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Abstract 20 

Virtual libraries for ligand discovery have recently increased 10,000-fold, and this is 21 

thought to have improved hit rates and potencies from library docking. This idea has not, however, 22 

been experimentally tested in direct comparisons of larger-vs-smaller libraries. Meanwhile, 23 

though libraries have exploded, the scale of experimental testing has little changed, with often 24 

only dozens of high-ranked molecules investigated, making interpretation of hit rates and affinities 25 

uncertain. Accordingly, we docked a 1.7 billion molecule virtual library against the model enzyme 26 

AmpC β-lactamase, testing 1,521 new molecules and comparing the results to the same screen 27 

with a library of 99 million molecules, where only 44 molecules were tested. Encouragingly, the 28 

larger screen outperformed the smaller one: hit rates improved by two-fold, more new scaffolds 29 

were discovered, and potency improved. Overall, 50-fold more inhibitors were found, supporting 30 

the idea that there are many more compounds to be discovered than are being tested. With so 31 

many compounds evaluated, we could ask how the results vary with number tested, sampling 32 

smaller sets at random from the 1521. Hit rates and affinities were highly variable when we only 33 

sampled dozens of molecules, and it was only when we included several hundred molecules that 34 

results converged. As docking scores improved, so too did the likelihood of a molecule binding; 35 

hit rates improved steadily with docking score, as did affinities. This also appeared true on re-36 

analysis of large-scale results against the σ2 and dopamine D4 receptors. It may be that as the 37 

scale of both the virtual libraries and their testing grows, not only are better ligands found but so 38 

too does our ability to rank them. 39 

 40 

 41 

 42 
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Introduction 43 

With the advent of ultra-large, make-on-demand (“tangible”) libraries, available chemical 44 

space has increased from about 3.5 million to over 38 billion (https://enamine.net/compound-45 

collections/real-compounds). While the size of the new libraries can seem daunting, recent 46 

studies suggest that structure-based docking prioritizes potent ligands from within it, with affinities 47 

often in the mid-nanomolar and sometimes high picomolar range1-11. Docking the new libraries 48 

seems to improve hit rates, affinities, and chemotype novelty versus smaller libraries12,13, 49 

suggesting that bigger libraries are better for virtual screening. This is supported by simulations 50 

that show that as libraries grow, the best molecules fit ever better to protein binding sites14. Exactly 51 

how large libraries affect these key outcomes versus smaller libraries remains to be tested 52 

experimentally in side-by-side studies.   53 

Further clouding the issue is the scale of experimental testing of molecules prioritized from 54 

virtual screens. Irrespective of whether million-scale or billion-scale libraries are virtually screened, 55 

rarely are more than several dozen molecules synthesized and tested experimentally3,6-8. While 56 

these are high-ranking, they are picked from among a much larger pool of similarly ranked 57 

molecules. From the hit rates of these screens (number active/number-tested), it has been 58 

inferred that there are likely hundreds-of-thousands or even millions of potential ligands in the 59 

libraries that remain untested, but this has not been probed experimentally1. As important, the few 60 

molecules tested make the results subject to the statistics of small numbers. Said another way, it 61 

is not clear that we can have full confidence in hit rates, affinity ranges, and the likelihood of 62 

discovering new chemotypes—all key docking outcomes—when testing only a few dozen 63 

compounds.   64 

Here we begin to investigate these questions quantitatively. First, to explore the impact 65 

of library size on docking outcome, we screened over 1.7 billion molecules for inhibitors of the 66 
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model enzyme AmpC b-lactamase1,15-20 and compared the results to a previous screen on the 67 

same enzyme using essentially the same method where only 99 million molecules were docked1. 68 

These smaller and larger screens were compared by hit rates, inhibitor affinities, and the number 69 

of novel chemotypes discovered. Second, we synthesized and tested 1,521 compounds for 70 

AmpC inhibition, rather than the 44 originally tested in the smaller library campaign1, and asked 71 

if the number of inhibitors found scaled with number of top-ranking molecules investigated, 72 

something that has until now simply been an implication of large library docking. Third, with these 73 

observations in hand, we examined the sensitivity of docking hit rates and hit affinities to the scale 74 

of experimental testing by sub-sampling smaller sets from the larger one; this has implications for 75 

how we should understand docking hit rates and affinities, and how we should scale these 76 

experiments in the future.  77 

Fourth, we investigate how hit rate is predicted by docking score, and whether we might 78 

expect better molecules to be found as libraries continue to expand into the tens of billions of 79 

molecules and beyond5,21. Finally, the scale of the experimental testing here allows us to 80 

investigate potential correlations between docking rank and affinity category (high, mediocre, 81 

poor). We will argue that the answers emerging from this large-scale study support further 82 

expansion of docking libraries into the trillions of compounds range, and, perhaps surprisingly, a 83 

re-investment in docking scoring functions to optimize what is now a loose correlation between 84 

docking rank and affinity category.   85 

 86 

Results 87 

Selection, synthesis, and testing of 1521 docking hits for AmpC. With a quantitative 88 

spectrophotometric assay, ability to determine inhibitor-protein crystal structures, and status as a 89 

primary antibiotic resistance mechanism, AmpC b-lactamase has lent itself to multiple structure-90 
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based and high-throughput screening campaigns for inhibitor discovery15-20, including with ultra-91 

large libraries1, making it a good system to test the impact of library size on virtual screening. In 92 

a previous docking screen of 99 million molecules against the enzyme, 44 high-ranking molecules, 93 

topologically unrelated to previously known scaffolds, were prioritized for synthesis and testing. 94 

