects performing flexible decision-making. en. Pages: 2022.11.28.518207
Section: New Results. 2022. DOI: 10.1101/2022.11.28.518207.

[32] Bingni W. Brunton, Matthew M. Botvinick, and Carlos D. Brody. “Rats and Humans Can
Optimally Accumulate Evidence for Decision-Making”. en. In: Science 340.6128 (2013).
Publisher: American Association for the Advancement of Science Section: Report, pp. 95–
98. DOI: 10.1126/science.1233912.

[33] James J. Jun et al. “Fully integrated silicon probes for high-density recording of neural
activity”. en. In: Nature 551.7679 (2017). Number: 7679 Publisher: Nature Publishing
Group, pp. 232–236. DOI: 10.1038/nature24636.

[34] Thomas Zhihao Luo et al. An approach for long-term, multi-probe Neuropixels recordings

in unrestrained rats. en. Publisher: eLife Sciences Publications Limited. 2020. DOI: 10.
7554/eLife.59716.

[35] Long Ding and Joshua I. Gold. “Neural Correlates of Perceptual Decision Making be-
fore, during, and after Decision Commitment in Monkey Frontal Eye Field”. In: Cerebral

Cortex 22.5 (2012), pp. 1052–1067. DOI: 10.1093/cercor/bhr178.

[36] Long Ding and Joshua I. Gold. “Caudate Encodes Multiple Computations for Perceptual
Decisions”. en. In: Journal of Neuroscience 30.47 (2010). Publisher: Society for Neu-
roscience Section: Articles, pp. 15747–15759. DOI: 10.1523/JNEUROSCI.2894-
10.2010.

[37] Kenneth W. Latimer et al. “Single-trial Spike Trains in Parietal Cortex Reveal Discrete
Steps During Decision-making”. In: Science (New York, N.Y.) 349.6244 (2015), pp. 184–
187. DOI: 10.1126/science.aaa4056.

[38] Carlos D Brody and Timothy D Hanks. “Neural underpinnings of the evidence accumu-
lator”. en. In: Current Opinion in Neurobiology. Neurobiology of cognitive behavior 37
(2016), pp. 149–157. DOI: 10.1016/j.conb.2016.01.003.

[39] Roozbeh Kiani et al. “Dynamics of Neural Population Responses in Prefrontal Cortex In-
dicate Changes of Mind on Single Trials”. en. In: Current Biology 24.13 (2014), pp. 1542–
1547. DOI: 10.1016/j.cub.2014.05.049.

22

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 11, 2024. ; https://doi.org/10.1101/2024.07.08.602544doi: bioRxiv preprint 

https://doi.org/10.7554/eLife.76051
https://doi.org/10.1038/s41593-022-01021-9
https://doi.org/10.1038/s41593-022-01021-9
https://doi.org/10.1101/2022.11.28.518207
https://doi.org/10.1126/science.1233912
https://doi.org/10.1038/nature24636
https://doi.org/10.7554/eLife.59716
https://doi.org/10.7554/eLife.59716
https://doi.org/10.1093/cercor/bhr178
https://doi.org/10.1523/JNEUROSCI.2894-10.2010
https://doi.org/10.1523/JNEUROSCI.2894-10.2010
https://doi.org/10.1126/science.aaa4056
https://doi.org/10.1016/j.conb.2016.01.003
https://doi.org/10.1016/j.cub.2014.05.049
https://doi.org/10.1101/2024.07.08.602544
http://creativecommons.org/licenses/by-nc/4.0/


[40] Diogo Peixoto et al. “Decoding and perturbing decision states in real time”. en. In: Nature

591.7851 (2021). Number: 7851 Publisher: Nature Publishing Group, pp. 604–609. DOI:
10.1038/s41586-020-03181-9.

[41] João D. Semedo et al. “Feedforward and feedback interactions between visual cortical ar-
eas use different population activity patterns”. en. In: Nature Communications 13.1 (2022).
Number: 1 Publisher: Nature Publishing Group, p. 1099. DOI: 10.1038/s41467-
022-28552-w.

[42] Jonathan W. Pillow et al. “Spatio-temporal correlations and visual signalling in a com-
plete neuronal population”. en. In: Nature 454.7207 (2008). Publisher: Nature Publishing
Group, pp. 995–999. DOI: 10.1038/nature07140.

[43] Simon Musall et al. Pyramidal cell types drive functionally distinct cortical activity pat-

terns during decision-making. en. Tech. rep. Company: Cold Spring Harbor Laboratory
Distributor: Cold Spring Harbor Laboratory Label: Cold Spring Harbor Laboratory Sec-
tion: New Results Type: article. 2021, p. 2021.09.27.461599. DOI: 10.1101/2021.
09.27.461599.

[44] Guang Chen et al. “Modularity and robustness of frontal cortical networks”. en. In: Cell

184.14 (2021), 3717–3730.e24. DOI: 10.1016/j.cell.2021.05.026.

[45] Charles D. Kopec et al. “Cortical and Subcortical Contributions to Short-Term Memory
for Orienting Movements”. en. In: Neuron 88.2 (2015), pp. 367–377. DOI: 10.1016/j.
neuron.2015.08.033.

[46] Chunyu A. Duan et al. “Collicular circuits for flexible sensorimotor routing”. en. In: Na-

ture Neuroscience 24.8 (2021). Number: 8 Publisher: Nature Publishing Group, pp. 1110–
1120. DOI: 10.1038/s41593-021-00865-x.

[47] Colin J. Bredenberg, Cristina Savin, and Roozbeh Kiani. Recurrent neural circuits over-

come partial inactivation by compensation and re-learning. en. Tech. rep. Company: Cold
Spring Harbor Laboratory Distributor: Cold Spring Harbor Laboratory Label: Cold Spring
Harbor Laboratory Section: New Results Type: article. 2021, p. 2021.11.12.468273. DOI:
10.1101/2021.11.12.468273.

[48] Jorge F Mejı́as and Xiao-Jing Wang. “Mechanisms of distributed working memory in a
large-scale network of macaque neocortex”. In: eLife 11 (2022). Ed. by Tatiana Pasternak
and Tirin Moore. Publisher: eLife Sciences Publications, Ltd, e72136. DOI: 10.7554/
eLife.72136.

