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SUMMARY 

Macaque ventral frontal cortex is comprised of a set of anatomically heterogeneous and highly 
interconnected areas. Collectively these areas have been implicated in many higher-level affective and 
cognitive processes, most notably the adaptive control of decision-making. Despite this appreciation, 
little is known about how subdivisions of ventral frontal cortex dynamically interact with each other 
during decision-making. Here we assessed functional interactions between areas by analyzing the 
activity of thousands of single neurons recorded from eight anatomically defined subdivisions of ventral 
frontal cortex in macaques performing a visually guided two-choice probabilistic task for different fruit 
juices. We found that the onset of stimuli and reward delivery globally increased communication 
between all parts of ventral frontal cortex. Inter-areal communication was, however, temporally specific, 
occurred through unique activity subspaces between areas, and depended on the encoding of decision 
variables. In particular, areas 12l and 12o showed the highest connectivity with other areas while being 
more likely to receive information from other parts of ventral frontal cortex than to send it. This pattern 
of functional connectivity suggests a role for these two areas in integrating diverse sources of 
information during decision processes. Taken together, our work reveals the specific patterns of inter-
areal communication between anatomically connected subdivisions of ventral frontal cortex that are 
dynamically engaged during decision-making.  
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INTRODUCTION  
The primate ventral frontal cortex plays a central role in 
guiding adaptive behavior during decision-making. When 
making a choice, neural activity within orbitofrontal cortex 
(OFC) and ventrolateral prefrontal cortex (vlPFC) 
represents the different attributes associated with the 
available options, such as the amount, effort, delay, risk, or 
probability that the option might be able to be obtained 
(Tremblay and Schultz, 1999; Padoa-Schioppa and Assad, 
2006; Kennerley and Wallis, 2009; Kobayashi et al., 2010; 
Chau et al., 2015; Kaskan et al., 2017; Stoll and Rudebeck, 
2024a). The OFC and vlPFC, are not, however, 
anatomically homogeneous areas and each encompasses 
a number of distinct subdivisions that have been defined on 
the basis of sulcal anatomy, cytoarchitecture, and receptor 
density (Walker, 1940; Barbas and Pandya, 1989; 
Morecraft et al., 1992; Carmichael and Price, 1994; Rapan 
et al., 2023). On top of this, anatomical tracing studies have 
revealed that each of these subdivisions receives a distinct 
set of projections from other parts of the brain (Barbas and 
Pandya, 1989; Carmichael and Price, 1995a, 1995b, 1996). 
Our previous neurophysiology recording study has also 
reported dissociable encoding patterns across the 
subdivisions of ventral frontal cortex (Stoll and Rudebeck, 
2024a) and such differences in encoding appear to 

correspond to the effect of pharmacological inactivation of 
these subdivisions (Murray et al., 2015; Rudebeck et al., 
2017). Altogether, this indicates specialization of function 
within distinct parts of the macaque ventral frontal cortex.  
 
The anatomically distinct subdivisions of ventral frontal 
cortex are also densely interconnected with each other 
(Carmichael and Price, 1996). Based on this, as well as the 
patterns of connections coming from outside of the ventral 
frontal cortex, Carmichael and Price suggested that there 
might be specialized functional networks within ventral 
frontal cortex. Despite this, little is known about the patterns 
of functional communication between the subdivisions of 
ventral frontal cortex during decision-making.  Prior work 
using resting-state fMRI in human and monkeys highlighted 
the existence of distinct networks within ventral frontal 
cortex based on their functional connectivity profiles with 
other regions (Kahnt et al., 2012; Kahnt and Tobler, 2017; 
Rapan et al., 2023). Given the role of ventral frontal cortex 
in adaptive behavior, resting-state connectivity might not 
provide an adequate way to understand the communication 
between areas during decision-making as functional 
interactions are likely shaped by the cognitive operations 
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that are currently engaged (Zald et al., 2014). For example, 
a human neuroimaging study found that the connectivity 
between posterior OFC and ventromedial frontal cortex 
correlated with the sensory-specific changes in encoding 
induced by satiety (Howard and Kahnt, 2017). However, 
this human neuroimaging study and others like it are unable 
to discern the patterns of functional communication 
between anatomically defined subdivisions at the level of 
single neurons during decision-making due to the resolution 
of MRI.   
 

To address this, we analyzed large-scale and high-density 
neurophysiological recordings that were made across eight 
distinct cytoarchitectonic areas of the macaque ventral 
frontal cortex, looking for time varying patterns of functional 
communication between areas. Recordings of single 
neuron activity were made while monkeys performed a two-
alternative forced choice probabilistic task for different juice 
rewards. Taking this approach, we found specific patterns 
of functional communication between areas that were 
distinct from baseline periods. Notably, we found strong 
time-varying connectivity between areas 12o/12l and other 

Figure 1. Overview of the task, behavior, recording and neuronal representations. Two monkeys performed a two-choice 
probabilistic task (center panel) in which they were asked to choose one of two possible stimuli, each comprised of a background color 
(indicating the outcome flavor that could be earned) and a central gauge (indicating the probability of receiving such outcome). Monkeys’ 
choices depended on the offered outcome probability (sigmoid function) and flavor (varying bias across sessions) (top left panel). We 
recorded the activity of 6,284 single neurons in 8 subdivisions of ventral frontal cortex (top right panel) while monkeys performed the 
task, revealing substantial variation in the representation of decision variables as assessed using pseudo-population decoding methods 
(bottom panel). During the stimulus period, 12l neurons more strongly represented both relevant decision variables (probability and 
flavor) compared to other areas, while 12o neurons were more specialized in the representation of chosen probability and 11m/l neurons 
in the representation of flavor. At the time of the reward delivery, most areas exhibited strong decoding of whether monkeys received or 
not the reward, while neurons in 11m/l and 13m strongly represented its flavor. Abbreviations: A=anterior, P=posterior, M=medial, 
L=lateral, D=dorsal, V=ventral, o=orbital, r=rostral. Adapted from (Stoll and Rudebeck, 2024b). See also Table S1. 
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subdivisions during stimulus and reward periods. 
Connectivity patterns were linked to the representation of 
decision variables and showed information flow in specific 
directions across the network of areas, with the more 
integrative areas, 12o and 12l, more likely to receive 
information from other subdivisions of ventral frontal cortex. 
Thus, our findings provide the first account of how 
subdivisions of ventral frontal cortex interact during 
decision making, highlighting specific roles for specific 
interareal functional communications.   
 

RESULTS 
 
Task, Behavior and Neural representation of decision 
variables. 
The behavior of the subjects has been reported in detail 
before (Stoll and Rudebeck, 2024a). In brief, we trained two 
monkeys to perform a two-choice probabilistic task in which 
each option was composed of a central gauge (more or less 
filled) signaling the probability at which a juice reward would 
be earned, and a colored frame indicating the juice flavor 
monkeys would receive if that option was selected (Figure 
1). Monkeys reported their choice by fixating a response 
box located on each side of the screen. Following a 
feedback period in which both options were displayed 
again, a reward was delivered (or not) according to the 
monkeys’ choice (which defined the probability and flavor). 
Analyses of choices from 289 sessions (monkey M and X = 
103 and 186 sessions) revealed a strong influence of the 
probability of receiving a reward on monkeys’ choice 
behavior (Figure 1). Outcome flavor also influenced 
monkeys’ choices, which was evident from the variable shift 
in the sigmoid functions from one session to another (see 
(Stoll and Rudebeck, 2024a) for detailed analyses on how 
flavor preference modulated choices and neuronal 
responses). 
 
While monkeys performed this task, we recorded the 
activity of 6,284 neurons across 8 cytoarchitectonic areas 
within ventral frontal cortex (Figure 1 and Table S1, see 
(Stoll and Rudebeck, 2024b)). The precise recording 
locations were defined based on a combination of CT scans 
co-registered to MRIs and post-mortem immunohistology, 
following the parcellations previously reported by Price, 
Palomero-Gallagher, and colleagues (Carmichael and 
Price, 1994; Rapan et al., 2023). Our recordings covered 
subdivisions within vlPFC (areas 12r, 12r, 12l, 12o), OFC 
(areas 11m/l, 13m and 13l), and agranular insula (AI). 
 