This revealed five new inhibitors with affinities ranging from 1.3 µM to 400 µM, a hit rate of 11% 95 

using this range of activity1. Using essentially the same docking method, here we screened a 1.7 96 

billion molecule library against the same AmpC active site. Molecules from across the docking 97 

scoring range, 838,672,414 in total ranking from -117.35 kcal/mol (best scores) to -28 kcal/mol 98 

(worst scores), were considered as candidates for experimental testing. These were organized 99 

into bins of resolution ranging from 2 to 4 kcal/mol among the lower (better) scores to 8 kcal/mol 100 

among the higher (worse) scores. Up to 25,000 molecules were selected per bin, by rank order 101 

(for the lower and better energy bins, this amounted to all the molecules in the bin). Molecules 102 

topologically similar to known inhibitors, with ECFP4-based Tc > 0.5, were excluded, as were 103 

those with more than one unsatisfied hydrogen bond donor and more than six hydrogen bond 104 

acceptors—such molecules exploit known gaps in the DOCK3.8 scoring function22. The remaining 105 

193,878 molecules were clustered by Tc = 0.32 based on the interaction fingerprinting23, resulting 106 

in 80,767 cluster heads. In previous simulations14 and experiments4, we had found molecules with 107 

artifactually favorable score concentrated among the top-ranking docked molecules. Here too, we 108 

observed molecules that achieved scores much higher than one would expect from the overall 109 

distribution; this problem became more acute as the library grew (Extended Data Fig. 1). We 110 

chose to ignore these molecules for experimental testing. The origins of these molecules, and 111 

their experimental confirmation as docking artifacts, is explored in a separate study [Wu, 2024].  112 

Overall, 2,089 cluster-heads, all topologically dissimilar to one another and to known 113 

inhibitors, were chosen for synthesis and testing. Of these, 1,521 were successfully synthesized 114 

(a fulfillment rate of 73%). Manual inspection (“manual-picked”) from among the better scoring 115 
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bins (-100.58 to -79 kcal/mol) accounted for 687 of these compounds, and another 1,292 116 

molecules were chosen based on rank alone (“auto-picked”), with 458 molecules occurring in both 117 

sets.  118 

All molecules were initially tested at 200, 100, and 40 µM concentrations for AmpC 119 

inhibition1,16,20. Of the 1,447 experimentally well-behaved molecules, 1,296 were among the top 120 

scoring 1% of the docked molecules, the same cut-off used in the 99 million molecule screen (the 121 

rest were spread out among lower ranks and were selected to test hit rate versus score 122 

dependence). Of these 1,296 compounds, 171 had an apparent Ki < 166 µM, based on the three-123 

point inhibition numbers and assuming competitive inhibition (see below), while another 124 had 124 

apparent Ki values between 166 and 400 µM. Concentration-response curves were measured for 125 

17 compounds across this potency range. The IC50 values from these full curves corresponded 126 

well to those predicted by the three-point inhibition numbers (Extended Data Table 1, Extended 127 

Data Fig. 2). For seven of the new inhibitors, each in a different chemotype family, we determined 128 

full Ki values and mechanism by Lineweaver-Burk analysis (Extended Data Fig. 3). All seven 129 

were competitive inhibitors, consistent with docking to the AmpC active site, with Ki values ranging 130 

from 0.7 to 4.6 µM (Extended Data Fig. 3). Accordingly, we modeled all of the new inhibitors as 131 

competitive, consistent with the x-ray crystal structures determined for five of the new inhibitors, 132 

which were all observed to bind in the b-lactamase active site (Fig. 1). With this assumption, Ki 133 

values ranged from 464 to 0.46 µM24, with substantial representation across this range of affinities 134 

(Fig. 2).  All assays included 0.01% Triton X-100, diminishing the likelihood of artifact from 135 

colloidal aggregation18,25. For further confidence, 140 of the inhibitors were checked for particle 136 

formation by dynamic light scattering (DLS) 25-27; no signs of colloid-like particle formation were 137 

detected among any of them at relevant concentrations (Extended Data Table 2).   138 
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Docked versus crystallographic geometries. To investigate how docking predicted 139 

geometries corresponded to experimentally-determined ligand poses, the structures of five of the 140 

new inhibitors were determined by x-ray crystallography, with resolutions varying from 1.6 to 2.9 141 

Å (Extended Data Table 3). Unambiguous electron density allowed us to confidently model the 142 

positions of the new inhibitors in the enzymes’ active site. For Z6615020275 (1.3 µM; Fig. 1a), 143 