[49] Mattia Rigotti et al. “Internal representation of task rules by recurrent dynamics: the im-
portance of the diversity of neural responses”. eng. In: Frontiers in Computational Neuro-

science 4 (2010), p. 24. DOI: 10.3389/fncom.2010.00024.

[50] Valerio Mante et al. “Context-dependent computation by recurrent dynamics in prefrontal
cortex”. en. In: Nature 503.7474 (2013), pp. 78–84. DOI: 10.1038/nature12742.

23

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 11, 2024. ; https://doi.org/10.1101/2024.07.08.602544doi: bioRxiv preprint 

https://doi.org/10.1038/s41586-020-03181-9
https://doi.org/10.1038/s41467-022-28552-w
https://doi.org/10.1038/s41467-022-28552-w
https://doi.org/10.1038/nature07140
https://doi.org/10.1101/2021.09.27.461599
https://doi.org/10.1101/2021.09.27.461599
https://doi.org/10.1016/j.cell.2021.05.026
https://doi.org/10.1016/j.neuron.2015.08.033
https://doi.org/10.1016/j.neuron.2015.08.033
https://doi.org/10.1038/s41593-021-00865-x
https://doi.org/10.1101/2021.11.12.468273
https://doi.org/10.7554/eLife.72136
https://doi.org/10.7554/eLife.72136
https://doi.org/10.3389/fncom.2010.00024
https://doi.org/10.1038/nature12742
https://doi.org/10.1101/2024.07.08.602544
http://creativecommons.org/licenses/by-nc/4.0/


[51] Federico Carnevale et al. “Dynamic Control of Response Criterion in Premotor Cortex dur-
ing Perceptual Detection under Temporal Uncertainty”. In: Neuron 86.4 (2015), pp. 1067–
1077.

[52] Evan D. Remington et al. “A Dynamical Systems Perspective on Flexible Motor Tim-
ing”. en. In: Trends in Cognitive Sciences. Special Issue: Time in the Brain 22.10 (2018),
pp. 938–952. DOI: 10.1016/j.tics.2018.07.010.

[53] Michael Kleinman, Chandramouli Chandrasekaran, and Jonathan Kao. “A mechanistic
multi-area recurrent network model of decision-making”. In: Advances in Neural Infor-

mation Processing Systems. Vol. 34. Curran Associates, Inc., 2021, pp. 23152–23165.

[54] H. Francis Song, Guangyu R. Yang, and Xiao-Jing Wang. “Training Excitatory-Inhibitory
Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework”.
en. In: PLOS Computational Biology 12.2 (2016). Publisher: Public Library of Science,
e1004792. DOI: 10.1371/journal.pcbi.1004792.

[55] Guangyu Robert Yang and Manuel Molano-Mazón. “Towards the next generation of recur-
rent network models for cognitive neuroscience”. en. In: Current Opinion in Neurobiology.
Computational Neuroscience 70 (2021), pp. 182–192. DOI: 10.1016/j.conb.2021.
10.015.

[56] David Sussillo and Omri Barak. “Opening the Black Box: Low-Dimensional Dynamics
in High-Dimensional Recurrent Neural Networks”. In: Neural Computation 25.3 (2013),
pp. 626–649. DOI: 10.1162/NECO_a_00409.

[57] Niru Maheswaranathan et al. “Universality and individuality in neural dynamics across
large populations of recurrent networks”. In: Advances in Neural Information Processing

Systems. Vol. 32. Curran Associates, Inc., 2019.

[58] Nicholas A. Steinmetz et al. “Distributed coding of choice, action and engagement across
the mouse brain”. en. In: Nature 576.7786 (2019). Number: 7786 Publisher: Nature Pub-
lishing Group, pp. 266–273. DOI: 10.1038/s41586-019-1787-x.

[59] Andrew J. Peters et al. “Striatal activity topographically reflects cortical activity”. en. In:
Nature 591.7850 (2021). Number: 7850 Publisher: Nature Publishing Group, pp. 420–425.
DOI: 10.1038/s41586-020-03166-8.

[60] Ivana Orsolic et al. “Mesoscale cortical dynamics reflect the interaction of sensory ev-
idence and temporal expectation during perceptual decision-making”. English. In: Neu-

ron 109.11 (2021). Publisher: Elsevier, 1861–1875.e10. DOI: 10.1016/j.neuron.
2021.03.031.

[61] Jamie D. Roitman and Michael N. Shadlen. “Response of Neurons in the Lateral Intrapari-
etal Area during a Combined Visual Discrimination Reaction Time Task”. en. In: Journal

of Neuroscience 22.21 (2002). Publisher: Society for Neuroscience Section: ARTICLE,
pp. 9475–9489. DOI: 10.1523/JNEUROSCI.22-21-09475.2002.

24

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 11, 2024. ; https://doi.org/10.1101/2024.07.08.602544doi: bioRxiv preprint 

https://doi.org/10.1016/j.tics.2018.07.010
https://doi.org/10.1371/journal.pcbi.1004792
https://doi.org/10.1016/j.conb.2021.10.015
https://doi.org/10.1016/j.conb.2021.10.015
https://doi.org/10.1162/NECO_a_00409
https://doi.org/10.1038/s41586-019-1787-x
https://doi.org/10.1038/s41586-020-03166-8
https://doi.org/10.1016/j.neuron.2021.03.031
https://doi.org/10.1016/j.neuron.2021.03.031
https://doi.org/10.1523/JNEUROSCI.22-21-09475.2002
https://doi.org/10.1101/2024.07.08.602544
http://creativecommons.org/licenses/by-nc/4.0/


[62] Jong-Nam Kim and Michael N. Shadlen. “Neural correlates of a decision in the dorsolat-
eral prefrontal cortex of the macaque”. en. In: Nature Neuroscience 2.2 (1999). Number:
2 Publisher: Nature Publishing Group, pp. 176–185. DOI: 10.1038/5739.