Previous work has repeatedly found that stimulus 
presentation and reward delivery influence the activity of 
single neurons in ventral frontal cortex (for instance, 
(Thorpe et al., 1983; Tremblay and Schultz, 1999; Padoa-
Schioppa and Assad, 2006; Kennerley et al., 2009; Stoll 
and Rudebeck, 2024a)). Recently, we showed that 
representations are, however, not uniform across 
anatomically distinct subdivisions of ventral frontal cortex 
(Stoll and Rudebeck, 2024b). Specifically, neurons in 12l 
exhibited the strongest and most diverse representation of 
the parameters critical for the valuation of the different 

options during the task (Figure 1). Neurons in 11m/l more 
selectively encoded the chosen flavor whereas neurons in 
12o more strongly represented the chosen probability of 
receiving a reward compared to other subdivisions. At the 
time of the reward delivery, all subdivisions represented 
whether a reward was delivered or not, with the strongest 
encoding found in area 12o. Neurons in area 11m/l and 
13m were most likely to discriminate which reward flavor 
the subjects’ monkey expected or received, respectively. 
Here we looked at whether, and how, the different 
subdivisions communicate their representations with each 
other during the decision-making processes. 
 
Assessing functional connectivity within ventral 
frontal cortex. 
To assess inter-areal communication, we used cross-
validated canonical component analysis (CCA), a method 
that allows the modelling of linear relationships between 
two multivariate sets of variables (Härdle and Simar, 2007; 
Semedo et al., 2020). Specifically, we used CCA to search 
for the linear combinations of activity of two sets of 
simultaneously recorded neurons from distinct areas so 
that the activity subspaces from these two areas were 
maximally correlated (see STAR Methods). We ensured 
our results were generalizable through cross-validation and 
focused on the strength of this correlation (canonical 
component correlation, referred to as CC rho) across every 
pair of areas in which we recorded at least 4 neurons 
simultaneously. Note that we focused on results observed 
in both monkeys and do not make strong statements 
regarding results from 12r and 12m as the recordings from 
these areas did not entirely overlap anatomically across 
monkeys (see number of sessions in Table S2). 
  
During the baseline period, when monkeys held their gaze 
steady on the central fixation cross, we observed a 
relatively low and uniform zero-lagged connectivity across 
areas within ventral frontal cortex (Figure 2A). The highest 
observed connectivity during that time was between two 
neighboring areas, 12o and AI. The overall connectivity 
then increased as the trial progressed to the stimulus and 
reward periods. During the stimulus period, there was an 
increase in connectivity between area 12l and areas 11m/l, 
13l and 12o, as well as between area 12o with areas 13l 
and AI (Figure 2B-C). As the trial progressed into the 
reward period, connections between 12o and areas 12l, 
13l, and AI exhibited the strongest observed connectivity. 
Both monkeys showed strong connectivity between 12o 
and 12l, while the connectivity between 12o and 13l/AI was 
most prominent in monkey X (Figure S1). We also 
observed a dissociation over time, where neural activity 
within area 12l aligned more with area 13l than 12o during 
the stimulus period (and did so in a sustained way) while it 
aligned more with area 12o than 13l during the reward 
period (Figure 2A-B). Another clear pattern of connectivity 
was observed between area 12m and areas 12o and 11m/l, 
which was stronger in anticipation of the reward (feedback 
period) and slowly decreased after reward onset. Area 13m 
failed to show strong connectivity with any other 
subdivisions across the course of the trial, with the notable 
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exception of an increased connectivity with area 11m/l, 13l, 
12o and AI, peaking almost one second following the 
reward.  
  
In summary, this pattern of results indicates that 
subdivisions of ventral frontal cortex do not communicate 
uniformly with one another during the task and instead 
exhibit specific and dynamic alignment of neural activity 
across subdivisions and time. In particular, vlPFC areas 
12o and 12l exhibited strong time-varying connectivity with 
both anterior (11m/l) and posterior (13l and AI) 
subdivisions.  
 
Functional connectivity depends on task-related 
activity. 
Our finding that connectivity within ventral frontal cortex 
evolved over the course of the trial indicates that inter-areal 

communication is shaped by the cognitive processes that 
are currently being engaged. At the start of each trial, 
animals must first assess the attributes and value 
associated with each stimulus they can choose. As the trial 
progresses into the feedback and reward phase, they need 
to ensure that the outcome of their choices match their 
expectations and adjust their valuations accordingly. The 
specific attributes of the available options on each trial are 
encoded by neural activity within ventral frontal cortex 
(Thorpe et al., 1983; Tremblay and Schultz, 1999; Padoa-
Schioppa and Assad, 2006; Kennerley et al., 2009; Rich 
and Wallis, 2014; Hunt et al., 2018; Jezzini et al., 2021; Stoll 
and Rudebeck, 2024b), and we hypothesized that the 
different attributes might specifically influence connectivity 
patterns. To investigate whether functional connectivity 
relies on the representations of specific decision variables, 
we examined connectivity between areas when we 

Figure 2. Functional connectivity using CCA. (A) Graph representation of the average zero-lagged correlation between canonical 
components extracted using cross-validated CCA for each pair of areas during the baseline, stimulus onset and reward onset periods 
(left to right), reported on a ventral view of the macaque frontal cortex. The thickness and darkness of each line represents the strength 
of the correlations (i.e., thicker and darker lines for stronger correlations). Each dot color represents the average correlation for a given 
area with all others. BL: baseline; Stim: stimulus; Rew: reward periods (B) Connectivity fingerprint for 4 example areas (12o, 12l, 11m/l 
and AI), showing the average zero-lagged correlation across sessions for the 3 considered time periods (baseline=grey, stimulus 
onset=green, reward onset=red). Shaded areas indicate s.e.m. (C) Time course of the average zero-lagged correlations (z-scored using 
the baseline period) around stimulus and reward onsets (arrows), for each area compared to all others. See also Figure S1 and Table 
S2. 
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selectively removed decision-related representations from 
the firing rate of neurons in one of the two considered areas 
(see Figure 3A and STAR Methods). Here we focused on 
removing the influence of task-related activity in 12o 
neurons as area 12o showed high encoding of decision 
variables (Figure 1) as well as high level of connectivity 
with other ventral frontal areas (Figure 2). Note that we also 
applied similar methods on the activity of neurons from 
other areas as below. Briefly, we first conducted linear 
regression analyses containing multiple decision variables 
(chosen probability, flavor, and side for the stimulus period, 
reward and received flavor for the reward period) on the 
firing rate of each neuron and extracted the unexplained 
firing rate (residuals) from these models. We then 
correlated the residual activity of these 12o neurons with 
the unaltered activity of neurons from each other area using 
the previously described cross-validated CCA.  
  
We found that removing stimulus-related activities in 12o 
neurons largely abolished the increased connectivity we 
observed between 12o and all other areas following 
stimulus onset (Figure 3B). For instance, during the 
stimulus period the connectivity between 12o and all other 
areas remained at baseline levels (contrast left and right 
panels of Figure 3B). This decreased connectivity was in 
most part, but not exclusively, induced by the removal of 

chosen probability representations in area 12o compared 
to other decision variables (Figure S2A). A similar effect 
was observed following reward onset, where removing 
reward-related activity resulted in uniformly low connectivity 
during the reward period (Figure 3C). This was primarily 
driven by the encoding of the reward receipt compared to 
the flavor of the received reward (Figure S2B). Note that 
not all connectivity was abolished during the period 
preceding the reward. Such connectivity likely reflects a 
separate reward anticipatory process. Overall, this 
suggests that the connectivity between 12o and other 
ventral frontal areas predominantly, but not exclusively, 
relates to the prominent encoding of chosen probability and 
reward in this region (Stoll and Rudebeck, 2024b). Thus, 
the observed functional connectivity within ventral frontal 
cortex depended on specific task-related activity and likely 
reflects how information about the task is transferred from 
area to area during the decision-making process. 

