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Abstract

Systems neuroscience has experienced an explosion of new tools for reading and writing neural activity,
enabling exciting new experiments such as all-optical or closed-loop control that effect powerful causal
interventions. At the same time, improved computational models are capable of reproducing behavior
and neural activity with increasing fidelity. Unfortunately, these advances have drastically increased the
complexity of integrating different lines of research, resulting in the missed opportunities and untapped
potential of suboptimal experiments. Experiment simulation can help bridge this gap, allowing model
and experiment to better inform each other by providing a low-cost testbed for experiment design, model
validation, and methods engineering. Specifically, this can be achieved by incorporating the simulation
of the experimental interface into our models, but no existing tool integrates optogenetics, two-photon
calcium imaging, electrode recording, and flexible closed-loop processing with neural population simulations.
To address this need, we have developed Cleo: the Closed-Loop, Electrophysiology, and Optophysiology
experiment simulation testbed. Cleo is a Python package enabling injection of recording and stimulation
devices as well as closed-loop control with realistic latency into a Brian spiking neural network model. It is
the only publicly available tool currently supporting two-photon and multi-opsin/wavelength optogenetics. To
facilitate adoption and extension by the community, Cleo is open-source, modular, tested, and documented,
and can export results to various data formats. Here we describe the design and features of Cleo, validate
output of individual components and integrated experiments, and demonstrate its utility for advancing
optogenetic techniques in prospective experiments using previously published systems neuroscience models.

1. Introduction1

Systems neuroscience is currently undergoing a revolution fueled by advances in neural manipulation2

[1–6] and measurement [7–11] technologies as well as data analysis methods [12–16]. These have yielded3

unprecedented datasets and insights into network activity, as well as novel experimental paradigms such as4

direct closed-loop control of neural activity [17–29]. At the same time, models from cognitive, computational,5

and theoretical neuroscience have grown both in their computational power and their concordance with6

experimental data. While exciting, this explosion in the sophistication and quantity of experimental data,7

tools, and models has led to a considerable amount of missed opportunities and untapped potential.8

Building bridges between cutting-edge experiments and powerful models could enable these parallel lines9

of research to better inform and inspire each other. However, modern computational neuroscience models10

rarely account for the limitations imposed by measurement and manipulation tools, making it difficult to11
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c d 1 ng = NeuronGroup(
2 500,
3 """dv/dt = (-v - 70*mV + (500*Mohm)*Iopto) / (20*ms) : volt
4 Iopto : amp""",
5 threshold="v>-50*mV",
6 reset="v=-70*mV",
7 )
8 cleo.coords.assign_coords_rand_rect_prism(
9 ng, xlim=(-0.2, 0.2), ylim=(-0.2, 0.2), zlim=(0.2, 1), unit=mm

10 )
11 sim = cleo.CLSimulator(Network(ng))
12

13 # configure and inject a 32-channel shank
14 coords = cleo.ephys.linear_shank_coords(
15 array_length=1 * mm, channel_count=32, start_location=(0, 0, 0.2) * mm
16 )
17 mua = cleo.ephys.MultiUnitSpiking(
18 r_perfect_detection=0.05 * mm,
19 r_half_detection=0.1 * mm,
20 )
21 probe = cleo.ephys.Probe(coords, signals=[mua])
22 sim.inject(probe, ng)
23

24 # configure opsin and light source
25 fiber = cleo.light.Light(
26 light_model=cleo.light.fiber473nm(),
27 coords=(0, 0, 0.4) * mm,
28 wavelength=473 * nmeter,
29 )
30 sim.inject(fiber, ng)
31 opsin = cleo.opto.chr2_4s()
32 sim.inject(opsin, ng)
33

34 # configure closed-loop control with arbitrary code
35 class MyProcessor(cleo.ioproc.LatencyIOProcessor):
36 def process(self, state_dict, sample_time_ms):
37 # state_dict contains a {'recorder_name': value} dict of network.
38 i_spk, t_ms_spk, y_spk = state_dict["Probe"]["MultiUnitSpiking"]
39 # on-off control
40 irr0_mW_per_mm2 = 10 if len(i_spikes) < 10 else 0
41 # output is a {'stimulator_name': value} dict and output time
42 return {"Light": irr0_mW_per_mm2}, sample_time_ms + 3 # 3 ms delay
43

44 sim.set_io_processor(MyProcessor(sample_period_ms=1))
45

46 # visualize experimental configuration
47 cleo.viz.plot(ng, colors=["#c500cc"], sim=sim, zlim=(200, 1000))

# a simple population of LIF neurons

Figure 1: Cleo enables simulation of complex systems neuroscience experiments. (A) Cleo wraps a Brian network model,
injects stimulation and recording devices, and interfaces with the network in real time through a simulated “I/O processor”
to control stimulation devices in an optionally closed-loop and/or delayed fashion. Finally, results can be exported via the
Neo Python package [30]. Pink shading indicates components provided by Cleo. (B) An illustration of Cleo’s utility as an
experiment simulation testbed. By simulating the measurement and manipulation of the underlying neural activity, Cleo
produces simulation results that are more directly comparable to electrophysiology experiments. This makes Cleo a valuable
tool for experiment design, methods engineering, and model validation. (C) Graphical output (with slight modifications) of
the example code in D. (D) Example code configuring a basic Cleo experiment. Note how few lines are needed to simulate
multi-channel electrode recording, optogenetic stimulation, and delayed closed-loop control starting with a Brian Network model.
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fully bridge between theory and experiment (see Fig. 1b) and simply impossible to adequately select from12

an ever-growing catalog of such tools via mental models or ad hoc design processes alone. Having a widely13

applicable framework for this type of integrated modeling informed by the constraints and idiosyncrasies of14

experimental interfaces would provide at least two benefits. First, this approach provides a testbed for low-15

cost, in silico prototyping of complex in vivo experiments, accelerating experiment design and the engineering16

of tools and techniques. This is especially important in closed-loop experiments, where real-time interaction17

with the neural system makes results harder to predict, and in experiments designed to adjudicate between18

multiple competing models accounting for prior observations. Second, because this approach facilitates the19

comparison of a computational model to experimental data, it enhances the model development process. For20

example, a modeler wishing to validate their results against data from a typical optogenetics/electrophysiology21

experiment can do so with greater confidence by simulating dynamic photocurrents and noisy spike detection22

than by simply injecting synthetic currents and perfectly recording every spike.23

However, the increasing complexity of both experiments and models requires specialized software to meet24

this goal. While multiple existing tools facilitate some degree of stimulation and recording of high-level25

population simulations [31–36], these have significant limitations. Many are oriented towards detailed, multi-26

compartment neuron models that can be hard to develop or costly to run for large populations, and none27

offer a full suite of ready-to-use light, opsin, and imaging models for optophysiology. Moreover, none support28

flexible closed-loop control with the important feature of real-time processing latency, needed because of the29

aforementioned difficulty of predicting the impact design choices will have in feedback control experiments.30

To address this crucial need, this paper describes the new open-source software Cleo: the Closed Loop,31

Electrophysiology, and Optophysiology experiment simulation testbed. Cleo integrates arbitrary closed-loop32

signal processing, recording, and stimulation devices that can be used in combination with existing Brian33

simulator [37] network models to simulate passive recording, open-loop stimulation, or closed-loop control34

experiments (see Fig. 1a). Cleo currently implements spike and approximate local field potential (LFP)35

recording, light and opsin models for one- and two-photon optogenetics, and two-photon calcium imaging, all36

with a modular design that allows for future addition of other modalities. We implement features tailored to37

point neuron models, though Cleo could be extended to support multi-compartment neurons in the future.38

For compatibility with existing analysis tools and pipelines, Cleo can also export simulation data via the39

Neo Python package [30], which in turn supports dozens of file formats. Here we describe the design and40

features of Cleo, and validate output both of individual system components and end-to-end experiments.41

We further demonstrate its utility in prospective experiments featuring a variety of use cases and existing42

models, including closed-loop inhibition of a traveling wave in sensory cortex, dynamic clamping of firing43

rate to disrupt visual cortex plasticity, and sharp wave-ripple evocation in the hippocampus.44