[63] Long Ding. “Distinct dynamics of ramping activity in the frontal cortex and caudate nu-
cleus in monkeys”. In: Journal of Neurophysiology 114.3 (2015). Publisher: American
Physiological Society, pp. 1850–1861. DOI: 10.1152/jn.00395.2015.

[64] Yunshu Fan, Joshua I Gold, and Long Ding. “Frontal eye field and caudate neurons make
different contributions to reward-biased perceptual decisions”. In: eLife 9 (2020). Ed. by
Daeyeol Lee et al. Publisher: eLife Sciences Publications, Ltd, e60535. DOI: 10.7554/
eLife.60535.

[65] Yunshu Fan et al. “Neural Representations of Post-Decision Accuracy and Reward Expec-
tation in the Caudate Nucleus and Frontal Eye Field”. en. In: The Journal of Neuroscience

44.2 (2024), e0902232023. DOI: 10.1523/JNEUROSCI.0902-23.2023.

[66] Julia Cox and Ilana B. Witten. “Striatal circuits for reward learning and decision-making”.
en. In: Nature Reviews Neuroscience 20.8 (2019). Number: 8 Publisher: Nature Publishing
Group, pp. 482–494. DOI: 10.1038/s41583-019-0189-2.

[67] Christian L. Ebbesen et al. “More than Just a “Motor”: Recent Surprises from the Frontal
Cortex”. en. In: Journal of Neuroscience 38.44 (2018). Publisher: Society for Neuro-
science Section: Symposium and Mini-Symposium, pp. 9402–9413. DOI: 10.1523/
JNEUROSCI.1671-18.2018.

[68] Jen-Hau Yang and Alex C. Kwan. “Secondary motor cortex: Broadcasting and biasing
animal’s decisions through long-range circuits”. en. In: International Review of Neurobi-

ology. Elsevier, 2020, S0074774220301537. DOI: 10.1016/bs.irn.2020.11.008.

[69] Thomas Zhihao Luo et al. Non-canonical attractor dynamics underlie perceptual decision-

making. en. Pages: 2023.10.15.562427 Section: New Results. 2023. DOI: 10.1101/
2023.10.15.562427.

[70] Harold Hotelling. “Relations Between Two Sets of Variates”. In: Biometrika 28.3/4 (1936).
Publisher: [Oxford University Press, Biometrika Trust], pp. 321–377. DOI: 10.2307/
2333955.

[71] Adam Kohn et al. “Principles of Corticocortical Communication: Proposed Schemes and
Design Considerations”. en. In: Trends in Neurosciences (2020), S016622362030165X.
DOI: 10.1016/j.tins.2020.07.001.

[72] Byungwoo Kang and Shaul Druckmann. “Approaches to inferring multi-regional inter-
actions from simultaneous population recordings”. en. In: Current Opinion in Neurobi-

ology. Whole-brain interactions between neural circuits 65 (2020), pp. 108–119. DOI:
10.1016/j.conb.2020.10.004.

25

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 11, 2024. ; https://doi.org/10.1101/2024.07.08.602544doi: bioRxiv preprint 

https://doi.org/10.1038/5739
https://doi.org/10.1152/jn.00395.2015
https://doi.org/10.7554/eLife.60535
https://doi.org/10.7554/eLife.60535
https://doi.org/10.1523/JNEUROSCI.0902-23.2023
https://doi.org/10.1038/s41583-019-0189-2
https://doi.org/10.1523/JNEUROSCI.1671-18.2018
https://doi.org/10.1523/JNEUROSCI.1671-18.2018
https://doi.org/10.1016/bs.irn.2020.11.008
https://doi.org/10.1101/2023.10.15.562427
https://doi.org/10.1101/2023.10.15.562427
https://doi.org/10.2307/2333955
https://doi.org/10.2307/2333955
https://doi.org/10.1016/j.tins.2020.07.001
https://doi.org/10.1016/j.conb.2020.10.004
https://doi.org/10.1101/2024.07.08.602544
http://creativecommons.org/licenses/by-nc/4.0/


[73] Stephen L Keeley et al. “Modeling statistical dependencies in multi-region spike train
data”. en. In: Current Opinion in Neurobiology. Whole-brain interactions between neural
circuits 65 (2020), pp. 194–202. DOI: 10.1016/j.conb.2020.11.005.

[74] T. L. Veuthey et al. “Single-trial cross-area neural population dynamics during long-term
skill learning”. en. In: Nature Communications 11.1 (2020). Number: 1 Publisher: Nature
Publishing Group, p. 4057. DOI: 10.1038/s41467-020-17902-1.

[75] Joao Barbosa et al. Flexible selection of task-relevant features through across-area popula-

tion gating. en. Pages: 2022.07.21.500962 Section: New Results. 2022. DOI: 10.1101/
2022.07.21.500962.

[76] Petr Znamenskiy and Anthony M. Zador. “Corticostriatal neurons in auditory cortex drive
decisions during auditory discrimination”. en. In: Nature 497.7450 (2013). Number: 7450
Publisher: Nature Publishing Group, pp. 482–485. DOI: 10.1038/nature12077.

[77] N Li et al. “Amotor cortex circuit for motor planning and movement”. In: Nature (2015).

[78] Malavika Murugan et al. “Combined Social and Spatial Coding in a Descending Projection
from the Prefrontal Cortex”. en. In: Cell 171.7 (2017), 1663–1677.e16. DOI: 10.1016/
j.cell.2017.11.002.

[79] Eun Jung Hwang et al. “Corticostriatal Flow of Action Selection Bias”. en. In: Neuron

104.6 (2019), 1126–1140.e6. DOI: 10.1016/j.neuron.2019.09.028.

[80] Junya Hirokawa et al. “Frontal cortex neuron types categorically encode single decision
variables”. en. In: Nature 576.7787 (2019). Number: 7787 Publisher: Nature Publishing
Group, pp. 446–451. DOI: 10.1038/s41586-019-1816-9.

[81] D. Gowanlock R. Tervo et al. “The anterior cingulate cortex directs exploration of al-
ternative strategies”. en. In: Neuron 109.11 (2021), 1876–1887.e6. DOI: 10.1016/j.
neuron.2021.03.028.