Z6615017782 (0.95 µM; Fig. 1b) and Z6615017509 (0.86 µM; Fig. 1c), the docked and 144 

experimental structures superimposed with a 0.79, 0.97, and 3.14 Å root mean square 145 

deviation (RMSD) respectively, with the differences in position stemming from deviations of non-146 

warhead groups binding distally in the site. For two weaker inhibitors, the crystal structures had 147 

larger deviations from the docking predictions. While the crystallographic pose of Z8427841182 148 

(36 µM) hydrogen-bonded with many of the same residues predicted in the docking pose, the 149 

crystallographic geometry was shifted in the site and the RMSD was high at 4.73 Å RMSD. This 150 

hydroxy-isoxazole, a close analog of the original 36 µM docking hit Z6615146331 that had 151 

resisted facile crystallization (Extended Data Table 1), represents a previously unknown warhead 152 

for AmpC. Meanwhile, the crystallographic pose of the 323 µM Z4462773688, an unprecedented 153 

bicyclo-alkyl carboxylate, bound in a geometry flipped from that anticipated by docking, leading 154 

to an RMSD of 5.61 Å (Fig. 1e). ‘6631 and ‘3688 are two examples of the 44 inhibitors found in 155 

this campaign that sample not only novel topologies, but also novel warheads for AmpC.  156 
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 157 
Fig. 1. Superposition of the crystallographic and docking poses of the new AmpC 158 
inhibitors. Crystal structures (carbons in cyan) and docked poses (carbons in magenta) of the 159 
inhibitors. AmpC carbon atoms are in grey, oxygens in red, nitrogens in blue, sulfurs in yellow, 160 
chlorides in green, and fluorides in light blue. Hydrogen bonds are shown as black dashed lines. 161 
a-c, AmpC in complex with Z6615020275 (r.m.s.d to crystal structure 0.79 Å, Ki 2 uM), 162 
Z6615017782 (r.m.s.d = 0.97 Å, 1.5 uM) and Z6615017509 (r.m.s.d = 3.14 Å, 0.86 nM). The 163 
overlay of the crystal and docked poses are shown. d-e, AmpC in complex with Z8427841182 164 
(r.m.s.d = 4.73 Å, 36 uM) and Z4462773688 (r.m.s.d = 5.61 Å, 325 uM). The docked poses (left 165 
panel), crystal poses (middle panel) and the overlay of the docked and crystal poses are shown 166 
(right panel).  167 

   168 

Hit rates are higher from the larger vs the smaller library screens. The overall hit rate 169 

(number experimentally active/number experimentally tested) from the 1.7 billion molecule 170 

docking screen was 22.4% (290 actives/1,296 high-ranking tested). This hit rate is significantly 171 

higher than that from 99 million molecule docking screen, which was 11.4% (p-value < 0.05) (Fig. 172 

2a). The hit rate difference stands out even more strongly when considered across affinity ranges. 173 
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Most of the actives from the 99 million molecule screen had apparent Ki values between 126.5 174 

and 400 µM (Fig. 2b), with one inhibitor found in the 1 to 10 µM range, and none found in the 175 

intermediate ranges. Conversely, from the 1.7 billion library each half-log affinity bin is well-176 

populated by active molecules. The higher hit rate from the larger library is consistent with the 177 

idea that as the virtual libraries grow, ever more plausible molecules are fortuitously sampled and 178 

prioritized by molecular docking.   179 

Hit rate variability and ligand affinity ranges. While hit rate is a fair way to compare the 180 

two screens, naturally, the raw number of hits was far greater from the larger library (290 active 181 

from 1.7 billion screened versus 5 actives from 99 million screened, Fig. 2c), where 29-fold more 182 

high-ranking molecules were tested. Qualitatively this explains why all half-log affinity bins were 183 

well-populated from the larger library, whereas this was more hit-and-miss when we only tested 184 

44 molecules (Fig. 2b). To quantify how hit rate varies with the number experimentally tested, we 185 

randomly pulled sets of 44, 139 and 439 molecules from the 1,296, each 30 times, and asked 186 

how this affected hit rate. When only selecting 44 molecules—the number tested in the smaller 187 

library campaign—hit rates varied from 11% for one unlucky draw to 36% for a lucky one. Pulling 188 

sets of 439 molecules 30 times, the hit rate only varied from 20% to 27%. As the number of 189 

molecules experimentally tested increased, the standard deviation in hit rates decreased from 190 