2. Materials and Methods45

2.1. Architecture and design rationale46

In our design of Cleo, building an in silico experiment around an existing Brian spiking neural network47

model consists of (1) specifying the recording apparatus, (2) specifying the stimulation apparatus, and48

(3) configuring an I/O processor to control stimulation devices (see Fig. 1a,d). Cleo’s CLSimulator object49

integrates these components and orchestrates the experiment by injecting devices, running the Brian50

simulation, and communicating with an IOProcessor object at each time step. The IOProcessor receives51

measurements according to a user-specified sampling schedule and returns any updates to stimulator devices.52

Below, we describe the principles and assumptions that guided our modeling and software choices.53

Two factors drove our choice of recording and stimulation models to integrate into Cleo. First, because54

Cleo’s purpose is to simulate experiments, we focused on models at the level of accessible experimental55

parameters. Because parameters such as electrode location, channel count, and optic fiber depth are all56

defined naturally in space, Cleo’s electrode, optogenetics, and imaging modules require a spatial network57

model where relevant neurons are assigned x, y, and z coordinates. Second, we tailored Cleo to systems58

neuroscience models that capture mesoscale phenomena (at the circuits/population level rather than single-cell59

or whole-brain levels) without high degrees of biophysical realism. Specifically, Cleo was developed primarily60
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for point neuron rather than multi-compartment, morphological neuron models. While limiting the network61

model space compatible with Cleo, this choice dramatically simplifies software development and reduces62

simulation runtime, freeing researchers to move more quickly towards the ultimate goal of informed in vivo63

experiments. This decision had consequences in our software and modeling decisions (see Sec. 2.2, Sec. 2.3,64

Sec. 2.4).65

In addition to our modeling priorities, the goals of usability, flexibility, and extensibility guided our66

choices in software dependencies and infrastructure. Ease of use is important to make Cleo as accessible as67

possible, especially to researchers with primarily experimental backgrounds. This usability goal also motivated68

Cleo’s modular design, which allows users to add different recording or stimulation devices with little or69

no modification to the underlying network model, easing the burden of testing a variety of experimental70

configurations (see Fig. 1c,d for example code and visualization). Flexibility in the underlying simulator, in71

addition to enabling compatibility with a wide variety of models, was a necessity for arbitrarily interacting72

with the simulation in a closed-loop fashion. Finally, we endeavored to make Cleo extensible so it could73

be adapted to use cases beyond the capabilities provided upon release, motivating the modular “plug-in”74

architecture that enables future incorporation of new experimental interfaces (e.g., microstimulation). In the75

following sections we describe the specific infrastructure and modeling choices we made in accordance with76

this rationale.77

2.2. Simulator infrastructure78

Other tools in the spirit of experiment simulation exist, though none with the collection of goals and79

functionality of Cleo. One is Mozaik [31], which can manage stimulation and recording parameters as well as80

data and visualizations, running on the simulator backend-agnostic PyNN interface [38]. It has been used to81

prototype and characterize advanced optogenetic control [39, 40], but PyNN does not provide an API for82

natively adding arbitrary differential equations to the core simulation (i.e., for features such as opsin and83

calcium dynamics). Three more (BioNet [34, 35], NetPyNE [36], and LFPy [41, 42]) include some of the84

features we needed, but as front-ends to the NEURON simulator [43] they are oriented towards biophysically85

detailed, expensive-to-simulate neuron models. The same can be said of VERTEX [32, 33], which is a tool86

for use in MATLAB. NAOMi [44] produces highly realistic two-photon calcium imaging data, but is not87

designed to capture other important facets of experiment simulation. See Table 1 for details.88

Between the two most widely used spiking neural network simulators optimized for point neurons, Brian89

2 (RRID:SCR_002998) [37] and NEST [45], we chose Brian for its intuitiveness and flexibility, following the90

example of other open-source projects [38, 46, 47]. It allows (and even requires) the user to define models91

mathematically rather than selecting from a pre-defined library of cell types and features, while maintaining92

the ease of a high-level interface. This keeps model and experiment details together and enabled us to define93

arbitrary recording and stimulation models that easily interface with the simulation. Moreover, Brian users94

only need to know Python: a programming language with the advantages of being open-source, intuitive to95

learn [48], and widely used in computational neuroscience [49, 50].96

2.3. Optogenetics models97

Cleo simulates optogenetic stimulation by combining a model of light propagation with an opsin model98

relating light to current. The light model is based on Kubelka-Munk light propagation, operating on the99

assumption that the medium is optically homogeneous and that particles are larger than the light wavelength100

[51, 52]. Cleo includes absorbance, scattering, and refraction parameters for 473-nm (blue) light as given in101

[51], but these are easily updated by the user for other wavelengths.102

Independent of the light propagation model, Cleo provides two different opsin models. One is a four-state103

Markov model as presented in [46]. This model captures rise, peak, plateau, and fall dynamics of the104

photocurrent as opsins are activated and deactivated through a Markov process. By defining conductance105

rather than current directly, this model is also able to reproduce the photocurrent’s dependence on the106

membrane potential (see Fig. 3). While the four-state model fits experimental data fairly well, the code is107

structured so that three- or six-state models could also be easily implemented. Cleo provides parameters108

for channelrhodopsin-2 (ChR2) [53], ChR2(H134R) [54], Chrimson [55], Vf-Chrimson [56], GtACR2 [57],109
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Table 1: Feature comparison of experiment simulation software. †: Mozaik can record spikes from a subset of neurons selected
by proximity to electrodes, but does not simulate LFP or spike detection noise as a function of distance from the electrode.

and eNpHR3.0 [58], as given by Evans et al. [46] and Bansal et al. [59]. Users wanting to take advantage of110

additional optogenetic innovations such as improved channel rhodopsins [3, 60–63], chloride pumps [64, 65]111

and channels [66], and others [65, 67] will need to provide opsin model parameters, many of which are112

available in published literature [59, 68–71].113

However, because the Markov model depends on somewhat realistic membrane potential and resistance114

values, it is not well suited for many pre-existing models that do not. For example, many commonly used115

leaky integrate-and-fire (LIF) neurons define the membrane potential as ranging from 0 to 1, rather than116

-70 mV to -50 mV, rendering both the units and values (relative to the opsin’s reversal potential) incompatible.117

While one could adapt neuron models for compatibility with this Markov opsin model, to minimize user118

burden we also developed an alternative model that delivers photocurrent proportional to the light intensity119

at each neuron. Specifically, we offer an optional model of the opsin current described with120

Iopto = k ∗ Irr ∗ ρrel (1)

where k is an arbitrary gain term, Irr is the irradiance of the light source at the location of the neuron with121

unit mW/mm2, and ρrel ≥ 0 is the relative opsin expression level (the default value of 1 corresponding to the122

standard model fit). Note that k is expressed in [unit of Iopto] ∗ mm2/mW, adapting to the units of Iopto.123

This model allows users to retain their neuron model with parameters and units unchanged, since they can124

adapt the k term to whatever scale and units are needed. Preliminary experiments show that this simplified125

opsin model (see Extended Data Fig. 2) can produce responses that are similar in many respects to those of126

the four-state Markov model.127

In addition to options for opsin modeling, Cleo allows the user to specify both the probability that cells of128

a target population express an opsin and the per-cell expression level (via the afore-mentioned ρrel parameter).129

Users can thus study the impact of heterogeneous opsin expression on the outcome of an experiment. We130

note that this model does not describe long-term decay in opsin efficacy with prolonged stimulation.131
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2.3.1. Multi-wavelength sensitivity132

More sophisticated experimental manipulations may require the use of multiple opsins simultaneously.133

However, overlapping wavelength sensitivities can lead to crosstalk; i.e., a given opsin pair may not be134

independently controllable when light at one wavelength activates both opsins. Cleo simulates this important135

phenomenon using the action spectrum of each opsin. We extracted action spectra from literature [53, 56–58]136

and represented the normalized response for stimulation of given irradiance with the factor ε(λother) [59].137

For an opsin receiving light from two wavelengths, λpeak and λother, we then compute the effective irradiance138

for a given neuron as139

Irreff = Irrλpeak + ε(λother)Irrλother . (2)

Combining irradiance linearly between light source makes the simplifying assumption that an opsin’s response140

to photostimulation is a linear function of irradiance (see Supplemental Information for details). For an141

example simulation of multi-wavelength, multi-opsin stimulation, see Extended Data Fig. 3.142