[82] Chunyu A. Duan et al. “A cortico-collicular pathway for motor planning in a memory-
dependent perceptual decision task”. en. In: Nature Communications 12.1 (2021). Num-
ber: 1 Publisher: Nature Publishing Group, p. 2727. DOI: 10.1038/s41467-021-
22547-9.

[83] Steffen B. E. Wolff, Raymond Ko, and Bence P. Ölveczky. “Distinct roles for motor corti-
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Methods

Subjects and housing

A total of 19 male Long-evans rats (Rattus norvegicus from Hilltop, PA) were used for this study.
Of these, 5 animals were used for neural recordings and 14 for optogenetic experiments. Investiga-
tors were not blinded to experimental groups during data collection or analyses. Animal use pro-
cedures were approved by the Princeton University Institutional Animal Care and Use Committee
(IACUC #1853) and were carried out in accordance with National Institute of Health standards.

Rats were housed in Techniplast cages and all training and testing were conducted during the
dark cycle. Animals that trained during the day were housed in a 12 hr reverse light cycle room.
Animals were pair housed whenever possible, but were always single housed after optic fiber or
Neuropixels implantation to prevent damage to the implant. Rats had free access to food but
were placed on a controlled water schedule in order to motivate them to participate in behavioral
task for water rewards. They obtained water rewards during behavioral training sessions (1-5hrs).
Following behavioral training rats received either an unlimited water supplement in an ad lib
access period of up to 1hr or a controlled supplement so that their total access to water within a
period of 24hrs equalled 3% of their body weight.

Neuronal recordings and analysis

Acquisition and pre-processing

We followed the general surgery and Neuropixels probe implantation methods for recording chron-
ically in freely moving animals from34 to record unihemispherically from FOF and ADS of 5 rats.
The Neuropixels probes were assembled in a compact 3D printed casing, printed in-house using
Formlabs SLA printer. This assembly allowed the probe to be stereotaxically manipulated, pro-
vided electromagnetic shielding, prevented it from contacting biological fluids or other adhesive
materials applied during surgery and imparted mechanical protection to the implant for robust
chronic tethered recordings. We targeted FOF and ADS with one penetration, by implanting the
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probe at AP 1.9mm and ML ±1.15mm from bregma, at an angle of 15◦ in the coronal plane.
Before implantation, the probe shank was dipped for several seconds in a dye (DiI, 1-2 mg/ml in
isopropyl alcohol) to allow for histological reconstruction of probe location. We inserted at least
6mm of the probe shank into the brain; the actual depth of implantation varied between animals.

Electrophysiological recordings were made using either commercially available Neuropix-
els 1.0 acquisition hardware100 or the earliest test-phase IMEC acquisition hardware. We used
SpikeGLX software to acquire the data. On every session we recorded from 384 sites arranged
in a checkerboard pattern spanning banks 0 and 1 of the probe. The data were automatically
spike sorted offline using Kilosort2 with default parameters and then manually created using JR-
Clust’s GUI33. During manual curation, each unit detected by Kilosort2 was inspected, if the
events comprising the unit had near zero amplitudes or non-physiological waveforms then the en-
tire unit was discarded. If the unit was judged to be comprised of multiple distinct waveform then
it was split into two or more units and finally spatially neighboring units were compared using
cross-correlograms, drift patterns and waveform similarity to determine if they should be merged.
After following these steps, all units with < 5% refractory violations were considered as reflecting
spikes from a single neuron.

Analysis of neural recordings

For all analyses, we analyzed neurons that had an average firing rate greater than 1Hz during
the stimulus period, neural responses were aligned to stimulus onset and included only up to the
time of movement onset for each trial. To compute the average population response to different
stimulus strengths, we selected neurons that had large differences in their firing rates during the
stimulus period for trials that subsequently resulted in rightward versus leftward choices (|auc
−0.5| > 0.05, P < 0.05, Receiver operating characteristic). The choice that produced the larger
response was defined as the preferred side. For each neuron, firing rates for individual trials were
calculated by smoothing the spike trains with a causal half-Gaussian filter with 0.05s standard
deviation, and then normalizing by neuron’s mean response at stimulus onset.

Neural tuning curves: Following Hanks 201516, we fit the trial-by-trial behavioral model
developed in32 separately to each rats’ choices. In order to best describe the behavior on recording
sessions and account for nonstationarities, we first fit the model to choices from sessions (min 30,
upto 90) prior to recording. We then used the best-fit parameters and their estimated confidence
intervals to impose Gaussian priors on the parameters and refit the model to behavior from just
the recording days. The mean of the Gaussian prior was set to the maximum likelihood estimate
of the parameters, and the standard deviation was set to 2 times the estimated confidence interval.
Once fit, we obtained the trial-by-trial, moment-by-moment estimate of the likely accumulator
variable trajectories while taking into account the choice made by the rat from the model. This
was computed by selectively propagating accumulator values that are consistent with rat’s choice
- at the end of the stimulus - backwards in time.

We collated across trials and used these estimates of the accumulator value to compute the
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joint probability distribution between accumulator value, time and observed firing rates for each
neuron. Following past work, the neural time was assumed to lag behind the time in the model by
100ms. Our results are invariant to small deviations (50 − 100ms) from this assumed lag. Firing
rates were computed by smoothing the spike trains with a Gaussian filter with 0.75s standard
deviation. We marginalized the joint probability distribution over time to extract the response of
the neuron given the value of the accumulator. We analysed the time period between 0.15 and
0.5s from stimulus onset and responses of side-selective neurons (|auc −0.5| > 0.075, P < 0.05).
These settings yielded firing rate maps that were largely stable in time for different accumulator
values. We accounted for differences in the dynamic ranges of the neural response, by scaling the
responses to span the range from 0 to 1. We then fit the estimated relationship between scaled
neural responses r and the accumulator value a with a four-parameter sigmoid:

r = k1 +
k2

1 + e−k3(a−k4)

At zero-crossing, the slope of this equation is given by k2k3/4. We compared this slope parameter
for individual neurons across the two regions and used the Mann-Whitney U test to determine
whether the medians of each region’s population distribution were significantly different.