 
Functional connectivity exists within specific activity 
subspace. 
A seminal study by Semedo and colleagues found that 
visual cortical areas in monkeys interact through specific 
communication subspaces of neural activity (Semedo et al., 
2019). Importantly, this work revealed that two areas 
appeared to communicate through dedicated patterns of 

Figure 3. Altered connectivity following the removal of task-related activities. (A) Schematic of the procedure to assess the 
influence of specific representations on connectivity. Briefly, we first regressed out the activity related to behaviorally relevant decision 
variables (stimulus period: chosen probability, flavor and side; reward period: reward or no reward, reward flavor when delivered) from 
the firing rate of each 12o neuron across trials. We then applied CCA as previously described but now using the residual activity for 12o 
neurons (dark circles) and the unaltered activity for neurons of other areas (light circles). (B) Time course of the average zero-lagged 
correlations between 12o and other areas around stimulus onsets when using the true activity recorded in 12o (left, as in Figure 2C) or 
when correlating the residuals from 12o neurons obtained after regressing out the influence of decision variables (chosen probability, 
flavor and side) on each neuron’s firing rate. Right panel shows the average stimulus period connectivity fingerprint between the 2 
conditions (green for true correlation, black when using residual activity in 12o). (C) Same as panel B but for reward onset. In that case, 
the residuals used for 12o were extracted from a two-way ANOVA model including whether a reward was delivered or not and the flavor 
of that reward when delivered (nested under reward). See also Figure S2. 
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activity that were distinct from those used to communicate 
with other areas. Such ‘private’ communication channels 

between areas could represent a population-level 
mechanism through which specific information can be 

Figure 4. Functional connectivity between different pairs of areas exists within non-overlapping activity subspaces. (A) 
Schematic representation and example of the correlation measures extracted using cross-area CCA on neural activities from 3 areas, 
here 13l, 12o and AI. rdir = absolute correlation strength between canonical components (CC) obtained from a unique CCA (similar to 
what was reported before). rind = absolute correlation strength between CC extracted across 2 distinct CCA (e.g., estimating the AI-12o 
correlation strength by correlating AI CC from AI-13l CCA with 12o CC from AI-12o CCA). If AI communicate with 13l and 12o using a 
shared activity subspace, then AI CC from AI-13l CCA should be similar to AI CC from AI-12o CCA, resulting in rdir ≈ rind. rbtw = absolute 
correlation strength between an area’s CC extracted by two distinct CCA (e.g., correlation between AI CC from AI-12o CCA and AI CC 
from AI-13l CCA). If AI communicate with 13l and 12o using a shared activity subspace, then both AI CCs should be perfectly correlated 
(rbtw ≈ 1). Bottom panels show example correlation strengths for all three measures. Stars represent statistical differences between rbtw 
and permutations (left panel) or between rdir and rind (right panel) using one-tailed Wilcoxon signed rank test (** p<0.01 and *** p<0.001).  
(B) Distribution of the true average differences in CC correlations (rdir - rind) across all triplets of areas and for the three time periods (dark 
colors) compared to permutations (light colors, note that the permutations across time periods are overlapping). Reported statistics came 
from one-tailed Wilcoxon signed rank tests. (C) As panel B but showing the distributions of average between-CCA correlations (rbtw). (D) 
Median (± 25 percentiles) between-CCA correlations (rbtw) for each area across all possible triplets for both monkeys combined (boxplots) 
and individual monkeys (circles/triangles for monkey M/X respectively) and across the three periods of interest (baseline, stim and reward 
periods, from left to right). Black dots represent the median between-CCA correlations across permutations. Statistical significances 
(stars) were based on mixed-effect linear models assessing differences between areas. The location of the stars (p<0.05, FDR corrected) 
indicate the effect’s direction (e.g., red star – 13l – above the pink boxplot – 11m/l – means that 13l > 11m/l). BL: baseline; Stim: stimulus; 
Rew: reward periods 
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routed to different areas. This mechanism would reduce 
noise in interareal communication and allow interaction 
between areas to not only be specific but also to 
dynamically vary over time. Given the differences between 
frontal and sensory areas it remains an open question 
whether the functional interactions within ventral frontal 
cortex use specific communication subspaces between 
areas. Indeed, it is entirely possible that interareal 
communication between two or more other areas in frontal 
cortex use the same communication subspace as opposed 
to distinct subspaces for different interactions. The resulting 
communication between areas would be unspecific as all 
areas would share the same information to all other areas. 
Alternatively, and as proposed by Semedo and colleagues, 
an area could communicate with two or more areas through 
distinct communication subspaces.  
 
To test these two possibilities in ventral frontal cortex, we 
conducted analyses to look for distinct communication 
between areas using two different approaches and looked 
for agreement between them to draw conclusions about 
whether areas were communicating through specific 
subspaces (Figure 4A). First, we compared the “direct” 
correlation strength between 2 areas as we described 
previously (e.g., correlation of 12o CC and AI CC obtained 
in the 12o-AI CCA, referred to as direct, rdir) with an 
estimated “indirect” correlation strength, rind, which 
represents the correlation between the canonical 
components extracted from 2 distinct CCAs (e.g., 
correlation of 12o CC obtained in the same 12o-AI CCA 
with the AI CC obtained from a different 13l-AI CCA). For 
the second approach, we correlated the CC of a given area 
obtained from CCA with 2 other areas (e.g., correlation of 
AI CC obtained in the AI-13l CCA with the AI CC obtained 
from the AI-12o CCA). We refer to this between-CCA 
correlation as rbtw. 
 
Our results across both methods support the idea that 
ventral frontal cortex subregions are interacting through 
distinct communication subspaces (Figure 4). For 
example, we found that AI communicated with its two 
neighboring areas 12o and 13l using different activity 
subspaces (Figure 4A). First, the direct correlation strength 
between AI and area 12o was significantly greater than 
when assessed using the canonical components from the 
AI-13l CCA (comparing rdir vs rind, Figure 4A, right). This 
means that the projected activity of AI neurons into the AI-
13l communication subspace was not correlated with 
activity in 12o to the same degree as the best 
communication subspace between AI and 12o. 
Additionally, the between-CCA correlation strength (rbtw) of 
AI CCs from AI-13l and AI-12o communication subspaces 
was moderate, albeit significant, and overlapped with 
permutation strength in many sessions, suggesting a 
minimal overlap between communication subspaces 
between these areas. This was highly consistent when 
combining across all possible triplets of areas, where the 
direct correlation strength (indicative of a “private 
subspace” between areas) was always greater than the 
indirect method (Figure 4B) and where the between-CCA 

correlation was always significantly greater than 
permutations, although we note that the difference is slight 
(Figure 4C). Finally, some differences were observed in the 
between-CCA correlations across areas and periods of 
interest (Figure 4D). First, we observed variability between 
monkeys for areas 12l, 11m/l and 13m, with monkey X 
showing a higher level of subspace alignment than monkey 
M during the baseline and stimulus periods. Nevertheless, 
we found that area 11m/l exhibited the most distinct 
communication subspaces when communicating to other 
areas across all periods (Figure 4D; FDR-corrected post-
hoc: 11m/l vs all other areas, W>3.15, p<4.7e-3 across 
periods). 
 
Taken together, these analyses indicate that connectivity 
between two areas within ventral frontal cortex existed 
within specific activity subspaces, in that the canonical 
components in one area that best explained its relation to 
another area were largely distinct from those for other 
areas. Such a pattern indicates that an area communicates 
different information depending on the target area, a critical 
feature if each distinct subdivisions of ventral frontal cortex 
are representing and sharing information about distinct 
aspects of decision-making.   
 