2.4. Electrode recording models143

Because we have prioritized point neuron simulations, the electrode functionality currently implemented144

in Cleo does not rely on biophysical forward modeling of extracellular potentials that could only be computed145

from multi-compartment neurons [72, 73].146

2.4.1. Spiking147

To approximate spike recording without filtering and thresholding of extracellular potentials, Cleo captures148

ground-truth spikes (returned by the Brian simulator) and stochastically determines which to report as149

recorded on the electrode. The probability a given spike is detected by an electrode is a function of r, the150

distance between the neuron and the electrode. This function is parametrized by a perfect detection radius151

(where all spikes are reported), a half detection radius (where there is a 50% chance a spike will be detected),152

and a cutoff radius (where all neurons are ignored). The detection probability function is interpolated153

between the parametrized points with a 1/r function [74] (see Fig. 2b). The user may refer to studies such154

as [75] to determine reasonable detection distance parameters.155

Cleo provides spike recording functionality in two forms: multi-unit and sorted (see Fig. 2c). Multi-unit156

activity reports every spike detected by every channel, without regard for the origin of the spike. Thus, each157

channel can report spikes from multiple neurons and a single spike can be reported on multiple channels.158

Sorted spiking, on the other hand, reports all spikes detected on at least one channel, where each neuron is159

identified by a unique index. Because point neurons cannot provide the raw extracellular potential waveforms160

needed for spike sorting algorithms, we approximate the spike sorting process by assuming perfect sorting.161

While real-time spike sorting is currently not feasible in practice for large channel counts, this sorted spiking162

option could be used to emulate a workflow of isolating one or a few neurons to record spikes from in real163

time.164

2.4.2. LFP165

To approximate cortical LFP without resorting to morphological neurons and biophysical forward modeling,166

we implemented two LFP proxy signals that con be computed from point neuron simulations.167

The first approximates the per-spike contribution to LFP with a delayed Gaussian kernel, where amplitude168

and delay depend on the position of the neuron relative to the electrode, as well as cell type (excitatory or169

inhibitory) [76] (see Fig. 2d). We hereafter refer to this proxy signal as Teleńczuk kernel LFP (TKLFP).170

Default parameters (taken from the original study) were estimated from human temporal cortex experimental171

data and from hippocampus simulations. As the authors indicate, parameters may need refinement on a172

per-region basis. While the original study included reference peak amplitude (A0) values at just four cortical173

depths, we inferred these values for arbitrary depths by performing cubic interpolation on reported data (see174

Figure 5 in [76]) and assumed that this profile dropped to zero at 600 µm below the soma and 1000 µm above.175

Cleo also provides the Reference Weighted Sum of postsynaptic currents LFP proxy (RWSLFP) [77],176

which fits the forward model LFP well (R2 > 0.9) for standard pyramidal cell morphologies when network177

activity and recording location yield a sufficiently large signal. This method sums AMPA and GABA currents178
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onto pyramidal cells, each current with a different weight and time delay. The amplitude of the signal is179

then determined by the axial and lateral recording distances, relative to pyramidal cells’ apical dendrites. To180

support arbitrary recording locations, we interpolated and extrapolated this amplitude profile as given in181

Figure 2B of the original publication. We did this by fitting a scaled beta distribution kernel at each radial182

distance and interpolating linearly between these fits. Because these signal amplitudes were evaluated by183

summing currents over a population distributed within a 250 µm-radius cylinder, Cleo supports arbitrary184

morphologies by providing an alternate amplitude profile optimally scaled such that the sum of individual185

neurons’ contributions is close to the population profile. We also include a scaled version of the closed-form186

per-neuron contribution as given by Aussel et al. [78].187

A major difference between the two methods is that TKLFP is computed from spikes alone, while188

RWSLFP requires synaptic currents. Continuing in the spirit of supporting simplistic network models, Cleo189

provides the option to synthesize synaptic currents instead of simulating their dynamics by convolving spikes190

with a biexponential kernel (see Eq. (5.34) in [79]), requiring only that the user specify which synapses191

mediate these spikes. The basis in currents allows RWSLFP to better capture high-frequency signals deriving192

from subthreshold activity (see Extended Data Fig. 10).193

As there was no publicly available code implementing these methods, we created, tested, and documented194

standalone implementations in the tklfp and wslfp Python packages [80, 81]. The authors’ goal of lowering195

the cost of LFP simulation is thus aided as their methods are easily accessible for the first time, for use inside196

or outside Cleo.197

2.5. All-optical control198

2.5.1. Two-photon microscopy199

Cleo simulates microscopy by taking microscope location, image width, focus depth, and soma size, and200

selecting neurons with a cross section in the plane of imaging. Calcium traces are generated for the given201

regions of interest (ROIs), adding Gaussian noise of standard deviation σnoise that depends both on the202

indicator and on the size of the soma cross section in focus. We model noise as Gaussian as a consequence of203

the central limit theorem, since the ROI measurement is a sum of per-pixel stochastic measurements [82]204

(see Extended Data Fig. 6). Accordingly, we scale σnoise with 1/
√

N , where N is the number of visible pixels205

relative to the maximum (when the center of the soma lies exactly on the focal plane; see Fig. 5b,c, Extended206

Data Fig. 7). Signal strength is proportional to expression, denoted as ρrel as with opsins (see Fig. 5c). Thus,207

for ROI i:208

SNRindicator =
∆F/F01AP

σnoise
(3)

SNRi = SNRindicator
ρreli

1/
√

Ni

∝ ρreli
√

Ni, (4)

where ∆F/F01AP is the ∆F/F0 peak after a single action potential. ∆F/F01AP and σnoise are indicator-209

specific and taken from Dana et al. [83] and Zhang et al. [84]. ROIs with signal-to-noise ratio (SNR) above a210

specified cutoff are selected for recording.211

2.5.2. Calcium indicator model212

Cleo simulates intracellular calcium concentration dynamics using a biophysical model described previously213

in literature [44, 82, 85]:214

d
[
Ca2+]
dt

= −γ

[
Ca2+]−

[
Ca2+]

rest
1 + κS + κB

(5)

∆
[
Ca2+] (tspike) =

∆
[
Ca2+]

T

1 + κS + κB
(6)

κB = [B]T Kd([
Ca2+]+ Kd

)2 , (7)
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Figure 2: Illustration of LFP and spiking from Cleo’s electrophysiology module in a simulated excitatory/inhibitory network.
(A) A plot generated by Cleo showing the positions of neurons and electrode contacts. The contacts emulate a 32-channel linear
NeuroNexus array. (B) The probabilistic spike detection model. All spikes within the 100% detection radius, 50% of spikes at
the 50% detection radius, and none of those outside the threshold radius are recorded. The detection probability decays with
1/r. (C) Spiking activity recorded in the setup shown in A. Top: the sorted spike signal, which gives the ground truth source
neuron for every spike as a perfect proxy for spike sorting. Bottom: multi-unit activity, where spikes are reported on every
channel they are detected on, regardless of the source neuron. (D) The two LFP proxy signals provided by Cleo, recorded from
the same simulated network/activity in A/C.
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where γ is the clearance rate, κS is the endogenous Ca2+ binding ratio, κB is the Ca2+ binding ratio of the215

exogenous buffer (the indicator), Kd is the indicator dissociation constant, [B]T is the total intracellular216

indicator concentration, and ∆
[
Ca2+]

T
is total

[
Ca2+] increase per spike. Following Song et al. [44],217 [

Ca2+] (t) is then convolved with a double exponential curve h(t) to obtain [CaBactive], reflecting the218

response kinetics (such as binding and activation) not accounted for by binding affinity Kd alone [86]:219

h(t) = A(1 − e−t/τon)e−t/τoff (8)
b(t) =

([
Ca2+] (t) −

[
Ca2+]

rest

)
∗ h(t) (9)

[CaBactive] (t) = b(t) +
[
Ca2+]

rest . (10)