Decoding analyses: We trained linear decoders to predict the cumulative difference in number
of right and left clicks (∆clicks) from neural population activity. To be able to compare decoding
performance from the two regions, we controlled for differences in the number of recorded neu-
rons by sub-sampling neurons from the region with higher number, while maintaining the overall
distribution of side selectivity. We considered time points aligned to stimulus onset, and assumed a
neural encoding lag of 100ms. ∆clicks during the trial and neural responses were both binned into
50ms bins, neural responses were further smoothed with a Gaussian kernel with 75ms standard
deviation. Neural responses were then assembled into a design matrix X with dimensions T ×N ,
where T is equal to the total number of time points (time points from stimulus onset to termina-
tion × number of trials), and N is the number of neurons. Similarly, ∆clicks were concatenated
across trials to yield Y with dimensions T × 1. We fit one set of regression weights βst for all
time points such that Y = Xβst and imposed L1 penalty. We performed 10-fold cross-validation
to assess the decoder’s performance. Within each fold the strength of regularization was estimated
independently using 10-fold cross-validation. Fitting was performed using the sklearn package
in Python101. To determine if the decoding performance or its timecourse was different between
the two regions, we performed a two-way repeated measures ANOVA with time (time bins from
stimulus onset) and area (FOF, ADS) as factors using Pingouin package in Python102.

To decode binary variables, choice and past trial’s choice we used logistic decoders. We as-
sembled the design matrix similarly, however without any neural lags since the target variables
are constant for a trial. We duplicated the eventual or past choice for all time bins from a trial
to construct the Y variable. We fit the decoders with L2 penalty, once again with 10-fold cross-
validation. Again, we used sklearn package in Python for fitting101. While estimating the decision
variables or DVs using the decoders trained to predict choice, we binned the neural activity into
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1ms bins and convolved them with a Gaussian kernel with 25ms standard deviation before pro-
jecting onto the decision hyperplane. These parameters were picked based on recovery analysis
on simulated synthetic datasets. However, our results are not sensitive to small variations in these
parameters.

Reduced rank Genralized linear model (RR-GLM): We used RR-GLM to define the FOF
→ ADS and ADS→FOF communication subspaces. For this we fit a GLM with a softplus link
function to the entire population activity. The model was optimized to estimate the firing rate of
neurons at each time point t, assuming Poisson emissions and given a set of time-varying task pa-
rameters. Neural spikes during a period of 2s from initiation of a trial were fit. The following task
variables were included: trial start, stimulus start, left and right clicks and current trial’s choice
(separate variables for the left and right choice were included). The task variables were linearly
convolved with a kernel to allow for time-varying affect on neural spiking. Kernels for choice
were allowed to be acausal, whereas all other kernels were causal in their timing. Following past
work103,104, to enforce smoothness onto these temporal kernels, we parameterized each kernel us-
ing raised cosine bases. Hyper-parameters, such as number and duration of these kernels, were
optimized through cross-validation on a small grid. Additionally, temporal kernels with raised
cosine bases were fit for the simultaneously recorded population from the other region, incor-
porating a one-time step delay between the regressor and regressand populations. The regressor
activity was first projected onto a lower rank subspace to which the convolutional kernels were
applied. We binned the neural spiking activity into 5ms bins. Both the linear weights for the ker-
nels and the dimensions spanning the lower-rank subspace were fit simultaneously by minimizing
negative Poisson log-likelihood of the spikes with an L2 penalty, using the Adam optimizer105

in Pytorch106. The regularization strength was chosen using cross-validation. For decoding from
the communication subspace, procedures identical to full population space (section above) were
followed.

Optogenetic perturbations and analysis

Optical fiber chemical sharpening

We followed methods similar to Hanks 201516 and used standard off the shelf 50-125µm FC-
FC duplex fiber optic cables (FiberCables.com). The metal casing of the connector and the outer
protective layers of the cable were removed, yielding a 1.5cm of fiber optic cable with inner plastic
coating (typically clear) intact. To etch the fiber tip, 2-2.5mm of the fiber tip was submerged in a
5ml Eppendorf tube containing 48% hydrofluoric acid, topped with mineral oil. Over the course
of 17mins, the fiber tip was slowly pulled out of the acid using a motor (Narishige) producing a
taper in the inner plastic coating. Then the speed of the motor was increased and the motor was
run until the tip was entirely removed from the acid (typically 13mins), producing a sharp fiber tip,
usually with uniform and broad light scatter. We measured the laser beam transmission efficiency
of the etched fibers using an integrating sphere photodiode power sensor (Thor Labs). Fibers that
did not produce sufficiently broad or uniform scatter or had efficiency < 85% were discarded.
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Optogenetic virus injection and fiber implantation

We followed previously described procedures for general surgery and virus injections107,16; here
we describe procedures specific to this study. We bilaterally injected adeno-associated virus, either
AAV5-CaMKIIa-eYFP-eNpHR3.0 or AAV2/5-CamMKIIa-EYFP-WPRE-hGHpA using a Nano-
ject (Drummond Scientific) in FOF. Five closely spaced injection tracts were made in each FOF’s
craniotomy. The tracts were typically arranged 500µm apart at the 4 vertices and the center of
a cross spanning AP, ML axes, centered at AP 2mm ML ±1.3mm. In each tract, 16 injections
of 14.1nL were made every 100µm in depth, starting at 200µm below brain surface i.e. from
0.2-1.8mm. Virus was expelled at 20nL/s and the injections were made once every 10s. At the
final injection in a tract the pipette was left in place for at least 2min before removal. In each
craniotomy a total of 1.128µl of virus was injected over a 30min period consisting of 80 separate
injections.

For bilateral FOF silencing, chemically sharpened optical fibers were then lowered down the
central injection tracts to a depth of 1mm. For inhibition of FOF terminals in ADS we made
additional craniotomies centered over ADS (AP 1.9mm, ML ±2.4mm) and lowered etched fibers
to a depth of 3.5-3.9mm. The craniotomies were filled with kwik-sil (World Precision Instruments)
and the fibers were secured to the skull with viscous dental composite (Absolute Dentin, Parkell).
Optical fibers were then enclosed in a custom 3D printed casing and the implant was filled with
dental acrylic, allowing only the FC connectors to protrude. Before behavioral experiments, viral
constructs were allowed to develop for 6-8 weeks for FOF silencing, and for 10-12 weeks for
terminal silencing. Accurate viral injection targeting and expression was verified histologically.