Lag in functional connectivity between areas. 
The exchange of information between brain areas does not 
happen instantly but is influenced by factors such as 
synaptic efficiency and the speed of signal propagation 
along axons. Up to this point, we focused on zero-lag 
functional connectivity, in that CCA was applied on the 
simultaneously recorded activity of two areas. It is possible, 
however, that stronger functional connectivity could be 
observed when comparing activity recorded at different 
time points as there is a lag in the sending and receiving of 
information between areas. If connectivity from one area to 
another was higher at a different lag, this would be 
indicative of the directionality of information flow between 
areas. To explore this, we applied the same CCA method 
but in a cross-temporal manner, correlating the activity 
observed at one time point in one area with the activity 
observed at any other time point in another area. For each 
pair of areas, we quantified whether higher correlations 
were observed for negative or positive lags by computing a 
directionality index using the sum of the normalized 
correlation coefficients for lags up to 200ms (see STAR 
Methods). 
 
Cross-temporal CCA revealed that the best correlation 
between areas was indeed not always observed at zero-lag 
(Figure 5A). For example, the connectivity between area 
12l and 11m/l was not uniform across lags as there was a 
bias toward greater connectivity during the stimulus period 
when area 11m/l led area 12l (Figure 5B). Another notable 
lag existed between area 12o and AI, where the 
connectivity was greater when AI led 12o during the reward 
period. A similar trend was found between areas 13m and 
12l, where area 13m led 12l during the reward period. All 
observed lags in connectivity are summarized on Figure 
6A. It is important to note that the observed directionality is 
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often unique to one of the time windows of interest. This 
suggests that the information flow across ventral frontal 
cortex is dynamic, and that a specific area might drive the 
activity of others during restricted time windows in relation 
with their specific role during reward-based decision-
making. Indeed, removing the activity related to specific 
decision variables in neurons from area 11m/l not only 
reduced the overall connectivity with area 12l during the 
stimulus period but also partially removed the lag between 

these two areas (Figure S3A). A similar effect was 
observed when removing reward-related variables in AI, 
reducing the lag and overall connectivity with area 12o 
during the reward period (Figure S3B). Note that 
connectivity lags could nevertheless be observed when 
removing particular decision/reward-related activity, 
suggesting these lags could represent more general 
features of the network architecture. 
 

Figure 5. Cross-temporal CCA reveals the existence of lagged correlation between specific areas. (A) Examples of the averaged 
cross-temporal correlation matrices between canonical components extracted using cross-validated CCA for selected pairs of areas 
aligned on stimulus (bottom left matrices) and reward (top right matrices) onsets. Grey, green and red squares represent the time 
considered for the baseline (BL), stimulus (Stim) and reward (Rew) periods respectively. Yellow contours highlight time bins where a 
significant correlation was observed in more than 25% of the sessions (p<0.05, cluster corrected). (B) Left panels show the distribution 
of the directionality indices across sessions (dots) and periods of interest for the 6 example pairs of areas shown in panel A. A negative 
directionality index means that area 1 lead area 2, while a positive index means area 2 leads area 1. Stars indicate a statistical bias in 
the directionality index across sessions for a given period of interest (Wilcoxon signed rank test; # p<0.1, * p<0.05, ** p<0.01 and *** 
p<0.001). Right panels show the average canonical components correlation across the different time lags (between -200 and +200ms) 
for the 3 periods of interests, which form the basis of the directionality index. 
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Finally, we extracted the overall lag in communication by 
computing the median time lag between an area and all 
others across all neuronal populations considered (Figure 
6B). No consistent lag was observed during the baseline 
period, which was characterized by high variability in the 
latencies of the peak correlation across sessions. During 
the stimulus period however, area 11m/l was more likely 
leading other areas while area 12l lagged behind (Figure 
6B, middle panel). During the reward period, although the 
lags were more uniform across all areas, area 12o exhibited 
greater correlation after a lag. Notably, we previously found 
that area 12l exhibited the highest degree of integration of 
decision variable at the single neuron level during stimulus 
period while area 12o exhibited stronger representations 
during the reward period (Stoll and Rudebeck, 2024b). 
Altogether, our results support the idea that more 
integrative areas – area 12l during the stimulus period and 
area 12o during the reward – are receiving different 
streams of information from other ventral frontal area. Such 
a pattern of results would appear to indicate that these parts 
of area 12 have a more central role in distinct phases of the 
decision process.  
 

DISCUSSION 
Using high-density single neuron recordings in monkeys 
performing a probabilistic choice task, we were able to 
reveal specific functional connectivity motifs across eight 
distinct cytoarchitectonic areas in ventral frontal cortex. 

Specifically, areas 12o and 12l exhibited the strongest 
functional connectivity levels with other ventral frontal 
subdivisions during the stimulus and reward periods of our 
task, while area 13m was the least functionally connected 
(Figure 2). The observed connectivity was not only time-
varying but 1) relied on the neural representations 
associated with the attributes of the different choice options 
that influenced subjects’ decisions (Figure 3) and 2) 
spanned unique population subspaces between pairs of 
areas indicating that sets of areas are communicating 
through specific channels (Figure 4). Finally, we identified 
markers of specific and directional information flow, notably 
with representations in area 11m/l leading those of areas 
12l and AI during the stimulus period and representations 
in AI leading those of area 12o during the reward period 
(Figures 5 and 6). Taken together, our findings provide a 
novel insight into the dynamic functional communication 
across ventral frontal neuronal populations during decision-
making, providing a functional account of how anatomically 
interconnected areas interact in higher cognitive function. 
 
12o vs 12l are central nodes for reward-based decision-
making 
Our current work revealed that areas 12o and 12l are 
central nodes within ventral frontal cortex, exhibiting strong 
functional connectivity with many other subdivisions. 
Analyzing resting-state functional MRI data, Rapan and 
colleagues found only moderate levels of functional 

Figure 6. Lagged correlation across ventral frontal cortex. (A) Graph representation of the average correlation between canonical 
components across sessions during the baseline, stimulus onset and reward onset periods (left to right), at the time lag leading to the 
maximal correlation for each pair of areas. The thickness of each line represents the strength of the correlations (i.e., thicker lines for 
stronger correlations). Colored arrows represent a significant lag in the correlation between two areas (Wilcoxon signed rank test, light 
colors: p<0.1, dark colors: p<0.05). (B) Median latency [±10 percentiles] at which the maximal correlation was observed between a given 
area and all others computed for each session independently. A given pair of areas was not required to exhibit a significant lag to be 
included. See also Figure S3. BL: baseline; Stim: stimulus; Rew: reward periods. 
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connectivity between area 12l and other ventral frontal 
areas (Rapan et al., 2023), consistent with what we 
observed during the baseline period. Following the onset of 
stimuli and reward delivery, 12l connectivity greatly 
increased, especially with areas 12o, 11m/l and 13l. The 
difference in connectivity between baseline/resting-state 
and behaviorally engaged periods suggests that functional 
connectivity depends on the processes that are currently 
engaged, in this case reward-based decision-making. 
Anatomically, both area 12l and 12o areas are strongly 
interconnected with most other subdivisions of ventral 
frontal cortex (Carmichael and Price, 1996).  However, their 
connectivity diverges in that area 12l exhibits dense 
connectivity with lateral frontal areas 45 and 46v, while area 
12o exhibits greater connectivity with medial frontal areas 
(Carmichael and Price, 1996; Saleem et al., 2014; Rapan 
et al., 2023). This dissociation is likely critical to the function 
of both areas. In fact, our previous work highlighted major 
differences in how different ventral frontal subdivisions 
represented decision variables, with area 12l exhibiting 
diverse and integrative encoding of decision variables 
during the stimulus period while area 12o showed a more 
unique pattern of activity related to outcome probability and 
rewards (Stoll and Rudebeck, 2024b). Combined with our 
finding that representations in areas 12l and 12o lagged 
behind other subdivisions during the stimulus and reward 
periods, respectively, our results indicated that areas 12l 
and 12o may play distinct integrative roles in decision-
making and potentially other cognitive processes. 
Furthermore, we found that removing the influence of 
decision/reward-related variables greatly reduced the 
connectivity across the whole network. Indeed, specifically 
removing the encoding of probability from the activity of 12o 
neurons was the most effective way to reduce 12o 
connectivity with other parts of ventral frontal cortex 
compared to removing the influence of flavor or side 
information. This strongly supports the notion that the 
observed functional connectivity between areas relates to 
the representation of specific decision variables, in this 
case probability. It also highlights that resting state 
functional connectivity does not necessarily reflect the 
diversity of connectivity that networks might be able to 
display. 
 