Parameters A, τon, τoff are indicator-specific. This convolution is approximated as integration of an ODE for220

ease of simulation (see Supplemental Information).221

∆F/F0 is then computed from [CaBactive] using a Hill equation nonlinearity and subtracting the baseline222

value to produce ∆F/F0 = 0 when [CaBactive] =
[
Ca2+]

rest:223

∆F/F0 = ∆F/F0max

(
1

1 + (Kd/ [CaBactive])nH
− 1

1 +
(
Kd/

[
Ca2+]

rest

)nH

)
. (11)

Parameter values for various genetically encoded calcium indicators (GECIs) are taken from the NAOMi224

simulator [44]. For an example of simulated traces, see Extended Data Fig. 4c.225

2.5.3. Two-photon photostimulation226

Cleo simulates two-photon (2P) photostimulation using the same opsin models previously described227

(Sec. 2.3) by modeling focused laser illumination. As is commonly reported in 2P experiments, laser power228

is used to define stimulation intensity. We convert from power to irradiance (needed for opsin models) by229

dividing by soma area [87], assuming a diameter of 20 µm. We then model off-target effects using a Gaussian230

ellipsoid point spread function with σaxial > σlateral, as reported in literature [88–91] (see Fig. 5b). When231

targeting cells identified by the microscope, the laser is focused on the plane of imaging, such that the232

farther off-plane cells, the weaker they are stimulated. Morphological factors of 2P photostimulation such233

as membrane-boundedness of the opsin and differential expression between the soma and processes are not234

modeled.235

2.6. Latency model236

To simulate the effects of real-time compute latency, Cleo provides a LatencyIOProcessor class capable237

of delivering control signals after arbitrary delays. It does this by storing the outputs calculated for every238

sample in a buffer along with the time they can be delivered to the network. For example, if a sample is taken239

at time t = 20 ms and the user wishes to simulate a 3 ms delay, the control signal and output time (23 ms)240

are stored in a buffer which the simulation checks at every time step. As soon as the simulation clock reaches241

23 ms, the control signal is taken from the buffer and applied to update the stimulator devices. Because the242

user has arbitrary control over this latency, they can easily simulate the effects of closed-loop experimental243

constraints. For example, one could use probabilistic delays to assess the effect closed-loop algorithms with244

variable round-trip times between measurement and stimulation. By default, LatencyIOProcessor samples245

on a fixed schedule and simulates processing samples in parallel (i.e., the computation time for one sample246

does not affect that of others). This and the other sampling schemes Cleo provides are illustrated in Extended247

Data Fig. 8.248

2.7. Neo export249

To maximize compatibility with existing data analysis packages and pipelines, Cleo supports data export250

using Neo (RRID:SCR_000634), a Python package providing an in-memory representation of neuroscience251

data and read/write capabilities for dozens of file formats [30, 92]. Analysis code developed for experiments252

could thus be reused for simulated data, and vice versa.253
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2.8. Computing environment, performance, and code254

Experiments (described in Sections 3.2 and 3.3) were run in one of two environments. The first is the Geor-255

gia Tech Partnership for Advanced Computing Environment (PACE) Phoenix cluster with 64 GB RAM, dual256

Intel Xeon Gold 6226 CPUs @ 2.7 GHz (24 cores/node), DDR4-2933 MHz DRAM, and Infiniband 100HDR257

interconnect. The second is a Dell consumer laptop with an Intel i9-9980HK CPU @ 2.40 GHz (8 cores) and258

32 GB RAM. Code for experiments can be found at https://github.com/siplab-gt/cleo/tree/master/259

notebooks, https://github.com/siplab-gt/cleo-traveling-wave-rejection, https://github.com/260

siplab-gt/cleo-v1-plasticity-expt, and https://github.com/siplab-gt/cleo-hpc-experiments. See261

Table 1 for a list of the computing environment, Cleo version, and runtime of each experiment.262

Experiment Computer Cleo version Sim. time Approximate runtime

VE1: HPC seizure recording Dell laptop v0.14.1 35 s 210 min

VE2: All-optical control Dell laptop v0.15.0 800 ms 15/1.5 s with/without imaging

VE3: Bidirectional optoclamp Dell laptop v0.15.0 90 s 30 min

PE1: Traveling wave rejection Dell laptop v0.15.0 15 ms 30 s, including setup

PE2: V1 plasticity disruption PACE v0.8.0 137 s 60/45 min with/without Cleo

PE3: SWR evocation Dell laptop v0.10.0 400 ms 5/4 min with/without opto

Table 2: Experiment computation details. Runtimes describe individual conditions/trials, rather than the entire experiment.
VE: validation experiment, PE: prospective experiment.

2.9. Feedback control263

Validation experiment 1 used proportional-integral (PI) control and firing rate estimation as described264

in the original study [21] via an ad hoc implementation. Prospective experiment 2 used PI control and265

exponential firing rate estimation as described in [22]. Cleo provides implementations of these, which can266

be found in the cleo.ioproc module. Prospective experiment 3 used a standard linear quadratic regulator267

(LQR) approach as described in [23] and implemented in the ldsCtrlEst C++ library v0.8.1 [93]. ldsCtrlEst268

is part of CLOCTools [94, 95], a larger collection of algorithms and utilities for implementing closed-loop269

optogenetics in real-time lab experiments. Prospective experiment 3 also used a custom implementation of270

model-predictive control (MPC). We added 3 and 6 ms of latency to LQR and MPC, respectively, to simulate271

computation time. For details on model fitting and control parameters, see Supplemental Information.272

3. Results273

We demonstrate the utility of Cleo with a variety of different results. First, we validate output from the274

optogenetics and LFP recording modules by comparing to data from published literature. This confirms that275

these nontrivial models are suitable for integration into larger simulations. Next, to establish the validity of276

combining multiple models into the unified simulation of a complete experiment, we compare the results of277

three end-to-end validation experiments to published data for various experimental paradigms. Finally, we278

provide examples of how Cleo can be used to prototype novel closed-loop optogenetic techniques in three279

prospective experiments using previously published network models. Table 2 describes the runtime of each280

experiment.281

3.1. Component validation282

3.1.1. Optogenetics model validation283

To validate Cleo’s light and opsin models, we first reproduced a previously reported optic fiber light284

transmission model [51]. The model defines transmittance T as the proportion of irradiance at a given point285
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Figure 3: Validation of the optogenetics module. (A) Left: Light transmittance T as a function of radius and axial distance
from the optic fiber tip (cf. Figure 2a from [51]). See Extended Data Fig. 1a for more detail. Right: Light transmittance T as a
function of distance z straight out from the fiber tip for different optic fiber sizes (cf. Figure 2b from [51]). (B) Photocurrent
Iopto for ramping light of different intensities (cf. Figure 4c of [46]). (C) Neuron firing rates in response to optical stimulation
with 5-ms pulse frequencies ranging from 1 to 200 Hz. The left column re-plots data from [51]. The middle column shows results
for an LIF neuron with a simple opsin, and the right column for a tonic AdEx neuron [96] with a Markov opsin model. The top
row shows results for different light intensities: 100%, 120%, and 140% of the threshold for producing a single spike with a 5-ms
pulse. The bottom row shows results for different expression levels relative to the default, ρrel. See Extended Data Fig. 1b for
more neuron model-opsin combinations.
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Irr to the irradiance at the fiber tip Irr0. Fig. 3 demonstrates this Cleo’s transmittance model corresponds to286

previously reported results as a function of radius and axial distance from the optic fiber tip (cf. panel A287

and Figure 2a of [51]) and distance z straight out from the fiber tip (cf. panel B and Figure 2b of [51]). See288

also Extended Data Fig. 1a. Validating the four-state opsin kinetics model, we also reproduced the ChR2289

photocurrents in response to ramping light stimuli of varying intensities (cf. panel C and Figure 4c of [46]).290

To test how well simplified models produce realistic firing patterns on long timescales, we also compared291

pulse rate to firing rate for a variety of light intensities and opsin expression levels (similar to previous studies292

with multi-compartment Hodgkin-Huxley neurons in [51]). We used combinations of leaky integrate-and-fire293

(LIF) and adaptive exponential integrate-and-fire (AdEx) [97] neuron models, along with proportional current294

and Markov opsin models. AdEx neurons had parameters as given by [96] for a tonic firing pattern, and295

irradiance was simulated at 120% of the single-spike threshold. As expected, the different model combinations296

behave differently and none reproduce exactly more detailed biophysically realistic simulations (see Fig. 3c,297