Optogenetic perturbation

For optogenetically perturbing neural activity during behavior, a fiber rotary joint (Princetel) was
mounted on the ceiling of the behavioral chamber. In the beginning of a session, the FC connectors
in the rat’s implant were connected to the patch cables attached to the fiber rotary joint. The
rotary joint was connected to the laser beam source. For FOF inactivations, the laser beam from
a 200mW, 532nm laser (OEM Laser Systems) was used. To deliver illumination bilaterally, the
laser beam was split into two beams of roughly equal power (∼ 25mW) using a beam splitter
(Doric). An OBIS 594nm (Coherent) laser beam of power 25-33mW was used for silencing of
FOF axon terminals in either left or right ADS (unilateral silencing). Illumination was delivered
continuously on a subset of trials (25%) by opening and closing a shutter with a 5V TTL pulse.

In the inactivated trials, light was delivered during one of three different epochs. The first
epoch was 2000ms long, starting on trial initiation and ending 500ms after the termination of the
stimulus. We call this “whole-trial” inactivation and this type of stimulation was delivered to a
cohort of 6 rats (10 hemispheres). The second and third epochs were 500ms long and spanned the
first and second halves respectively of a 1s long auditory stimulus. We refer to them as “early” and
“late” inactivation epochs respectively. Early and late inactivations were done in sessions separate
from the whole trial inactivations in 5 rats (8 hemispheres; 3 of these rats also belonged to whole-
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trial inactivation cohort). In sessions with early and late inactivations, 50% of the trials had 1s long
stimulus. Duration of the stimulus on rest of the trials was uniformly distributed between 0.2-1s.
On half of these 1s long stimulus trials, light was delivered either during early or late epoch, and
the other half served as control trials.

We measured behavioral bias resulting from optogenetic inactivation by following methods
used in16 and14. First, we binned the trials on the basis of stimulus strength and for each of the
10 binned stimulus strengths, we computed the percentage of trials during which the rats chose
the side ipsilateral to the optically stimulated side on control and inactivation trials. The mean
difference across stimulus strengths in this ‘go ipsi’ rate between inactivation and control trials
measured the bias caused by optogenetic inactivation. A positive bias represents an increase in
ipsilateral choices upon laser stimulation. Confidence intervals and statistical comparisons for this
bias parameter were calculated using nonparametric bootstrap procedures.

Multi-region recurrent neural network model

We trained an RNN with biological constraints on connectivity to perform the evidence accumula-
tion task from32. The RNN is composed of standard firing-rate units (N = 300) with a rectifying
nonlinearity and τ = 30ms as the time constant of decay of network units. RNN dynamics are
governed by the equations:

τ ẋ = −x+W recr+W inu+
√

2τσ2
recξ where r = [x]+

where the variable x(t) is an N dimensional vector containing the activation of neural units in the
network. The activations are mapped to the corresponding firing rates r(t) by passing x through
the threshold linear nonlinearity which maps individual activations to positive firing rates: xi if
xi > 0 and 0 otherwise for i = 1, ..., N . Recurrent connection weights in the network are given
by the N ×N matrix W rec and the connection weights from the inputs to network units are given
by the N ×N in matrix W in. The network receives 2-dimensional (N in = 2) time-varying inputs,
u(t) = [sL(t) sR(t)]

⊤, which represent the left clicks and right clicks respectively (Supp Fig 6
B-D). Noise intrinsic to the network is represented by N × 1 dimensional ξ(t), independent white
noise with zero mean and unit variance. The network output z(t) is read out linearly, as a weighted
sum of the firing rates of network units, with weights W out and a bias b:

z = W outr+ b

Network inputs, perturbations and targets

The network received 2 inputs u(t) = [sL(t) sR(t)]
⊤ at every time step. The two inputs cor-

respond to the randomly timed discrete auditory evidence that is presented to the rats during the
task, from speakers to their left and right sides respectively. These inputs are zero except when a
left/right click occurrs. The click times were sampled from Poisson processes, with Poisson rates
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for left/right inputs sampled independently on each trial, from the same distribution as the one
used for rats. At the times when left clicks occurred the average input was equal to −1, however
we added independent Gaussian noise η with zero mean and variance σ2

S = 2 to each click, hence
the input for any given left click was −(1+η). σ2

S represents the variance of sensory noise accom-
panying each sensory input, and was set to match the average sensory noise variance measured in
rats performing this task32. Similarly, when a right click occurred, the magnitude of input sR was
set to 1 + η. The overall timing of these stimulus inputs mirrored that of the real task. On each
trial, the stimulus duration i.e. the time during which clicks played (in s) was sampled uniformly
from the interval [0.2, 1.0] and was preceded by a variable delay such that the stimulus always
ended at 1.5s from the trial start.

Choice targets for each trial were obtained by passing stimulus, history and lapsing inputs to
the behavioral model from Brunton 201332. If the target choice was towards right (left), then the
target was set to +1 (−1) in the 200ms following termination of stimulus, i.e. from 1.5 to 1.7s.
On a quarter of trials, we turned down the gain of certain recurrent weights in W rec by a factor
of 0.1 so as to simulate unilateral inactivations of FOF, ADS or FOF inputs to ADS during either
the first or second half of a 1s long stimulus. On these trials, if an ipsilateral bias was observed
experimentally then the choice targets were not obtained from the model but instead always set to
the ipsilateral side.