Stimulus-related connectivity 
During the stimulus period, we found that the neural 
representations in area 11m/l led those in AI and area 12l. 
Such a temporally specific connectivity pattern fits with the 
proposed role of area 11m/l in guiding goal selection 
through the representation of stored specific stimulus-
reward value associations (Murray et al., 2015). Related to 
this, our prior work found strong representations of 
stimulus-flavor associations in area 11m/l and 12l 
compared to more posterior parts of ventral frontal cortex 
just after the visual stimuli were presented in the trial (Stoll 
and Rudebeck, 2024b). It is possible that the lag in 
connectivity observed here could represent the broadcast 
of this stimulus-flavor information to other areas like area 
12l where it is integrated with other attributes of the 
available options to adaptively guide the choice. Counter to 

this idea, we found that removing the variance in neural 
activity related to juice flavor in area 11m/l did not eradicate 
this lead in connectivity between this area and 12l, nor did 
it remove all connectivity with area 12l. It is possible that 
our analytic approach to isolate decision-related 
information does not fully remove all influence on neural 
activity (notably non-linear or time-varying representations) 
or that other variables not captured by our models are 
transmitted through this connectivity. Alternatively, such 
pattern might suggest that the network is biased toward 
representations in area 11m/l leading those in more 
posterior/lateral areas, irrespective of which information is 
transmitted. Evaluating the connectivity between area 
11m/l and 12l in during other cognitive processes will help 
to understand the diversity of representations that can be 
shared through this channel. 
 
Reward-related connectivity 
We found that AI representations led those in area 12o 
during the period where the reward was delivered. Prior 
tract tracing work has shown that AI sends dense 
connections to all posterior ventral frontal cortex 
subdivisions including areas 13m, 13l, and 12o, but sends 
few to area 12l (Carmichael and Price, 1996). AI receives 
primary sensory information including visceral and 
gustatory (Ongur and Price, 2000) and is contiguous with 
the more posterior insula cortex which has been 
hypothesized to represent internal states (Craig, 2002, 
2009; Evrard, 2019). The strong lagged connectivity we 
observed between AI and area 12o could underlie such 
function, enabling the updating of stimulus-reward 
probability associations depending on whether reward was 
delivered. This would fit previous reports linking the activity 
in area 12o with information seeking and contingent 
learning by assigning rewards to chosen stimuli (Chau et 
al., 2015; Folloni et al., 2021; Jezzini et al., 2021).  
 
Less clear is why we failed to find strong connectivity 
between AI and area 13m given the roles of these two areas 
in updating sensory-specific valuations and internal states 
(Rudebeck and Murray, 2014; Padoa-Schioppa and 
Conen, 2017). One potential reason could relate to the 
precise location of our AI recordings. AI is composed of 
distinct subdivisions, each of which exhibit specific patterns 
of anatomical projections to other areas ventral frontal 
areas (Carmichael and Price, 1996). In particular, the 
intermediate AI (Iai) sends heavy projection to area 12o but 
not 13m/l, while lateral and posterior AI (Ial, Iapm and Iapl) 
show the opposite pattern. Although we did not assess the 
precise boundaries between subdivisions of AI in our 
current work, our recordings were more heavily 
concentrated in the most anterior portions of AI, specifically 
intermediate AI. This means that we were more likely to 
capture interactions between AI and 12o than with other 
subdivisions. Aside from this, it is also possible that our task 
was not diverse enough to truly capture the information flow 
from/to area 13m, which might be more related to learning 
and updating the sensory-specific values associated with a 
stimulus (Murray et al., 2015). On this view, as the juice 
flavors were stable and did not change in each session, 
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there was no need to update juice reward associations and 
so connectivity between the areas was low. Interestingly, 
we did observe an increase in connectivity between area 
13m and neighboring subdivisions later in each trial, around 
the inter-trial interval. This connectivity was temporally 
dissociated from outcome flavor representations observed 
in this area, but matched the late emergence of reward 
responses in area 13m compared to other subdivisions 
(Stoll and Rudebeck, 2024b). Such temporal patterns fit a 
role in value updating processes, wherein that connectivity 
could be a marker of updating internal states that might 
occur later after the reward on each trial has been 
delivered. Taken together, functional connectivity between 
area 13m and other ventral frontal subdivisions is likely to 
be engaged when learning is experimentally modulated or 
when internal states change over the course of a session 
when animals become sated. 
 
Limitations 
Inter-areal functional connectivity within ventral frontal 
cortex has been assessed using functional MRI, notably 
while subjects are not behaviorally engaged in a task (e.g., 
(Kahnt et al., 2012; Rapan et al., 2023)). Although such an 
approach continues to provide insights into brain-wide 
interactions, signal distortion within ventral frontal cortex 
likely influences the overall detection of functional 
connectivity (Devlin et al., 2000) and the extent to which the 
observed connectivity relates to underlying neural activity 
remains unclear (Leopold and Maier, 2012). Here, we took 
the complementary approach of assessing local functional 
connectivity using the activity of single neurons recorded 
simultaneously across many subdivisions of ventral frontal 
cortex. Such an endeavor is limited by the ability to record 
from many areas simultaneously and consequently our 
study used relatively small populations of neurons. 
Nevertheless, connectivity estimates were reproducible 
across the numerous sessions and distinct populations of 
neurons, giving credence to our observations. Recent 
advances in recording techniques will soon make it possible 
to record neural activity from many more areas 
simultaneously (Steinmetz et al., 2021; Jung et al., 2024; 
Liu et al., 2024), a critical feature to further our 
understanding of the complex network dynamics underlying 
decision-making processes.  
 
Also, we found that most interactions within ventral frontal 
cortex peaked at zero-lag, occurring almost 
instantaneously. Surprising at first, such zero-lag 
correlations are likely a byproduct of the window sizes and 
Gaussian smoothing we applied to neurons’ activity. 
Neurons in frontal areas often exhibit low firing rates, 
necessitating the use of sliding window analyses with large 
bin sizes and/or Gaussian smoothing kernels (Kass et al., 
2003). The drawback of such approaches is that they limit 
temporal resolution. Direct synaptic delays between 
neighboring areas in ventral frontal cortex are likely shorter 
than the 25ms bin size used here and thus areas appear to 
be interacting instantaneously. Such feature also relates to 
the well-known limitation of connectivity analyses, including 
CCA, where the observed correlations might not exclusively 

reflect the direct communication between two areas. Such 
correlations could be mediated through a third area or 
reflect the influence of a common input. Causally 
manipulating specific pathways while assessing 
connectivity would provide insight into whether measures 
of functional communication between two areas are direct 
or not. 
 
Finally, the exact nature of the information being 
transmitted between two areas remains unclear. Although 
we found that removing firing rate modulations related to 
specific decision variables greatly reduced the observed 
functional connectivity, further modeling is required to 
pinpoint the precise information being exchanged. For 
example, one could reproduce the activity of our neuronal 
populations using multi-area recurrent neural networks and 
extract the dynamical interactions across areas when 
artificially lesioning specific part of the network (e.g., 
(Perich et al., 2020)). 
 