6.1% to 3.5% to 1.7% (Fig. 2d). This variability was even starker when plotted by affinity bin; for 191 

instance, it was not until set size rose to 439 molecules tested that the highest affinity molecules 192 

were reliably sampled (Fig. 2e). Re-analyzing previous campaigns against the s2 and dopamine 193 

receptor1,4, where around 500 molecules were experimentally tested, similar variability was seen 194 

in both hit rates and in sampling of the high-affinity docking hits, which for s2 were in the low 195 

nanomolar range (Extended Data Fig. 4). 196 
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 197 
Fig. 2. Larger-scale docking and testing increases hit rates and reduces uncertainty. a, The 198 
hit rates (number of actives/total tested) of the 1.7 Billion screen (blue bar) versus the 99 Million 199 
screen (orange bar). b, Hit rates by different affinity bins in ‘22 screen and ‘19 screen. c, Number 200 
of hits (number of actives) of the 1.7 B screen (blue bar) versus the 99 M screen (orange bar). d, 201 
The impact of randomly purchasing 44, 139, 439 molecules out of 1,296 molecules for testing on 202 
hit rates. Each sample size is randomly drawn 30 times and the resulting hit rates were plotted. 203 
The error bars represent SDs of the hit rates. The hit rates are 22.42 ± 6.08% (N = 44), 23.67 ± 204 
3.54% (N = 139) and 22.80 ± 1.65% (N = 439). e, The impact of randomly purchasing 44, 139, 205 
439 molecules out of 1,296 molecules for testing on hit rates with different affinity cutoffs. Each 206 
sample size is drawn 30 times and the resulting hit rates were plotted. The error bars represent 207 
SDs of the hit rates. 208 

 209 

These results suggest that both hit rates and affinities in docking screens may be 210 

unreliable when only dozens of molecules are tested, as is common in the field. To quantify how 211 

many molecules should be tested to report stable hit rates and affinity ranges, we drew on the 212 
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observation that when large numbers of molecules are experimentally tested for AmpC, and for 213 

the s2 and the dopamine D4 receptors, there is an exponential relationship between affinity and 214 

hit rate, something also seen in high-throughput screens28. For the top-ranking 1% of docked 215 

molecules from each campaign, we modeled hit rates (y) and hit affinities (x) with an exponential 216 

function 𝑦 = 𝑏(1 −	𝑒!"#) for each of AmpC, s2 and D4 (Fig. 3a). This functional form fit the 217 

distribution of affinities for the 1,296 molecules tested for AmpC, 327 for 𝜎2 and 371 for D4 (all 218 

top 1% ranking molecules) with R2 values of 0.998, 0.998, and 0.985, respectively. As smaller 219 

sets are drawn from the full sets, variability rises (Fig. 2). Beginning with a sample size of 1,296, 220 

sampling was stepwise reduced by 20 molecules in a bootstrapping manner, repeating this 1,000 221 

times to evaluate divergence (Fig. 3b). By ~495 molecules, the average R2 of D4 curves falls to 222 

0.95, a point on all three curves where we began to see the meaningful divergence the fit achieved 223 

over the full range of compounds plotted. This same R2 occurs at 215 and 135 molecules for 224 

AmpC and s2, respectively, reflecting a relationship that is inversely proportional to the hit rate 225 

for each target among the top-scoring 1% of the docked molecules (22.4% hit rate for AmpC, 226 

38.7% for 𝜎2 and 20.8% for D4). In these targets, testing fewer than these several hundred 227 

compounds degrades the correlation of affinity with hit rate, which is useful for planning how many 228 

compounds should be tested. For targets with relatively high hit rates, this suggests that over a 229 

hundred molecules should be experimentally tested for confident hit rates and affinity ranges from 230 

molecular docking. For targets where one might expect lower hit rates, even more compounds 231 

would need to be tested for confident results.  232 

To explore this further with a focus on hit-rate variability, we simulated random draws using 233 

the AmpC, 𝜎2, and D4 experimental hit rates from their high-ranking compounds. One hundred 234 

thousand bootstrap iterations were performed for sample sizes ranging from 10 to 1250 235 

compounds in increments of 10 and we considered the mean and lower bound for a single-sided 236 

95% confidence interval at different numbers of compounds tested (Fig. 3c). The solid curves 237 
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reflect the 95% likelihood that the hit rate will be at a certain level or higher. While the average hit 238 

rate over all simulations remains unchanged, the variability increases as the number of molecules 239 

tested drops, and so does one’s confidence that the observed hit rate reflects the true hit rate 240 

based on the overall docking rankings. This again suggests over 100 molecules may be a sensible 241 

minimum for experimental testing in large library virtual screens, even for campaigns from which 242 

one expects relatively high hit rates. Encouragingly, while both the affinity ranges and the hit rates 243 

for the screens against AmpC, s2 and D4 differ substantially, the functional form relating hit affinity 244 

and hit number was the same and led to similar predictions for the minimum number of molecules 245 

to test for all three targets. This lends itself to predicting how many molecules would be found in 246 

different affinity ranges should one choose to test more molecules, a point to which we will return.  247 