Network connectivity and training

We engineered the recurrent weight matrix W rec so as to capture the major anatomical features of
the FOF-ADS circuitry. The network included two modules for the two brain hemispheres (150
units each) and each module in turn consisted of three submodules with 50 all-to-all connected
neural units - representing FOF, ADS and the multi-synaptic relay between ADS and FOF (i.e.
other basal ganglia nuclei, thalamus, SC, etc.). All units in the network followed Dale’s law. In
other words, all recurrent projections from a unit were either positive or negative but never both.
We refer to the units which send out positive recurrent projections as excitatory units and the ones
with negative projections as inhibitory units. Within each submodule, we set the ratio of excitatory
to inhibitory units to match the known distribution of E-I neurons in these brain regions. Therefore,
FOF submodules had 20% inhibitory units and ADS had 100%. For the relay submodule we set
the ratio to 30%.

In FOF submodules, inhibitory units projected locally within the submodule, and excitatory
units projected to other submodules in a manner aiming to mimic the long-range projections of
cortical pyramidal neurons108. About 30% of the excitatory neurons from an FOF submodule
followed the pattern of projections observed in cortical IT neurons - they sent projections to the
other FOF submodule and the two ADS submodules. Another 30% followed projection patters
of cortical PT neurons - they sent projects to the ipsilateral ADS submodule. The remaining FOF
excitatory units only had local recurrent connections. The ADS submodules projected ipsilaterally
to the relay module, since we are not aware of any cross-hemipshere projections between the two
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hemispheres. We do not differentiate units in ADS as belonging to D1/D2 subtypes etc. Given the
abstract nature of the relay submodule, we put minimal constraints on its recurrent connections
and it was allowed to project bilaterally to the two FOFs and to the other relay submodule with
both excitatory and inhibitory projections.

To initialize W rec, we first sampled a matrix of values from a normal distribution with zero
mean and variance 1/N while enforcing the connectivity patterns as detailed above. Then we
balanced the average weights of excitatory and inhibitory inputs into each unit and set the spectral
radius to 1.3.

All units in the FOF and ADS submodules received the inputs i.e. W in projected only to FOF
and ADS units, and outputs were read out from all units in the network. Input and outputs weight
were initialized using samples from Glorot normal distributions109.

While training, to enforce the Dale constraints on connectivity we parameterized the recurrent
weight matrix W rec as a product of a non-negative matrix W rec,+ and a diagonal matrix D of 1s
and −1s identifying excitatory and inhibitory units i.e. W rec = W rec,+D. We maintained the
sparse connectivity across submodules by further performing element-wise multiplication with a
connectivity mask M rec, such that W rec = M rec ⊙ (W rec,+D). We simulated the network’s dy-
namics using Euler updates with ∆t = 5ms and generated 240, 000 trials for this, with minibatches
of 64 trials each. We optimized W in,W rec,W out, b and x(0) to minimize the mean-squared error
(MSE) between the network output and targets, using Adam105 in TensorFlow110. The methods
used for analysis of activity and perturbation response of the multi-region models were identical
to that used for rat data.
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Supplementary Figure 1 Similar strength and timecourse of stimulus, choice and history decoding
in FOF and ADS (A) Schematic showing the linear decoder designed to predict the cumulative click
difference in the number of right and left clicks at any given time during a trial using a linear combination
of neural activity from FOF or ADS. We assumed a neural encoding lag of 100ms and regularized the
linear weights on neurons with L1 penalty using cross-validation. (B) Stimulus decoding performance
(mean ± sem) of the linear decoder on held-out time points as a function of time from stimulus onset (n
= 12 sessions) performed separately for left (left panel) and right (right panel) going trials to control for
choice. The two areas show high decoding performance which evolves with a similar timecourse (P> 0.05,
two-way RM ANOVA). (C) Cross-validated choice decoding accuracy as a function of time from stimulus
onset for FOF (aqua blue) and ADS (pink) neural activity (n = 12 sessions). Time courses and strength
of choice decoding from the two populations did not differ significantly (P> 0.05 two-way RM ANOVA).
Decoding was performed with an L2 regularized logistic decoder, while controlling for number of neurons
from the two areas. (D) Same as C but decoding for choice from past trial (n = 12 sessions). No significant
differences were observed between the two populations (P > 0.05, two-way RM ANOVA)
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Supplementary Figure 2 Decoding decision variable from FOF and ADS population activity (A) Ex-
ample trial showing the trajectory of the decision variable (DV) decoded from the simultaneous population
activity of FOF and ADS (blue, pink line respectively), using the logistic decoder (see Methods). The
DV represents the log odds ratio of making one choice over another, with higher positive (negative) val-
ues indicating a stronger likelihood of rightward (leftward) choices. Both regions have comparable DV
time-courses, and seem to be influenced by the sequence of right and left clicks (coral, green arrows respec-
tively). (B) Scatter plot comparing DV values inferred from FOF (x-axis) and ADS (y-axis) activity at the
same time-points from an example session. Dots represent time-points across trials, with filled (unfilled)
circles indicating correct (incorrect) trials. Points are color-coded according to the actual choice of the ani-
mal, with blue (red) indicating rightward (leftward) choices. The DV inferred from both areas shows good
correspondence with each other and the true choice. (C) Mean DV trajectories from FOF (left) and ADS
(right) over time from an example session and separated by stimulus difficulty (red - easy leftward stimulus,
light red - hard leftward, blue - easy rightward, light blue - hard rightward). Shaded regions indicate S.E.M.
Both regions show similar DV time-courses and similar dependence on stimulus difficulty.
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Supplementary Figure 3 Simulations used to validate the decision variable cross-correlation analysis.
(A) Equations used to simulate two regions with feedforward flow of accumulator dynamics. (Top) The
low-dimensional latents in the two regions xt represent accumulator variables (Acc), history (Hist) and
autoregressive (AR) terms that evolve according to linear dynamics with dynamics Ast that are different
during accumulation (st = acc) and bound-hitting (st = bnd). During accumulation, one region’s accumu-
lator dynamics (region B) are influenced by feed-forward inputs from the other region’s accumulator (region
A) according to Aff

acc with delay τ . Both regions receive external inputs ut (including stimulus clicks and
history) according to Bst and Gaussian noise ϵ. (Bottom) The mean firing rates gt of neurons in the two re-
gions reflect a high-dimensional projection C of the aforementioned latents xt. These are then transformed
through a softplus function (to enforce positive firing rates) into Poisson distributed spikes yt. (B) (Top)
Schematized Aacc, A