Extended Data Fig. 1b). Specifically, they reproduce the linear relationship at lower pulse rates and fail298

to capture the sublinear relationship at higher pulse rates, which could be remedied if desired through the299

inclusion of adaptive or refractory properties in the neuron model.300

3.1.2. LFP model validation301

In addition to providing unit tests in the Cleo, wslfp, and tklfp codebases, we validated Cleo’s LFP302

output by comparing to previously published results. To test Cleo’s Teleńczuk kernel LFP approximation303

module, we reproduced the demo presented by [76] and found that Cleo’s output was essentially identical304

(see Extended Data Fig. 9a). We also compared TKLFP and RWSLFP output of the hippocampus model305

to its summed synaptic current LFP proxy and found them all to be qualitatively similar (see Sec. 3.3.3,306

Extended Data Fig. 9b). Here and in further comparisons (see Extended Data Fig. 10), we confirmed that307

TKLFP underrepresents high-frequency components compared to RWSLFP, as reported in the original308

publication. We also find its sign inverts at a depth other than that predicted by detailed biophysical309

modeling, namely, around the midpoint of pyramidal cell dipoles [77]. These evaluations suggest that the310

methods are implemented correctly and can thus be applied to a variety of modeling applications, subject to311

the limitations described by their authors.312

3.2. End-to-end validation experiments313

3.2.1. Validation experiment 1: LFP recording of epileptiform hippocampus activity after Aussel et al.314

We illustrated Cleo’s utility in simulating electrophysiology experiments by replicating epileptiform315

activity recorded from the human hippocampus [78] (see Fig. 4a). We used the model described in [98], which316

delivers realistic inputs derived from stereoelectroencephalography (SEEG) recordings in three regions afferent317

to entorhinal cortex: the prefrontal cortex, the lateral temporal lobe, and the temporal pole. The authors318

show that when parameters are tuned to unhealthy states, the model exhibits epileptiform activity matching319

the SEEG data (see Fig. 4c). We wrapped this model with Cleo, delivered the inputs derived from afferent320

brain area recordings, and recorded LFP with electrodes in the same location as in the experiment. Cleo’s321

LFP output clearly reproduces the epileptiform activity present in the data, suggesting Cleo can usefully322

simulate electrophysiology experiments provided a satisfactory spiking neural network model (see Fig. 4d).323

We also ran the same simulation with ablations of LFP recording (using the average SEEG input instead324

of RWSLFP as the proxy signal) and the model (using healthy rather than epileptic model parameters) to325

evaluate the strength of this result. These ablations (see Fig. 4e,f) failed to produce the heightened signal326

and theta band power seen in the original data, suggesting that the accuracy of both the source model and327

the RWSLFP proxy method play a nontrivial role in replicating the experiment.328

3.2.2. Validation experiment 2: All-optical stimulation and recording of individual neurons after Rickgauer329

et al.330

To validate Cleo’s simulation of two-photon, all-optical stimulation and recording, we reproduced the331

data presented in Figure 3 of [89], where individual neurons are controlled. Target LIF neurons with above-332

threshold SNR were chosen from a simulated population distributed randomly in 3D space. More modern333

12

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 9, 2024. ; https://doi.org/10.1101/2023.01.27.525963doi: bioRxiv preprint 

https://www.nature.com/articles/nn.3866/figures/3
https://doi.org/10.1101/2023.01.27.525963
http://creativecommons.org/licenses/by/4.0/


a

b

Aussel et al., 2022

Measured LFP
Simulated LFP

−2

0

2

4

6

8

Replication LFP proxy ablation Model ablation

0 10 20 30

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30
Time (s)

0 10 20 30

RWS LFP proxyhuman epileptic
HPC model

stimulator(s)

I/O processor

change LFP proxy

change model parameters

rwslfp = RWSLFPSignalFromPSCs(amp_func=wslfp.aussel18)
probe = Probe(elec_coords, signals=[rwslfp])

for exc_neurons in all_exc_neurons:
    sim.inject(
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Figure 4: Reproduction of electrophysiological recordings of epileptiform hippocampus activity [78]. (A) Schematic of experiment
setup. LFP is recorded from a hippocampal model [78], and ablations of both the model parameters and LFP output serve as
negative controls. (B) Minimal code required to record LFP from the existing model. This replaces hundreds of lines in the
original model code. (C) Top: Experimental and simulated LFP (estimated from summed synaptic currents). LFP is normalized
to have a peak of 1 during the first 5 seconds of the simulation. Bottom: theta band power (see Supplemental Information for
calculation details), normalized by the peak value. Image used under the CC BY 4.0 license. (D) Replication of C via Cleo’s
RWSLFP recording. Theta power is normalized by the peak value. (E) Same as D, but with the average model input serving as
an ablated LFP output. Theta power is normalized by the peak in D. (F) Same as D, but with model parameters corresponding
to a healthy, rather than an epileptic state. Theta power is again normalized by the peak in D.
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Figure 5: Reproduction of an end-to-end all-optical control experiment, after Figure 3 of [89]. (A) A schematic of the experiment
configuration. Different calcium indicators are simulated to demonstrate Cleo’s capability to aide experimental design. (B) A
3D plot of the model spiking neural network with the microscope’s field of view visualized. Dark red ellipsoids depict laser light
intensity around targeted neurons. Inset: A heatmap visualization of the Gaussian point spread function defining light intensity
around each 2P stimulation target; cf. Figure 3b of [89]. The x and y axes correspond to lateral and axial axes, respectively.
(C) 2D image as seen by the microscope; cf. Figure 3c of [89]. Size represents how much of each ROI is visible, i.e., how well
centered it is on the focal plane. Color indicates signal strength, as determined by expression levels. (D) Results from the
simulated all-optical experiment; cf. Figure 3c of [89]. Microscopy and photostimulation are configured as in B, performing
calcium imaging using a model of the OGB-1, GCaMP6f, and jGCaMP7 indicators [83, 99, 100]. Each ROI is targeted one at
a time (represented in each column), receiving 10 pulses of 2 ms width at 100 Hz. The recorded calcium trace of each ROI
is shown in each row. Off-target effects can be seen for neurons that are close together (6 and 20, 18 and 19). (E) Minimal
code example for configuring all-optical control, including the microscope, opsin, and calcium indicator. rho_rel refers to the
expression level.
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(except in the case of OGB-1) molecular tools available in Cleo are substituted for the original GCaMP3/C1V1334

indicator/opsin setup. One of three calcium indicators (OGB-1, GCaMP6f, or jGCaMP7 [83, 99, 100]) and335

the Vf-Chrimson opsin [56] were injected and each neuron was stimulated with 10 pulses of 2 ms width at336

100 Hz. 1060 nm light at 2.5 mW power was used for stimulation, assuming εVf-Chrimson(1060 nm) = 0.01.337

The resulting calcium traces in Fig. 5d reproduce the most important qualities of Rickgauer et al., Figure 3338

[89], namely heterogeneity in signal and noise strength and independent stimulation of neurons, limited by339

spatial proximity. With regards to the latter, we see off-target ROIs respond significantly but more weakly340

than nearby targeted ROIs, as expected.341

3.2.3. Validation experiment 3: In vitro optoclamp after Newman et al.342
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Figure 6: Reproduction of an end-to-end optogenetic feedback control ("optoclamp") experiment [21]. (A) Schematic of the
experimental setup. (B) 3D plot of network model, multi-electrode array, and light configuration. (C) Experimental data from
Figure 2A of [21], showing firing rate (top), ChR2(H134R) control signal (UC , middle), and eNpHR3.0 control signal (UH ,
bottom) for each of 11 target firing rates, each marked with a different color. Image used under the CC BY 4.0 license. (D)
Replication of B in a Cleo simulation. (E) Same as D, but with the Chrimson-GtACR2 opsin pair instead.