 248 
Fig. 3. Several hundred compounds should be tested in ultra-large docking campaigns. a, 249 
For the top-ranking 1% of the docked molecules, the relationship between hit affinity and hit rates 250 
can be fit with an exponential plateau model 𝑦 = 𝑏	(1 − 𝑒!"#) with y represents the hit rate, x is 251 
minimum affinity to be classified as a hit (for AmpC, the unit is in micromolar and for 𝜎2 and D4, 252 
the unit is in nanomolar), b is the maximal hit rate. The fit maximal hit rates are 34.5% for AmpC 253 
with an R2 of 0.998, 43% for 𝜎2 receptor with an R2 of 0.998, and 20.8% for D4 with an R2 of 0.985. 254 
b, The impact of sub-sampling on the R2 of the fit. From among the top-ranking 1% of the docked 255 
molecules, 1,295 (AmpC, blue), 327 (𝜎2, orange) and 371 (D4, pink), each subsample is 256 
bootstrapped 1,000 times and fit with the parameters derived from the entire dataset. The R2 257 
values are plotted with the symbols indicating the average and the error bars indicating the 258 
standard deviations of the R2. A dashed line of R2 = 0.95 is labeled. The sample sizes at which 259 
the average R2 value reaches 0.95 are labeled. For 𝜎2, the sample size is 135, for AmpC, it is 260 
215; and for D4, it is 495. c, Mean and 95% confidence interval for hit rate in relation to sample 261 
size for AmpC, 𝜎2 and D4. The dashed lines show the mean hit rate from the compounds in the 262 
top 1% by docking score, and the solid line shows the boundary of a single-sided 95% confidence 263 
interval from 100,000 bootstrap iterations. Hits are defined as 400 µM affinity or better for AmpC, 264 
677.5 nM or better for 𝜎2 and 10 µM or better for D4. 265 
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 266 

Multiple novel chemotypes discovered. Only molecules topologically dissimilar from 267 

known AmpC inhibitors, and topologically diverse among each other, were selected for synthesis 268 

and testing. Since topological diversity can emerge from rearrangements and changes that leave 269 

core pharmacophores intact, we also visually inspected inhibitors for novelty. We prioritized these 270 

by two criteria: molecules that sampled new scaffolds, and molecules that explored a new 271 

warhead for binding in the crucial oxyanion recognition site of AmpC (Extended Data Fig. 5). For 272 

instance, Z6615021877 and Z6722203632 introduce tetrazolone and tetrazole anionic warheads, 273 

respectively, both of which were previously unknown for AmpC. Z2607647274 and Z4173922012 274 

employ cycloalkyl carboxylate and tricyclo-heptane carboxylate as their warheads. Meanwhile, 275 

Z2610488449, which utilizes a novel urea linker scaffold, achieves a high affinity of 12 µM. The 276 

affinity of this scaffold was readily optimized to 4 µM, marking it among the most effective AmpC 277 

inhibitors that does not rely on a sulfonamide linker. 278 

Docking score predicts hit rate. In earlier studies against the dopamine D4 and s2 279 

receptors, we had found that docking score correlated to experimental hit rate, generating a well-280 

behaved sigmoidal curve that plateaued at a maximum hit rate once more favorable docking 281 

scores were reached1,4. While these curves suggested an unexpected ability to categorize 282 

molecules as ligands, both receptors have unusually well-formed, buried binding sites. Moreover, 283 

the plateauing of the score vs. hit rate curve suggests a limitation in even our ability to categorize, 284 

far less rank-order. To investigate how docking might predict binding in a more solvent-exposed, 285 

historically more difficult binding site, we re-explored this relationship for AmpC. Docked 286 

molecules were not only selected from among the very best docking energies, as is typical in 287 

virtual screening, but also from mediocre and unfavorable docking scoring ranges. Molecules 288 

were picked from among 16 scoring “bins” beginning at the most favorable DOCK3.8 scores (-289 

100.58 kcal/mol for AmpC) down to -28 kcal/mol. The top 1% of the docking-ranked library 290 
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extends down to -72 kcal/mol scores, and ranks fall off steeply from there such that by -28 kcal/mol 291 

49% of the 1.7 billion molecule library has been sampled. More than 50 molecules per bin were 292 

selected from the -100.58 to the -60 kcal mol-1 bin, and for scores worse (less negative) than -60, 293 

more than 20 molecules were tested per bin. Molecules were selected strictly by numerical rank 294 

at the beginning of each bin. These were tested for AmpC inhibition as above and docking score 295 

was plotted against experimental hit rate (number active/number tested) (Fig. 4a).   296 

Notably, hit rates fell monotonically as scores worsened (Fig. 4a, blue curve). This 297 

resembles what had been previously observed for the s2 and dopamine receptors1,4, except that 298 

here we do not observe a hit rate plateau; hit rates begin at a maximum at the best docking scores 299 

and fall steadily as scores worsen. The difference between the AmpC results and the plateaus 300 

observed previously is that for AmpC we were careful to from the beginning exclude a small 301 

fraction of likely artifacts that concentrate among the very top scoring molecules14 (Extended Data 302 