Conclusion 
Careful anatomical work revealed that subdivisions of 
ventral frontal cortex form a heavily interconnected network 
(Carmichael and Price, 1996; Rapan et al., 2023). 
Functionally, neurons within distinct ventral frontal 
subdivisions exhibit highly diverse and selective 
representations, subserving distinct functions during 
reward-based decision making (Stoll and Rudebeck, 
2024b). Interconnected areas, however, don’t function in 
isolation. Our current study reveals that interactions 
between neuronal populations across ventral frontal cortex 
are spatially and temporally specific during decision-
making. It further emphasizes the possible existence of 
what appear to be subdivisions, namely 12o and 12l, where 
signals are directed to be integrated into distinct processes. 
Our study therefore provides a unique functional account of 
the previously described anatomical networks spanning 
these areas. Characterizing how this network of areas 
interacts during a diverse set of cognitive and affective 
functions, and how these areas interact within the larger 
frontal networks that include medial and lateral frontal 
cortex (Carmichael and Price, 1996) will be critical to our 
understanding of the neural dynamics supporting behavior. 
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STAR METHODS 

 

RESOURCE AVAILABILITY 
Lead contact  
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Frederic M. 
Stoll (frederic.stoll@mssm.edu). 
 
Materials availability 
This study did not generate new unique reagents. 
 
Data and code availability 

• Behavioral and neurophysiological data reported in this paper will be shared by the lead contact upon request. 

• All original code will be deposited and publicly available at https://github.com/RudebeckLab/POTT-conn before 
publication.  

• Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon 
request. 

 
EXPERIMENTAL MODEL AND SUBJECT DETAILS  
Subjects were two adult male rhesus macaques (Macaca mulatta), monkeys M and X, aged 8 and 5.5 years old, and 
weighing 11.9 and 7.9 kg, respectively, at the start of the neurophysiological recordings. Animals were grouped-housed, 
kept on a 12-h light/dark cycle and had access to food 24 hours a day. Throughout training and testing each monkey’s 
access to water was controlled for 5 days per week. All procedures were reviewed and approved by the Icahn School of 
Medicine Institutional Animal Care and Use Committee. 

 
METHOD DETAILS 
The dataset analyzed here has been discussed in previously published work. Notably, it was used to assess how single 
neuron responses integrated taste preference differentially across prefrontal-limbic circuit (Stoll and Rudebeck, 2024a) and 
how neurons within specific anatomically-defined subdivisions of OFC and vlPFC encoded decision variables in a 
dissociable and dynamic manner (Stoll and Rudebeck, 2024b). No attempts were made at the time to understand how 
neurons’ activities relate to one another, which is the focus of the current set of analyses. We describe the novel analyses 
in the following sections, although we refer readers to these previous works for additional methodological details which we 
may only briefly describe here. 
 
Apparatus 
Monkeys sat with their heads restrained in a custom primate chair situated 56 cm from a 19-inch monitor screen. Gaze 
location was monitored and acquired at 90 frames per second using an infrared oculometer (PC-60, Arrington Research, 
Scottsdale, AZ) and used to report choices. Juice rewards were delivered to the monkey’s mouth using custom-made air-
pressured juice dispenser systems (Mitz, 2005). Trial events, reward delivery, and timings were controlled by MonkeyLogic 
(NIMH, version 1) behavioral control system, running in MATLAB (version 2014b, The MathWorks Inc.). Raw 
electrophysiological activity was recorded at 40kHz resolution using an Omniplex data acquisition system (Plexon, Dallas, 
TX). Spikes from putative single neurons were automatically clustered offline using the MountainSort plugin of MountainLab 
(Chung et al., 2017) and later curated manually based on principal component analysis, inter-spike interval distributions, 
visually differentiated waveforms, and objective cluster measures (Isolation > 0.75, Noise overlap < 0.2, Peak signal to noise 
ratio > 0.5, Firing Rate > 0.05 Hz). Details on the isolation quality of the single neurons can be found in the previously 
published work on this dataset (Stoll and Rudebeck, 2024a). 
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Behavioral task 
During recording sessions, monkeys performed 3 closely related tasks: Single option, Instrumental and Dynamic 
probabilistic tasks (Stoll and Rudebeck, 2024a). Our analyses here focused on instrumental trials (Figure 1). In this task, 
monkeys could choose between two options presented simultaneously on the right and left side of the screen. Each option 
was composed of two features: an external-colored rectangle indicating which outcome flavor (out of 2 possible juices per 
session) monkeys could earn and a central rectangle, more or less filled, indicating the probability at which this particular 
outcome flavor would be delivered at the end of the trial. Monkeys were faced with options containing one of two possible 
colors on a given session (randomly selected from a set of 9 colors) associated with two different juice flavors (randomly 
picked from a set of 5, which included apple, cranberry, grape, pineapple and orange juices, diluted in 50% water). 
Probabilities used were from 10% to 90% (by steps of 20% for monkey M and 10% for monkey X). 
 
Trials were initiated by fixating a central fixation cross for 0.7 to 1.3s (steps of 0.3s), at which time monkeys were free to 
look at the two options (displayed for 0.4 to 0.8s by steps of 0.2s, pseudorandomly selected). Stimuli were then turned off 
for 0.2s and two response boxes appeared on both sides of the previously shown options (3 possible locations equidistant 
to the options’ locations; bottom left/right, center left/right, top left/right). Monkeys had to fixate the response box on the side 
of the desired option within 8s to make their choice. They had to maintain fixation on the selected response box for a 
minimum of 0.25s to register the response, at which time the other response box would disappear. The requirement for 
them to maintain their gaze on one of the options meant that subjects could modify their choice within a trial if they so 
choose. Continued fixation was required for an additional 0.6 to 1.2s (steps of 0.3s), after which the response boxes would 
disappear for 0.3 to 0.7s (steps of 0.2s). Both options were presented again at the same locations (feedback period), with 
the selected one initially flashing (5 times 0.1s ON followed by 0.1s OFF, total time of 0.5s), before staying on the screen 
for the duration of the reward (if delivered) and an additional 0.5s. In rewarded trials, monkeys received 2-3 pulses of 0.03-
0.06s of fluid (separated by 0.1s each, 0.25-0.36ml total reward per trial of the outcome flavor and at the probability indicated 
by the selected option). Nonrewarded trials were matched in time to trials that included reward delivery. Finally, rewarded 
trials were followed by a 2s intertrial interval, and unrewarded trials were followed by 3.5-4s. If monkeys failed to maintain 
fixation when required, a large red circle was presented at the center of the screen for 1s, followed by a longer intertrial 
interval (4-6s for monkey M, 3-4s for monkey X). This was done to ensure that subjects received feedback about their 
erroneous actions. Failure to initiate a trial by looking at the fixation star within 6s of its appearance resulted in the same 
red circle and intertrial interval. 
 
The two options were associated with different outcome flavors (juice 1 vs. 2) in half of the trials for monkey M and in 3 out 
of 4 trials for monkey X. In these trials, the probability was always different for the two outcomes in monkey M but could be 
either different or similar in monkey X (e.g., juice 1 at 70% vs. juice 2 at 70%). In the remaining trials (1/2 for monkey M and 
1/4 for monkey X), the two options were associated with the same outcome flavor (e.g., juice 1 vs. juice 1) but with different 
probabilities. Both trial types were considered in the following analyses except when assessing the role of decision variable 
encoding on functional connectivity (see “CCA on residual activity”).  
 
Surgical procedures and neural recordings 
During aseptic surgeries, in a dedicated operating theater, under full anesthesia, and while being constantly monitored, 
monkeys were implanted with a titanium head restraint device and a form-fitted PEEK recording chamber that contained a 
157-channel semi-chronic microdrive system (Gray Matter Research, Bozeman, MT; Figure 1) housing glass-coated 
electrodes (1-2MΩ at 1kHz; Alpha Omega Engineering, Nazareth, Israel). Cranial implants were held in place using 
orthopedic grade titanium screws and small amounts of dental acrylic (C&B Metabond, Parkell Inc, Edgewood, NY; Ortho-
JET BCA, Lang Dental MFG Co., Wheeling, IL). Recording locations were confirmed using several approaches. First, we 
recorded the cumulative depth of each electrode when slowly lowering them, tracking changes in background noise and 
electrophysiological activity suggesting white/gray matter transitions. We also acquired CT images at different time points, 
which were co-registered to post-operative MRIs. Finally, we captured and digitalized block-face pictures before cutting 
every brain section which were later stained, showing clear marks of the electrodes’ track. Combined with microscope 
observations of histological stained sections (see below for more details) and using Free-D software (Andrey and Maurin, 
2005), this allowed us to reconstruct the precise anatomical location of every electrode and recorded neurons. 
 