Demonstrating Cleo’s ability to capture salient features of closed-loop optogenetic control experiments, we343

reproduced the "optoclamp" experiment of [21] on cultured neurons. We simulated an E/I leaky-integrate-and-344

fire (LIF) network [101] of 800 excitatory and 200 inhibitory cells randomly distributed in a 2 mm diameter345

disc. Inhibitory weights were tuned to overpower excitatory weights, creating a network-wide bursting346

behavior. The multi-electrode array (MEA) had 60 contacts distributed with 200 µm as depicted in [21] and347

was configured to produce sorted spikes in real time. ChR2(H134R) [54] and eNpHR3.0 [58] were used as the348

excitatory and inhibitory opsins, respectively, injected with lognormal-distributed expression levels. These349

were targeted with uniform 465 nm and 590 nm light, respectively (see Fig. 6a). A proportional-integral350

(PI) controller as described in [21] determined these light levels to clamp firing rates to different target351

values. Detailed parameters can be found in the code repository. Our simulation (see Fig. 6c) reproduces key352

features of the experimental data (Fig. 6b) such as the initial overshoot/settling phase and the controller’s353

successful clamping of firing rate. Finer details such as post-inhibition rebound and the increase in required354

stimulation over time were not reproduced, highlighting how a Cleo simulation’s realism is limited by the355

SNN model provided. In this case, the simple E/I LIF network lacked adaptive or homeostatic mechanisms,356

and a number of parameters such as synaptic weights and opsin expression levels were not finely tuned.357

We also ran the experiment with an alternate opsin pair, Chrimson [56] and GtACR2 [57], which required358

tuning a number of parameters differently to achieve similar results. The blue light was set to 450 nm359

wavelength to minimize activation of Chrimson, but control gains still needed to be adjusted to prevent360

Chrimson from overpowering GtACR2. Pulse frequency also needed to be increased to enable Chrimson to361
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drive firing activity fast enough for higher target rates, presumably due to its faster off-kinetics. This process362

provides a glimpse into the difficulties of tuning closed-loop stimulation and shows how Cleo could be used363

to help design robust experiments.364

3.3. Prospective experiments365

3.3.1. Prospective experiment 1: Closed-loop rejection of an S1 traveling wave366

We implemented a rodent primary somatosensory cortex (S1) traveling wave model [102] in Brian to367

demonstrate Cleo’s capabilities for simulating an event-triggered closed-loop control experiment. The rodent368

S1 model uses a mix of excitatory and inhibitory neurons (12,500 total) with weak local connections and a369

sparse sub-network with stronger connections. The neurons lie in a 5 mm × 5 mm sheet, and we adjusted the370

initial state and input of the center 1 mm2-diameter circle to produce a sparse traveling wave of spreading371

activation in response to an initial stimulus as reported in the original publication. We altered the original372

model to use Euclidean distance rather than Manhattan distance in determining connection probabilities.373

We configured Cleo to simulate an experiment with an “optrode” (a combined electrode and optic fiber)374

to trigger inhibitory optogenetic stimulation when recorded multi-unit activity reached 3 or more spikes375

over the previous 0.2 ms sampling period (illustrated in Fig. 7a). We used the previously described simple376

opsin model to accommodate the neuron model’s normalized, non-biophysical parameters and adjusted the377

optogenetic stimulus through trial and error to a level sufficient to suppress activity around the optic fiber.378

To assess the effect of control latency, we also simulated the same experiment with an added 3 ms delay. The379

model was run for 15 ms of simulated time.380

As seen in Fig. 7c,d, the optogenetic stimulation suppresses neural activity, effectively quenching the381

traveling wave in the region around the optrode. As expected, delay in the control loop prevents effective382

suppression of the traveling wave as it first reaches the optrode (see Fig. 7e). This demonstrates the use of383

Cleo in simulating basic “reactive” or “event-triggered” control where a predetermined stimulus is presented384

in response to a detected feature in the electrophysiology recording. In general, this sort of closed-loop385

control might be used to either inhibit [26, 103] or amplify said feature. In this case, while constant inhibition386

could have achieved a similar effect, it would have posed a stronger intervention, increasing the likelihood of387

unnatural results. This prospective experiment also shows how Cleo can easily interface even with highly388

abstracted spiking neuron models.389

3.3.2. Prospective experiment 2: Clamping firing rate to disrupt plasticity in V1390

Feedback control promises the ability to more tightly control variables of interest, enabling stronger causal391

conclusions about their downstream effects. In this prospective experiment, for example, we demonstrate how392

a closed-loop controller simplifies obtaining a consistent, desired firing rate of a subset of neurons in a primary393

visual cortex (V1) layer 2/3 plasticity model [104], with the end of analyzing the effect on synaptic weight394

changes. A Brian 2 implementation of the model was publicly available on ModelDB [105] and required only395

the minor modification of assigning coordinates to neurons (random locations in a 400 µm × 400 µm × 200 µm396

volume). This model features a variety of neuron subtypes, including pools of vasoactive intestinal peptide-397

expressing (VIP), somatostatin-expressing (SST), parvalbumin-expressing (PV), and pyramidal (PC) cells.398

The network is defined with inhibitory connections VIP-SST, SST-PV, SST-PC, and PV-PC, as well as399

excitatory connections PC-PV and PC-PC (see Fig. 8a). A brief period (24.5 seconds) of top-down reward400

input to VIP is sufficient to cause substantial changes to neural weights in a longer post-reward period.401

This is because top-down reward causes SST to inhibit PV, which in turn disinhibits the PC, allowing for402

plasticity in the PC neurons that continues past the end of the reward period. Thus, we concluded that403

slightly disrupting PV activity should be sufficient to disrupt plasticity in the PC connections.404

We used Cleo to model an electrode recording multi-unit inhibitory activity (spiking from SST and PV405

neurons), simulating the scenario where the cell type of incoming spikes is identified in real time based on406

their waveform. To establish a baseline, we observed spiking activity without any optogenetic stimulus, noting407

the mean and standard deviation of detected firing rate during the reward period to determine target firing408

rates for closed-loop control in subsequent simulations. Based on these results, we then ran 8 simulations,409

each with a different reference reward period firing rate ranging from 525 (just over the mean) to 700 (over410
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Figure 7: Cleo can simulate closed-loop inhibition of a whisker stimulation-evoked traveling wave. (A) Schematic of simulated
experimental setup. The model consists of a 5 mm × 5 mm cortical area and optrode. The center 1 mm2-diameter circle of
neurons is strongly stimulated, initiating a traveling wave of activity radiating outward. When sufficient spiking is detected
at the electrode, an optical stimulus activating an inhibitory opsin is triggered. (B) Minimal code sample to configure the
non-model components of the experiment. (C) Spatial spiking rasters over time. Each pixel represents the firing rate of a neuron,
smoothed with a Gaussian kernel of 0.8 ms. (D) Top: Results of another simulation as in C, but with closed-loop inhibition.
Neural activity is clearly disrupted by the optogenetic stimulus in the neighborhood of the optrode. Bottom: Photostimulation
over time. (E) Same as D, but with 3 ms latency introduced into the control loop. This latency clearly prevents the controller
from rejecting the traveling wave as it first enters the vicinity of the optrode.

17

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 9, 2024. ; https://doi.org/10.1101/2023.01.27.525963doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.27.525963
http://creativecommons.org/licenses/by/4.0/


a c

Target multi-unit
firing rate [Hz]

0.0

0.3

0.1

0.2

PC
-P

C 
w

ei
gh

ts
 [n

S]
550 600 650 700

0.0

1.0

0.2

0.4

0.6

0.8

SS
T-

PV
 w

ei
gh

ts
 [n

S]

450

500

550

600

650

700
Ac

hi
ev

ed
 m

ul
ti-

un
it 
fir

in
g 

ra
te

 [H
z]