Fig. 1).  303 

To investigate how the affinities of docking actives also track with docking rank, we plotted 304 

docking score versus hit rate in the 400, 127, 40, and 13 µM ranges (Fig. 4a, orange, pink, and 305 

green curves). As for the behavior of the overall set of actives, the hit rates in each affinity-range 306 

rose steadily as score improved. Intriguingly, the more potent inhibitors appear at better scores 307 

than the less potent ones, with those in the 127 µM or better tranche beginning to appear at scores 308 

of -64, those in the 40 µM or better tranche appearing only past -76, and the most potent inhibitors 309 

only appearing at the -85 bin. This hints at docking score correlating with gross categorical ranking 310 

of affinity, something that has not apparent from smaller studies, nor even expected29,30. To 311 

explore generality, we undertook the same analysis with the docking campaigns against the s2 312 

receptor and dopamine D4 receptor, where hundreds of molecules were tested across docking 313 

ranks that ranged from high to mediocre to poor, as in this study. While the s2 and dopamine 314 
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receptor docking hits were more potent than the AmpC hits, typically in the nM range, the same 315 

patterns emerged—the most potent ligands appear at better (more negative) docking scores than 316 

did the mid-potency ligands, which appear at better scores than did those with the lowest affinity 317 

threshold (Fig. 4b-c). Admittedly, the relationship between docking score and affinity is mostly 318 

categorical, but it appears to rank molecules better than simple binary classification as binders or 319 

non-binders, with more potent ligands more concentrated in better-scoring regions. As loose as 320 

these correlations are, they may support a predictive relationship between docking score and 321 

affinity category (high, medium, or low), at least when tested at scale. This would warrant a 322 

renewed emphasis on improving the field’s scoring functions and offer a metric against which they 323 

might be tested. 324 

 325 

To compare the hit rate curves for the three targets, we plotted the negative logarithm of 326 

the rank percent (“pProp”) for the dopamine and s2 receptors, and for AmpC (Fig. 4d). A pProp 327 

of 3 denotes a compound occupying the top 0.1% scoring region, a pProp of 4 the top 0.01%, and 328 

so on; plotting rank avoids scoring offsets among the targets. The hit rate curve of the most 329 

permissive hit definition for each target is plotted against the pProp. The D4 and s2 curves align 330 

well, peaking around a pProp of 5, with the plateau occupying the region from 4 to 6 (top in 10,000 331 

to top in 1,000,000), while the AmpC curve is slightly right shifted, peaking above 6 and not 332 

suffering from a plateau. These curves allow one to quantify the parts of the docking scoring range 333 

where most hits are likely to be found. For the D4 and s2 receptors, it also alerts one to the danger 334 

of over-emphasizing the very best ranked molecules where those that cheat the scoring function 335 

concentrate, absent controls for them14. As docking and virtual screening libraries climb into the 336 

tens-of-billions of molecules5,21, this concern will become more pressing.   337 
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 338 
Fig. 4. Hit rate of experimentally tested compounds plotted against DOCK scores with 339 
different affinity cutoffs. a, The AmpC hit rates of 1,292 auto-picked compounds using four 340 
different affinity cutoffs, < 400, 137, 40 and 13 μM, are plotted against DOCK scores. b, s2 341 
receptor hit rates of 484 compounds plotted against DOCK scores with three different affinity 342 
cutoffs: < 667.5, 241.2, 67.8 nM. c, Dopamine D4 hit rates of 549 compounds plotted against 343 
DOCK scores with two different affinity cutoffs: <10 and <1 μM. d, Rescaling the hit rate curves 344 
of the three targets by the log10 of fractional rank in the library. For each target, the most 345 
permissive hit definition is used. 346 
 347 
  348 
 349 
 350 

Discussion 351 

In the last five years, the number of molecules readily accessible for ligand discovery has 352 

expanded 10,000-fold. Anecdotally, this has led to ligands with improved activity from library 353 

docking. How true this is, however, has not been quantified in apples-to-apples comparisons of 354 

smaller vs. larger libraries. Several other inferences from large library docking screens have also 355 

not been quantified, such as that testing more high-ranking molecules yields correspondingly 356 
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more ligands, or that as docking score improves so too does hit rate and perhaps even affinity. 357 

Here, we begin to test these ideas experimentally; five key observations emerge1,14. First, 358 

comparing a docking screen of 99 million molecules to one of 1.7 billion molecules, against the 359 

same target, hit rates improved with library size, as did the potency of the inhibitors. Multiple new 360 

chemotypes were discovered, not previously observed as AmpC inhibitors.  Second, consistent 361 

with the idea that there are many more ligands to be discovered than are being prioritized, the 362 

number of new inhibitors found scaled almost linearly with the number of top-ranking molecules 363 

tested; experimentally testing 30-fold more molecules led to the discovery of 50-fold more 364 

inhibitors. Third, to determine reliable docking statistics from a large library screen, one must also 365 

experimentally test at scale. When only a handful of molecules are tested, as is common in 366 

docking, statistics of hit-rates and maximal affinities will have large error ranges. This study 367 

suggests that typically several hundred molecules should be tested for docking statistics to be 368 

trustworthy. Fourth, in contrast to earlier studies where we saw hit rates plateau above a certain 369 

docking score1,4, here no plateau was observed in the hit rate vs. docking score curve—hit rates 370 

continued to climb monotonically and essentially linearly as score improves. This was also true 371 

for the dopamine and s2 receptors on re-analysis after removing their high-ranking artifacts. While 372 

more studies are necessary, this observation supports the idea that as libraries grow, hit rates 373 

and hit affinities will improve, as long as high-ranking docking artifacts can be removed or avoided. 374 