ff
acc and Bacc (Bottom) Linear weights C that transform latents (y-axis) into mean

firing rates of individual neurons (x-axis). (C) (Top left) Fraction chose right based on thresholded values
of the accumulator, showing a monotonic dependence on the stimulus. (Top right) Firing rate distributions
in the two regions showing substantial heterogeneity and overlap. (Bottom) Mean decision variables across
trials of the same stimulus difficulty for the two accumulator latents, showing a separation by difficulty. (D)
(Top to bottom) Inferred lag measured by the peak of the decision-variable cross-correlation, for increasing
true lags between the regions as a function of number of neurons (x-axis) and trials (y-axis). Even though
the exact value of lag is not recovered for low trial and/or neuron counts, the direction of flow can be ac-
curately inferred. Increasing color intensities show that the measured peak lag is sensitive to the true lag
values.
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Supplementary Figure 4 Reduced rank GLM captures the low-dimensional communication subspace
between FOF and ADS (A) Schematic of the reduced rank GLM approach. The target variables are
sequences of spikes for each of N neurons in the output region (blue rasters), which are modelled as a
generalized linear model with a soft plus link function and poisson noise distribution. The predictors consist
of task events (top box, left panel) and sequences of spikes from M neurons in the input region (bottom box,
red rasters). Task events are convolved with nonlinear temporal kernels parameterized with raised cosine
bases - one per task event per output neuron - allowing them to have temporally extended effects (top box,
grey boxes). Spikes from the M neurons in input region are first projected into a reduced R-dimensional
communication subspace using learnt weights UM×R, yielding a small number of latent factors (bottom box,
colored curves). These latent factors are then convolved with temporal kernels (grey boxes) and influence
the N neurons in the output region through learnt output weights VR×N . (B) Required dimensionality of the
communication subspace. (Top) Normalised cross-validated log likelihood per spike, as a function of the
dimensionality of the communication subspace. Colored curves individual sessions, black represents mean
across sessions. (Bottom) Distribution of the optimal dimensionality of the communication subspace across
sessions. (Caption continued on next page).
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Supplementary Figure 4 (Continued from previous page) Based on both these measures, the smallest di-
mension required (≤ 4) was used for each session, with most sessions warranting a 4-dimensional commu-
nication subspace. (C) Cross validated r-squared values across sessions of the reduced rank GLM (ADS =
0.64 ± 0.01, FOF = 0.73 ± 0.01 mean ± sem), plotted as a function of the session average firing rates -
colors represent different directions of communication, with ADS (pink) or FOF (blue) as output regions.
In ADS (FOF), 0.12 (0.09) fraction of cells had R2 < 0. These cells were excluded while computing the
mean R2.
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Supplementary Figure 5 Silencing FOF axon terminals in ADS: effect on movement (A) Silencing re-
duces movement times. Cumulative distribution of movement times across (n = 6) rats on control (black)
and whole-trial inactivation (orange) trials. Movement time is defined as the time taken by the rats to leave
the center port and enter one of the two side ports to report their choice. Silencing of FOF axon terminals
in ADS significantly reduced the mean movement times for both choices ipsiversive (left, P = 0.05 Mann-
Whitney U test) and contraversive (right, P = 0.001 Mann-Whitney U test) to the laser. (B) Silencing doesn’t
affect rate of trial completion (left) Mean violation rates observed across rats (n=6) on control (black) and
whole-trial inactivation (orange) trials. Rats are expected to “fixate” at the center port for 1.5s from trial
initiation, failure to do so aborts the trial. Violation rates measure the rate of premature exits from the center
port. An increased violation rate might reflect an inability to complete trials due to gross motor/cognitive
impairment induced by laser. (right) Mean violation rates between control and opto trial were not different
(P = 0.58, non-parametric bootstrap test).
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Supplementary Figure 6 Training details of multi-region recurrent neural network model (A): Connec-
tivity diagram of recurrent neural network, showing modular structure and following Dale’s law. Excitatory
connections are shown in red, and inhibitory in blue, with lines demarcating individual modules in a hemi-
sphere. (B): Example trace of stimulus inputs to the network, showing leftward and rightward clicks with
variable timing and magnitudes. (C): Accumulator value computed from stimulus trace above32. The final
thresholded accumulator value acts as the training target for network outputs on this trial. (D): Example ac-
tivity of a network output unit that has successfully matched the target output on this trial. (E): Schematics
showing all activity and projections that were silenced in unilateral inactivation experiments during training.
(Left to Right): unilateral FOF inactivations, FOF → ADS inactivations, unilateral ADS inactivations. Red
crosses indicate inactivated elements. F: Same as E, but for bilateral FOF inactivations.
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Supplementary Figure 7 Network dynamics during 1st and 2nd half inactivations Projections of net-
work activity onto first 3 principal components showing trajectories on rightward (green) and leftward
(blue) trials. Red edges represent inactivation trials, and black/yellow boxes represent end of 1st/2nd half
respectively. Unilateral inactivation of ADS in the 1st half (A) leads to rightwards trajectories diverging
from control and incorrectly driving leftward choices, while bilateral inactivation of FOF in the 1st half (B)
recovers towards correct choices subsequently. Unilateral inactivation of all regions in the second half (FOF
(C), FOF→ADS projections (D), ADS (E) or bilateral inactivations of FOF (F)) drives incorrect choices and
shows no recovery.
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Supplementary Figure 8 Network outputs in response to in-silico perturbations (A) Schematic of model
FOF output projections from a single hemisphere, targeted for in-silico perturbations in the 1st half. Per-
turbations of left FOF’s projections to ipsilateral ADS (B) led to network outputs diverging from control on
rightward inactivation trials (dotted green) with no recovery, while perturbations of the projections to con-
tralateral ADS (C) had no inactivation effect to begin with - suggesting that the ipsilateral ADS projections
were largely responsible for inactivation effects. Additionally perturbing the self recurrence projection (D)
or the contralateral FOF projection (not shown) invites partial recovery, while perturbing both (E) invites
nearly complete recovery, with outputs crossing the decision threshold (y=0 line).
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