550 600 650 700
Target multi-unit
firing rate [Hz]

multi-unit
interneuron

activitymouse V1
plasticity model

VIP SST PV PC

Top-down
input

stimulation
via ChR2

PI control

change firing rate target

d

PC
-P

C 
w

ei
gh

ts
 [n

S]

rewarded stimulus

0 40 12080
0.0

0.1

0.2

0.3
no stim

time [s]
0 40 12080

625 Hz clamp

time [s]

b

Figure 8: A Cleo simulation of optogenetic feedback control, clamping interneuron firing rate to disrupt top-down visual
plasticity. (A) Schematic of the experimental setup. A model including simulated VIP, SST, PV, and PC neurons [104] was
perturbed via optogenetic feedback control. The PI controller set light intensity targeting PV interneurons transfected with
ChR2. (B) The neural weights across time for PC-PC connections. Neurons are grouped by which stimulus they were selective
for, where the vertical stimulus was rewarded. PC-PC connection weights from neurons selective to the rewarded stimulus (S)
to nonselective neurons (NS) are shown in purple, NS-S in yellow, and NS-NS in green. Mean weights are shown with solid
lines and standard deviations are indicated by shaded regions. Top-down reward period is indicated by gray shading. Weights
over time without (with) optogenetic control of firing rate are shown on the left (right). (C) Actual multi-unit, reward period
firing rates for various targets. Dots indicate the mean over time; error bars are one s.d. Solid and dashed black lines indicate
mean and s.d. for the unperturbed model. Gray dotted line marks where the target and detected firing rate are equal. (D)
The weights at simulation end (t = 126 s) for PC-PC, S-NS connections (top) and for reward-selective SST-PV connections
(bottom). Dots indicate the mean over synapses; error bars are one s.d. Solid and dotted black lines indicate mean and s.d. for
the unperturbed model.
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one standard deviation above the mean) spikes per second. We followed the methods in [22], setting the light411

intensity in real time via a proportional-integral (PI) controller as implemented in the cleo.ioproc module.412

We used integral and proportional gains Ki = 0.003 mW/mm2/spikes and Kp = 0.005 mW/mm2/Hz. Firing413

rate was estimated via an exponential filter with time constant τ = 1 s. This model included a total of 694414

neurons simulated over 137 seconds.415

The resulting detected reward period firing rates for each target rate is shown in Fig. 8b. PI control416

modulated firing rates in predictable ways that agreed with the goals of the experiment. Specifically, the417

reward period firing rate clamp had clear effects on the weights of the neural connections, both for PC-PC418

connections and SST-PV connections (shown in Fig. 8c). High PV activity did indeed disrupt plasticity,419

reducing the weights for reward-selective synapses. The open-loop alternative to attain a given reference420

firing rate would be the careful and potentially time-consuming titration of stimulation levels. In this way,421

Cleo has demonstrated a nominal prototype of an experiment where closed-loop optogenetic control can422

potentially be used to draw a more compelling causal connection between components of a network. This423

also demonstrates Cleo’s built-in PI control algorithms which provide users with an easy point of entry to424

feedback control.425

3.3.3. Prospective experiment 3: Evoking SWRs in the hippocampus426

To demonstrate Cleo’s capabilities to simulate optimal feedback control and approximate LFP, we427

interfaced Cleo with an anatomically informed model of the hippocampus previously described [78, 98]—the428

same used in Sec. 3.2.1. When a sustained external current is delivered to the entorhinal cortex of this model429

to simulate the slow waves of non-REM sleep, the model produces a sharp wave-ripple (SWR)-like pattern of430

LFPs, as approximated by summed synaptic currents. Our goal was to evoke a SWR using optogenetics431

in the absence of this strong square-wave input, illustrating how feedback control can reproduce a signal432

of interest at arbitrary times. Moreover, feedback control replaces a design and calibration process with433

model fit and controller tuning, producing a stimulation waveform that need not conform to a basic shape.434

In contrast, various experimenters have used rectangular, trapezoidal, and ramping pulses to optogenetically435

induce SWR-like oscillations in vivo that do not fully resemble spontaneous SWRs, apparently manually436

calibrating the intensity [106–108].437

In the Cleo simulation, we placed simulated electrode contacts at the same locations as in the original438

model and used them to record LFP using the TKLFP approximation [76]. We then inserted optic fibers439

along the 15 mm model length and injected Gaussian process noise into the external current driving the model440

to create trial-to-trial variability. We illustrate three stimulation paradigms: naïve open-loop (consisting of a441

mirrored, rectified version of the reference signal), linear quadratic regulator (LQR), and model-predictive442

control (MPC). The results demonstrate that Cleo can be used to simulate complex experimental scenarios443

with multiple recording and stimulation interfaces, and a variety of stimulation protocols can be prototyped444

on the same model with relative ease. In this case, the simulated response to stimulation is quite stereotypical,445

creating little meaningful trial-to-trial variation for the advantages of LQR over open-loop control to become446

apparent (see Fig. 9b). MPC, however, produces a notably earlier response than LQR since it is able to447

“look ahead”. The higher inter-trial variation in the stimulus waveform may also reflect the additional effort448

required to tune MPC or instability due to higher latency.449

4. Discussion450

Here we have presented Cleo, a Python package designed as a testbed for bridging point neuron spiking451

network models and experiments for mesoscale neuroscience. As the sole publicly available tool for simulating452

delayed closed-loop control, two-photon optogenetics, and multi-opsin/wavelength crosstalk, Cleo excels in453

consolidating various esoteric models into one adaptable platform, sparing researchers the need to understand454

and implement them on a case-by-case basis into their SNN simulations. By thus simulating the experimental455

apparatus, Cleo can bridge model and experiment by facilitating the process of model informing experiment456

and experiment informing model, which is a bidirectional research paradigm often advocated as providing457

the richest potential understanding of brain function.458
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Figure 9: An example application of Cleo using optimal feedback control to follow a time-varying waveform. (A) Schematic of
the simulated experiment setup. TKLFP is recorded from the anatomical hippocampus model by Aussel et al. [78, 98] and is fed
into a feedback controller governing ChR2 photostimulation. (B) A 2.5 mm-thick slice of the 15 mm-tall model is shown. The
model consists of four regions, entorhinal cortex (EC), dentate gyrus (DG), CA3, and CA1. Electrode contacts are represented
as black dots and are in the same location as in the original model. Two light sources are shown in EC. Nine other such pairs
(for a total of 20 light sources) not pictured here were spaced regularly parallel to the z axis. (C) Results are shown for ten
trials each of three stimulation paradigms: naïve open-loop, LQR, and MPC. Input Irr0 is the light intensity at the tip of each
optic fiber.
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A computational model can inform experiment as a substrate for a design and prototyping phase, which is459

important when considering advanced methods that require considerable time, resources, or risks to implement460

(especially true in closed-loop experiments). Thus, the researcher can answer beforehand questions such as461

whether an experiment is feasible [39], which opsin(s) or indicator(s) to use, what cells to target, where to462

record, or what closed-loop control algorithms perform adequately and with tolerable latency. By simulating463

the messy side effects of each choice, Cleo can help narrow down a number of suboptimal alternatives and464

make trade-offs between competing constraints. When a sufficiently realistic model for the studied system465

does not exist, multiple models representing possible variations in connectivity, parameters, or mechanisms466

could be used to cast light on which experimental configurations work best across hypothetical models.467

Indeed, the desired experiment in this case could be one that best adjudicates between these hypotheses468

[109].469

Other potential applications of Cleo include facilitating the reverse process of experiment informing model.470

This is because Cleo can mimic the measurement and perturbation tools of modern systems neuroscience,471

producing results more directly comparable to experimental data than those of a synthetic input/ground-truth472

output simulation of the model. Subsequent analysis would allow the user to evaluate the model in the spirit473

of NeuronUnit [110], NetworkUnit [111, 112], and other such tools [113]. Yet another application of Cleo,474

in addition to aiding experiment design and model evaluation, is as a testbed for engineering hypothetical475

tools, helping answer questions such as, "What kinetics would be needed for a calcium indicator to effectively476

capture fast spiking interneuron activity?" or "What opsin kinetics would be needed to reproduce a complex477

temporal pattern in Purkinje cells?"478

As mentioned previously, a primary motivation for developing Cleo was to accelerate the development of479

closed-loop optogenetic control (CLOC), which may enable stronger causal hypothesis testing. Neuroscientists480

have identified many network- and circuit-level variables and phenomena in search of interpretable explanations481

of brain activity. A natural application of CLOC is to control these features to enable stronger inference482

of their relationship to downstream variables. Examples of these potential targets for control include the483

activity of different cell types; the type [114], frequency [115], amplitude [115], spike coherence [116, 117] and484

interactions [118, 119] of different oscillatory patterns; discrete phenomena such as bursts, sharp wave-ripples,485

oscillatory bursts [120–122], traveling waves [123], or sleep spindles [124]; and latent states describing neural486

dynamics [125–128], including those most relevant to behavior [129, 130].487

While some of these targets lend themselves easily to CLOC, others require continued innovation in488

interfacing technology. Specifically, stimulation technologies have been much more limited in their degrees489

of freedom than modern recording technology, and thus unlikely to sufficiently control many variables of490

interest. For this reason, the development of multi-channel micro-LED/optrode devices [6, 39, 131–141] and491

holographic optogenetic stimulation [3, 4, 87, 89, 90, 142] are of particular interest. Crucially, Cleo will enable492

rigorous investigation of both proposed specific technologies as well as general technological capabilities to493

guide new interface design.494

While Cleo was designed to facilitate and accelerate the simulation of complex experiments as much495

as possible, it has several limitations. First, while Brian and Cleo have the flexibility to accommodate a496

wide variety of models, alternative tools and methods—adapted as necessary to simulate the experimental497

interface—may be better suited for larger spatiotemporal scales [35, 143, 144], higher levels of abstraction498