Finally, a loose, categorical correlation between docking score and ligand affinity was observed 375 

for AmpC, and on re-analysis also for the s2 and dopamine D4 receptor campaigns where 376 

sufficient molecules were also tested across the scoring range to support this analysis1,4. While 377 

this correlation remains loose and only by relative affinity category (e.g., strong, mediocre, weak), 378 

it may suggest that further optimization of docking scoring functions will allow the field to 379 

distinguish not only binders from non-binders, but also categorically rank them by activity, 380 

something we and others have long discounted29,30.  381 
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Several caveats should be aired. Most importantly, the monotonic improvement of hit rate 382 

with docking score, and the loose categorical correlation between affinity and score, have only 383 

been observed in three systems.  This merits investigation in other targets, ideally using other 384 

scoring functions, at scale. Current community tests of docking methods, such as CACHE31, may 385 

offer a forum for doing so. Methodologically, we note that for less than 10% of the molecules 386 

reported here were full IC50 curves determined. While these correlated well with inferred IC50 and 387 

Ki values based on three concentration point inhibition, such affinities must be considered 388 

approximate. 389 

These caveats should not obscure the major observations of this study. Against the same 390 

target, docking a 20-fold larger library led to improved hit rates and affinities, consistent with 391 

theoretical simulations14. Similarly, as more high-ranking molecules are tested, more ligands are 392 

found, supporting the idea that most true ligands in the new ultra-large libraries remain to be 393 

tested (we suffer from an embarrassment of riches). Once we correct for high-ranking docking 394 

artifacts, hit rate rise monotonically with docking score. More tentatively, a correlation between 395 

affinity and score also appears at scale. How this holds up will depend on further testing, but even 396 

now these results support continued investment in library growth and methods that can exploit it. 397 

While brute force docking, of the sort described here, has been able to address a 1000-fold 398 

increase in library size, to go up another thousand-fold, into the trillions of molecules, seems 399 

beyond it, and more guided sampling of chemical space may be required5,11,32,33 To support such 400 

efforts, we are making available the identity, docking scores, and experimental activities of each 401 

of the 1521 molecules tested in the enzyme assay (SI Table 1), and extensive docking score and 402 

pose information from the full library screen (https://lsd.docking.org). What this study does 403 

suggest is that efforts to sample from the supra-trillion molecule space should be worthwhile.   404 

 405 
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Data and code availability 406 

The compounds docked in this study are freely available from the ZINC20 and 407 

ZINC22 databases, https://zinc20.docking.org and https://cartblanche22.docking.org. All 408 

compounds tested can be purchased from Enamine. Compound information including 409 

their ZINC ID, SMILES, DOCK score, ranking, and affinity can be found in SI Table 1. 410 

The synthetic procedures and purity information for the hits can be found in the SI Data 411 

2 and SI Table 3. Extensive docking-related files can be found at https://lsd.docking.org. 412 

DOCK3.8 is freely available for non-commercial research at 413 

https://dock.compbio.ucsf.edu/DOCK3.8/. A web-based version is available without 414 

restriction at https://blaster.docking.org/. X-ray structures and maps are available in the 415 

Protein Data Bank under accession numbers PDBID 9C81 (Z4462773688), PDBID 9C6P 416 

(Z6615017509), PDBID 9C83 (Z8427841182), PDBID 9C84 (Z6615020275), and PDBID 417 

9C8J (Z6615017782) respectively. 418 
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Methods 456 

Large-scale docking. The campaign used the structure in PDB 1L2S. Three Q120 conformations 457 

were modeled based on the X-ray density of 3FKW using qFit-3.0, with an occupancy of 0.49, 458 

0.34 and 0.1734. The occupancy of the alternative conformations was converted into an additional 459 

energy term and incorporated in the DOCK scoring function as described previously35. The protein 460 

structure was protonated using Reduce36. Energy grids for the different energy terms of the 461 

scoring function were pre-generated--van der Waals term based on the AMBER force fields using 462 

CHEMGRID37; Poisson–Boltzmann-based electrostatic potentials using QNIFFT7338,39; context-463 

dependent ligand desolvation was calculated using SOLVMAP40. The volume of the low dielectric 464 

and the desolvation volume was extended out 2.0 and 0.25 Å. The thiophene carboxylate inhibitor 465 

solved in PDB 1L2S was used to generate matching spheres, which are later used by the docking 466 

software to fit pre-generated ligands’ conformations into the small molecule binding sites41. The 467 

resulting docking set-ups were evaluated for its ability to enrich known AmpC ligands over 468 

property-matched decoys. Decoys are theoretical non-binders to the receptor as they are 469 

topologically dissimilar to known ligands but retain similar physical properties. We curated 31 470 

AmpC ligands based on their dissimilarity among themselves. 2,480 decoys were generated by 471 

using the DUDE-Z pipeline42. The docking set-up can rank ligands over decoys with a logAUC of 472 

28.5 with the majority of the ligands recapitulating their experimental poses. For docking against 473 