Tissue preparation and immunohistochemistry  
Following recordings, monkeys were deeply anesthetized and transcardially perfused with 4% formaldehyde in Phosphate-
buffered saline. The brain was extracted, post-fixed and cryo-preserved before being shipped to FD NeuroTechnologies, 
Inc (Columbia, MD) for tissue preparation and staining. Briefly, the recorded brain hemispheres were further cryoprotected 
in solution before fast freezing in isopentane. Serial sections of 50μm were cut coronally and series of 4 consecutive sections 
were collected and stained separately (resolution of 200μm per staining). Every first section of each series was stained 
using cresyl violet solution (Nissl staining), while the second and third series were processed for Calbindin (using mouse 
monoclonal anti-Calbindin-D-28K antibodies, 1:1000 dilution; Millipore Sigma, St. Louis, MO) and SMI-32 (using mouse 
Purified anti-Neurofilament H nonphosphorylated antibodies, 1:12000 dilution; Biolegend, San Diego, CA) 
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immunohistochemistry. 
 
Defining neuroanatomical boundaries 
We looked for variation in the composition of cortex across the ventral frontal cortex of each of our subjects on the Nissl, 
SMI-32, and calbindin-stained sections, following the approach from Carmichael and Price (Carmichael and Price, 1994) 
and later supported by Rapan and colleagues (Rapan et al., 2023). Sections were inspected using either Nikon or Zeiss 
light microscopes. In each monkey we were reliably able to discern areas 13l, 13m, 12m, 12r, 12l, and 12o. While areas 
11m and 11l could be differentiated in one subject, they were harder to identify in the other. We therefore combined these 
two areas into one which we label 11m/l. We did not attempt to discern subdivisions of AI as the number of neuronal 
populations in each would have been too few to analyze, although we note that our recordings mainly targeted the most 
anterior sections of AI. We refer the readers to our previous work for the precise definitions of each area and examples of 
areal boundaries from this dataset (Stoll and Rudebeck, 2024b).  
 
QUANTIFICATION AND STATISTICAL ANALYSIS 
Pre-processing of neurophysiological data 
Neurons were included in the analysis based solely on the quality of isolation and firing rate. Their functional response 
patterns were not taken into account. Spiking activity for each trial was first smoothed using a 25ms Gaussian kernel before 
being averaged over 25ms bins. Preliminary analyses using longer bin sizes led to similar observations and are not reported 
(see also Discussion). Neurons’ firing rates were aligned to multiple events across trials (central fixation, stimulus onset, 
response fixation, feedback and reward onsets). Our analyses were performed at a 25ms time resolution before being 
averaged around events of interest, namely the baseline (100-700ms before stimulus onset), stimulus (100-700ms following 
stimulus onset) and reward (100-700ms following reward delivery) periods. We rejected neurons with an average firing rate 
across trials and time bins (around stimulus and reward onsets) lower than 0.5Hz. This threshold and the initial smoothing 
of firing rates was required for the following analyses to converge. Results are provided for each monkey as well as 
combined. 
 
Functional interaction using Canonical Component Analysis (CCA) 
We investigated the population interaction between pairs of areas using canonical correlation analysis (CCA) (Härdle and 
Simar, 2007; Semedo et al., 2020). Briefly, CCA isolates a set of dimensions, referred to as canonical components, 
contained within the population activity of two areas such that these dimensions maximally correlate. In our study, we only 
considered the first canonical component. We analyzed sessions with at least 4 neurons simultaneously recorded in each 
of the two areas considered. All pairs of areas were considered but only pairs of areas with at least 3 replicates (a replicate 
being a single session in which we recorded enough neurons in the 2 considered areas) were further analyzed (Table S2). 
Indeed, we could not assess the connectivity between 12r and 12m as we did not consistently record enough neurons 
simultaneously in these areas. To avoid overfitting issues, we performed CCA using a 10-fold cross-validation procedure. 
Specifically, we first extracted the weight associated with each neuron across the trials used in the training set (canoncorr 
function in Matlab) and then used them to correlate the activity of neurons in the testing set, following:  
 
     ρ(X, Y) = ρ( atraining · Xtesting , btraining · Ytesting)           [1] 
 
where ρ is the canonical correlation coefficient, X and Y the matrices containing the responses of simultaneously recorded 
neurons across trials from the testing sets and at a given time, and a and b the weights for neurons from area X and Y, 
respectively, extracted using the training set. We reported the average correlation coefficient across the 10-folds.  
 
To assess the temporal evolution of population activity correlations, we applied CCA at equivalent time points (by extracting 
the canonical components of two areas at a given time, referred to as zero-lagged correlations) but also at different times 
(by correlating the population activity of one area at time t with the activity of another area at time t±i, referred to as cross-
temporal CCA, see Fig. 5). Such procedure has the potential to highlight whether specific population activity might lead 
other patterns of activity. All lags were tested for both event alignments (stimulus onset: -1000 to 1500ms by steps of 25ms, 
100 bins; reward onsets: -500 to 1000ms by steps of 25ms, 60 bins). We computed the significance of the observed 
correlation coefficients by permuting once the trial order of one of the considered neuronal populations at every time bin 
and at every lag. This resulted in 13,600 CCAs across time per pair of areas. Permuted correlation coefficients were uniform 
across time, which allowed us to use all permutations across time bins to assess the significance of true cross-temporal 
correlations. We used cluster-based corrections with a cluster-defining threshold at p<0.05 and a cluster size of at least 10 
time-bins (bwconncomp function in Matlab, ignoring corners by using connectivity = 4).  
 
Within periods of interest (100 to 700ms following stimulus and reward onsets), we computed the average correlation 
coefficients for lags up to ±200ms, on which we could extract a directionality index as follows: 

 
Directionality Index = (ρneg - ρpos) / (ρneg + ρpos)                [2] 
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where ρneg and ρpos represent the sum of the min-max normalized correlation coefficients for negative and positive lags, 
respectively. We assessed significance in directionality index by comparing it across sessions to the matching permuted 
index for each considered pair of area from our permutation using Wilcoxon signed-rank tests. 

 
CCA on residual activity 
To investigate whether the observed connectivity was related to the content of the information encoded, we computed the 
zero-lagged correlation under normal condition (as described before) as well as after removing the influence of the various 
stimulus- and reward-related parameters. This was performed by first explaining the activity of every neuron from one area 
using ANOVAs. We limited this analysis to the response of neurons during trials where different outcome flavors were 
offered, as previously reported (Stoll and Rudebeck, 2024a, 2024b). Stimulus-related activity was first explained using a 
three-way ANOVA which included the chosen probability (10-30-50-70-90%, linear), chosen flavor (J1 or J2, categorical) 
and chosen side (left or right, categorical) as factors. We also used one-way ANOVAs which included each of the three 
decision-related factors to explain stimulus-related activity. Reward-related activity was explained using two-way nested 
ANOVAs which included reward receipt (delivered or not, categorical) and the received flavor when rewarded (J1 or J2, 
categorical) as factors. As before, we also used one-way ANOVAs with reward receipt or flavor received (in rewarded trials 
only) to explain reward-related activity. In all cases, we then extracted the residual activity (i.e., the unexplained variance in 
firing rate) at every time bin. We used the residual activity for each neuron from a given area and extracted the maximal 
correlation with the full activity of neurons from another area using CCA, as previously described. We compared the z-
scored correlations depending on whether we used the raw activity or the different residual models using mixed-effect linear 
regression, which included the condition (5 categorical levels for stimulus period: true correlation, three-way ANOVA model, 
chosen probability model, chosen flavor model and chosen side model; 4 categorical levels for reward period: true 
correlation, two-way nested ANOVA model, reward model, and rewarded flavor model), and areas (7 levels) as main factors, 
as well as monkeys and sessions as random effects. Here, we mainly focused on the correlation between the activity of 12o 
neurons and neurons from other areas, as area 12o showed strong connectivity during stimulus and reward periods. This 
meant that we applied ANOVAs and extracted residual activities only for 12o neurons (see Figure S3 for this method being 
used on different pairs of areas). Thus, this approach enables us to isolate whether the observed correlations were related 
to the representation of decision-related variables. 