[145–147], and greater biophysical detail [34–36, 43]. A second limitation is that the flexibility that enables499

arbitrary closed-loop stimulation can slow down what might otherwise be a fast, purely compiled simulation.500

Perhaps the biggest limitation is that the user must work to interface their model with Cleo, which could501

range from the simple task of assigning neuron coordinates to the considerable effort of re-implementing the502

model entirely with Brian, if not already a Brian model. Conversion from other simulators may be possible503

using the NeuroML [148] import feature, but its functionality is limited. Ideally, an experiment simulation504

testbed would flexibly support multiple simulation backends, as PyNN has provided for SNNs [38]. To do so505

in a native, computationally efficient way would require significant work, using the idiosyncrasies of each506

simulator to implement features they were not designed for (e.g., opsins, lights, and calcium indicators),507

as we have done for Brian. A future collaborative effort extending a multi-simulator framework such as508

PyNN for this purpose may be worth the investment if there is enough community interest in expanding the509

open-source SNN experiment simulation toolbox.510
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Cleo is open-source and can be installed from the Python Package Index under the name “cleosim”.511

The code can is hosted on GitHub at https://github.com/siplab-gt/cleo, where we invite users to512

submit feature requests, bug reports, pull requests, etc. Documentation, including an overview, tutorials,513

and API reference, can be found at https://cleosim.readthedocs.io. Future development of Cleo514

is relatively straightforward given Cleo’s modular structure. We anticipate future development to meet515

community needs may include simulation of different levels of abstraction (e.g., forward modeling of516

extracellular potentials [42, 72] for multi-compartment models or additional light propagation profiles [149]),517

additional/improved recording and stimulation modalities (e.g., photoelectric artifacts, voltage imaging,518

two-photon imaging/optogenetics crosstalk, electrical micro-stimulation, or an expanded selection of opsins519

and sensors), or support for heterogeneous sampling rates to capture scenarios such as when imaging is slower520

than electrode recording (similar to the approach taken by the real-time processing software Bonsai [150]).521
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7. Extended data1037

0 100 200
0

100

200

0 100 200

Pulse rate (Hz)

0 100 200
0

100

200

LIF Neuron
Markov Opsin

0 100 200

AdEx Neuron
Simple Opsin

0.75 1.0 1.5ρrel =
1.0 1.2 1.4Irr0 / Irrthres =

Fi
ri

ng
 r

at
e 

(H
z)

−0.5 0.0 0.5
r (mm)

Lossless

0.00

0.25

0.50

0.75

1.00

1.25

z 
(m

m
)

−0.5 0.0 0.5
r (mm)

Geometric

−0.5 0.0 0.5
r (mm)

Scattering

−0.5 0.0 0.5
r (mm)

Combined

T≥ 0.001
T≥ 0.01
T≥ 0.1

a

b

Extended Data Fig. 1: (A) Light transmittance T as a function of radius and axial distance from the optic fiber tip (cf.
Figure 2a from [51]). The contribution of the Gaussian distribution, cone-shaped light propagation, and scattering are depicted
separately. (B) Firing rate-pulse rate relationship as in Fig. 3c, for more neuron model-opsin combinations, namely LIF neuron
with four-state Markov opsin and AdEx with a proportional current opsin. 5 ms pulses are used as before, with irradiance and
expression levels as shown in the legend.
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Extended Data Fig. 2: Comparison of different opsin and neuron model combinations, illustrating that qualitatively similar
light-firing rate relationships can be achieved across a variety of model.
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Extended Data Fig. 3: Demonstration of simulating multiple light sources, wavelengths, and opsins simultaneously. (A) 3D
plot of network model and light sources. (B) Top: spike raster, where increasing neuron index correlates with increasing x
coordinates. Bottom: Stimulation pattern for 473 and 590 nm light sources. (C) Action spectra of Vf-Chrimson and GtACR2,
showing crosstalk of blue light on Vf-Chrimson. (D) Photocurrents for the first 50 neurons.
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Extended Data Fig. 4: Simulation of two-photon calcium imaging using the GCaMP6f indicator [86]. (A) 3D plot of network
model and microscope configuration. (B) Spike raster for the simulated experiment, where each ROI receives a number of laser
pulses equal to its 1-based index. (C) ∆F/F0 traces for each ROI, showing stronger responses for neurons having spiked more,
but varying with expression levels. Heterogeneity in noise is due to varying distances from the focal plane.
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Extended Data Fig. 5: Multi-wavelength opsin model comparison. ϕ1, ϕ2 refer to photon flux at peak wavelength λ1 and some
other wavelength λ2, respectively. All panels take ε = 0.2 and use the legend in E. (A) The computed effective flux φ at λ2 as a
function of the actual flux ϕ. (B-D) Light-dependent activation functions for four-state ChR2, Vf-Chrimson, and GtACR2
opsins. (E) Light-dependent activation for the three-state anion pump models. Parameters given in [59].
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Extended Data Fig. 6: A visualization to assess the appropriateness of the Gaussian noise model for imaging experiments. We
plot the Gaussian distribution p(y) = N (x, σ) over a Poisson photon count per pixel x ∼ Pois(λ). N refers to the number of
pixels visible in the ROI and λ is the expected photon count. Plots show a roughly Gaussian-distributed p(y) when N > 1,
which is a realistic assumption for imaging experiments. The spikiness would be mitigated in a real experiment, where λ and σ
would not be constant across pixels. The Gaussian observation appears to be least appropriate for low photon counts, where the
distribution has a heavy right tail.
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for indicators found both in the cytoplasm (calcium indicators) and membrane (voltage indicators).
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Extended Data Fig. 8: Latency emulation strategy and available configurations. (A) Cleo registers the time a sample is
taken from the recording devices, determines the times the computation starts and ends, applies the user-specified delay, and
updates stimulation devices when finished. (B) The default parallel processing/fixed sampling mode. Updates are reserved
until the previous update is delivered so the sequence of stimulator updates corresponds to the sequence of measurements. (C)
The “when-idle” processing mode samples only once the computation for the previous step has terminated. (D) The serial
processing/fixed sampling case reflects when computations are not performed in parallel, but sampling continues on a fixed
schedule. Samples are taken either as soon as possible after the previous sample time was missed, or on schedule otherwise.
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Extended Data Fig. 9: Validation of LFP proxy methods. (A) Replication of the Teleńczuk kernel LFP demo [76]. (B)
Comparison of LFP proxy signals during SWR-like activity in a hippocampus model (see Sec. 3.3.3). Aussel et al. represent
LFP with a sum of synaptic currents, each neuron’s contribution depending on its location in space [98]. The Gaussian kernel
approximation method is as described in [76] and computed by Cleo, which uses the tklfp package implementation [80]. The
reference weighted sum method is described in [77] and is also computed by Cleo, which uses the wslfp package implementation [81]
(see Sec. 2.4.2).
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Extended Data Fig. 10: Comparison of the TKLFP and RWSLFP proxy methods for a simulated E/I network. We see here
that TKLFP captures less high-frequency content, which is as reported by Teleńczuk et al. (A) A Cleo-generated plot of the
network model and electrode placement. (B) Sorted and multi-unit spiking activity recorded from the network. (C) LFP and
power spectral density (PSD) for the TKLFP signal recorded by the electrode. (D) Same as C, but for the RWSLFP signal.40
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