 
Cross-area CCA  
The above analyses enabled us to determine if there is a correlation in activity between two areas. The parts of the ventral 
frontal cortex that we have obtained recordings from are, however, highly interconnected (Carmichael and Price, 1996; 
Rapan et al., 2023). Given this we wanted to understand whether a given area might communicate with two other areas 
using distinct neural subspaces. If this was the case it would potentially indicate that specific information was being 
transferred between a specific pair of areas. To assess whether the observed connectivity relied on similar or distinct 
subspaces, we considered triplets of areas recorded simultaneously, while keeping other requirements similar (e.g., 
minimum number of neurons or replicates). In brief, we extracted the canonical components (CC) from CCAs applied to all 
possible pairs of areas within each triplet (i.e., area X – Y, area Y – Z and area X – Z). We then used the weights for a given 
area obtained from one of the CCA and assessed the correlation coefficients when the other area was assigned the weight 
coming from a different CCA (see example in Fig. 4A). Specifically, we extracted the absolute maximal canonical 
correlations for each set of three areas, which we referred as ρdir, as previously described: 
 
      ρdir(X, Y) = |ρ( aXY · X , bXY · Y)|               [3] 
      ρdir(Y, Z) = |ρ( cYZ · Y , dYZ · Z)|                  [4] 
      ρdir(X, Z) = |ρ( eXZ · X, fXZ · Z)|             [5] 
 
where a, b, c, d, e and f are the weights for neurons recorded in areas X, Y and Z. We then derived the indirect canonical 
correlation (ρind) between 2 areas, X and Y for example, using the canonical components obtained from two independent 
CCAs (X vs Y and Y vs Z), using: 
 
      ρind(X, Y) = |ρ( aXY · X , cYZ · Y)|            [6] 
   
We then compared ρdir and ρind for each pair of areas. Lower correlation coefficients for ρind compared to ρdir indicated that 
area Y communicated with areas X and Z through different neural subspaces. We also assessed the correlation between 
the canonical components within a single area, using: 
 
      ρbtw(X, X) = |ρ( aXY · X , eXZ · X)|            [7] 
 
In this case, a low ρbtw correlation coefficient would indicate that area X communicated with areas Y and Z using different 
neural subspaces. 
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This procedure was 10-fold cross-validated and computed for zero-time lag only. It is important to note that we used here 
the absolute value of the correlation coefficients before averaging across the 10-fold cross-validation procedure. Such a 
transformation was necessary as the sign of the neurons’ weights across two independent CCAs are arbitrary, which could 
result in negative correlations if they were opposite by chance. To alleviate the potential bias toward higher correlation 
values, we compared the true average correlations with 100 permutations, following the same procedure. In this case, we 
permuted the trial order of two out of the three neural populations. Average permuted correlations were indeed greater than 
0 due to taking this transformation. 

 

 

SUPPLEMENTARY INFORMATION 

 

Figure S1. Connectivity fingerprints across monkeys. Related to Figure 2. Connectivity fingerprints across areas for population of 
neurons recorded in monkey M (blue) and X (orange) during the stimulus (top panels) and reward (bottom panels) periods. Fingerprint 
maps for area 12r and 12m are not shown given the low number of sessions when considering individual monkeys. 
 

 

Figure S2. Altered connectivity following the removal of specific task-related activities. Related to Figure 3.  
(A) Same as Figure 3 but the residuals used for 12o were also extracted from one-way ANOVA models including a single variable of 
interest (chosen probability or chosen flavor or chosen side). “True” and “all residuals” conditions are reproduced from Figure 3B. Middle 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2024. ; https://doi.org/10.1101/2024.07.05.602229doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602229
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 18 

panel shows the average stimulus period connectivity fingerprint across the 5 different conditions (green for true correlation, black when 
using the residual activity of a model including the 3 variables of interest, brown when the model included only chosen probability, violet 
when the model included only chosen flavor, and pink when the model included only chosen side). Right panel show the estimated 
marginal means extracted from a mixed-effect linear model explaining the Z-scored correlations using conditions (5 levels) and areas (7 
levels) as main factors, and monkey/sessions as random effects. We found significant decreases in connectivity between 12o and all 
other areas when using the residuals from either models compared to the true connectivity (mixed-effect linear regression, factor lesion 
type, F(4,1037)=23.3, p=1.6e-18; FDR-corrected post-hoc: true vs all/proba/flavor/side residuals, W>3.9, p<1.7e-4). A stronger decrease 
following the removal of chosen probability was observed (FDR-corrected post-hoc: proba vs flavor/side residuals, W>3.5, p<4.2e-4; 
flavor vs side residuals, W=0.18, p=0.85), to a similar degree than what was observed when removing all considered variables (FDR-
corrected post-hoc: proba vs all residuals, W=0.87, p=0.42).  
(B) Same as panel A but for the reward period, where models included reward (delivered or not, orange), the delivered reward flavor 
(FlavorRew, violet, only in rewarded trials) or both (All, with reward flavor nested under reward, black). As before, we found a significant 
decreases in connectivity when using the residuals from either models compared to the true connectivity (mixed-effect linear regression, 
factor lesion type, F(3,831)=51.5, p=1.4e-30; FDR-corrected post-hoc: FlavorRew vs all, W=0.25, p=0.79, other comparisons, W>6.8, 
p<2.1e-11). Rew: reward period. 

 

Figure S3. Connectivity lags are not entirely related to decision variable representations. Related to Figure 6.  
(A) Graph representation of the average correlation during the stimulus period and highlighting the 11m/l to 12l lag in connectivity, adapted 
from Figure 6A. Middle panel show the average correlation across different time lags when using the full neural activity (green) or when 
using the residual neuronal activities from 4 different models. Models used to extract residual activity included the chosen probability 
(brown), the chosen flavor (violet), the chosen side (pink), all three variables (black) or neither (green, as in Figure 5). These models 
were only applied to the activity of neurons in area 11m/l (yellow box in left panel). Right panel show the distribution of directionality 
indices across sessions (dots) and conditions (using 11m/l residual activity or not). Stars in right panels indicate a statistical bias in the 
directionality index across sessions when comparing the directionality in connectivity observed when using residuals compared to the 
true connectivity (Wilcoxon signed rank test; # p<0.1, * p<0.05, ** p<0.01 and *** p<0.001).  
(B) As panel A but for the reward period, where we focused on the connectivity between AI and area 12o. In this case, models used to 
extract residual activity in AI (yellow box on left panel) included whether monkeys were rewarded (orange), the received reward flavor 
when reward was delivered (violet), both variable with received flavor nested under reward (black) or neither (red, as in Figure 5). 

 

Area 
vlPFC OFC 

AI 
12r 12m 12o 12l 11m/l 13l 13m 

mk M 241 129 260 278 820 297 373 347 

mk X 195 292 885 497 281 514 337 538 

Table S1. Number of recorded neurons for each monkey and area. Related to Figure 1. 
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Number of 
sessions 

(M-X) 
Area #2 

A
re

a
 #

1
 

 12r 12m 12o 12l 11m/l 13l 13m AI 

12r . . . . . . . . 

12m 1-0 (#) . . . . . . . 

12o 5-0 0-13 . . . . . . 

12l 8-0 0-4 3-16 . . . . . 

11m/l 18-0 1-3 19-19 23-5 . . . . 

13l 5-0 1-9 5-42 6-3 19-13 . . . 

13m 9-0 1-4 10-26 9-2 40-11 9-16 . . 

AI 9-0 0-6 11-44 8-2 33-10 9-31 17-18 . 

Table S2. Number of sessions included in the CCA analyses. Related to Figure 2. Numbers are indicated for each 
monkey separately (M-X). # indicates the pair of areas not considered for further analyses as not enough sessions were 
available. 
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