1.7-billion molecules, each molecule from the ZINC22 database43 was sampled in about 3,822 474 

orientations and 875 conformations by using DOCK3.841. Overall, over 1841 trillion complexes 475 

were sampled and scored, spending 2,129,230 core hours, or about a month on a 3,000 core 476 

cluster, using DOCK3.841. 477 

 478 

Hit-picking strategy. To increase novelty, high-ranking molecules with scores down to -79.25 479 

(99,277 molecules), and molecules from different energy bins (25,000 from -76, -72, -68, -64 and 480 
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-60 bins and 5,000 from -52, -44, -36 and -28 bins), summed to 244,277 molecules, were filtered 481 

to exclude those similar to 237 previously known ligands. A Tc cutoff of 0.5 was used; no molecule 482 

more similar than this value was allowed, removing 9,712 molecules. We also filtered out 483 

molecules that buried too many uncompensated polar groups—while DOCK3.8 penalizes for 484 

desolvation, we find that these artifacts can nevertheless occur. Using LUNA 1,024-length binary 485 

fingerprints23, molecules that had more than 1 hydrogen bond donor and more than 6 hydrogen 486 

bond acceptors that were not compensated with polar interactions to the protein were removed; 487 

40,687 molecules were filtered-out at this step. This left 193,878 for further processing. For 488 

autopicking, these molecules were clustered for self-similarity using an ECFP4 Tc = 0.32, resulting 489 

in 80,767 cluster heads.  490 

 491 

Most of the molecules tested were “autopicked” based on docking rank. With almost all of the 492 

high-ranking molecules being negatively charged, we wanted to ensure that their representation 493 

as anions at pH 7.4 was likely. We used JChem to calculate the distribution of protonation states 494 

of the high-ranking cluster heads and compared this to the dominant state represented in their 495 

docked poses (multiple protonation states of a molecule can be docked). Only when the 496 

calculated dominant charge state matched with that of the docked pose, and the species is 497 

calculated to be more than 80% anionic, was the molecule accepted for autopicking, which left 498 

56,814 molecules. Molecules were picked based on their docking ranks across different affinity 499 

bins, selecting 1,274 molecules for synthesis and testing.  500 

 501 

For manual picking from the different energy bins, all cluster heads were again filtered for 502 

interactions using LUNA, seeking molecules that formed hydrogen bonds with backbone of A318, 503 

that made pi-pi interactions with Y221, and that made at least two more interactions with the 504 

binding pocket (i.e. hydrogen bonds with N152, N346, G320, S212, R204, Q120, cation-pi with 505 

K315, K67, or pi-pi interaction with Y150). The molecules that passed these filters were re-506 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2024. ; https://doi.org/10.1101/2024.07.08.602536doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.08.602536
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

clustered at a Tc = 0.32; cluster heads were visually inspected and prioritized. The rest of the 507 

high-scoring cluster heads were also manually inspected seeking new interesting chemotypes. A  508 

total of 687 were prioritized manually, slightly less than half of the molecules that were synthesized 509 

and tested.   510 

 511 

AmpC enzymology. All candidate inhibitors were dissolved in DMSO at 20 mM, and more dilute 512 

DMSO stocks were prepared as necessary so that the concentration of DMSO was held constant 513 

at 1% v/v in 50 mM sodium cacodylate buffer, pH 6.5. AmpC activity and inhibition was monitored 514 

spectrophotometrically using either CENTA or nitrocefin as substrates. All assays included 0.01% 515 

Triton X-100 to reduce compound aggregation artifacts. Active compounds were further 516 

investigated for aggregation by dynamic light scattering (DLS) and by detergent-dependent 517 

inhibition of the counter-screening enzyme malate dehydrogenase.  518 

 519 

For initial screening, the docking hits were diluted such that final concentrations in the reaction 520 

buffer was 200 μM, 100 μM, and 40 μM. In these assays, two widely-studied AmpC substrates 521 

were used, depending on availability, CENTA44 and nitrocefin16. The first was tested at an [S]/Km 522 

ration of 1.81 (Km CENTA 27.6 µM; [S] = 50 µM) and the second was tested [S]/Km ratios of 523 

0.556 (Km nitrocefin 180 µM; [S] = 100 µM) and 0.156 ([S] = 28 µM). The colorimetric assay was 524 

converted to a medium throughput manner using a BMG Labtech CLARIOstar. Substrate (CENTA 525 

(EC50 = 27.6 μM) or nitrocefin (EC50 = 180 μM)) and protein were injected into buffer containing 526 

the putative inhibitor, followed by rate measurement for 50 seconds in 96-well format. IC50 values 527 

reflect the percentage inhibition fit to a dose-response equation in GraphPad Prism with a Hill 528 

coefficient set to one (𝑓(𝑥) = max−	$%#!$&'
() !

"#$%
). The Ki was calculated using the Cheng-Prusoff 529 

equation (𝐾𝑖 = 	 *+,-
()	 ['])*

). For 18 of the more potent compounds, based on the initial three 530 
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concentration-point results, full dose response curves were measured, and for another eight full 531 

Ki values were measured and calculated using Lineweaver-Burk plots.  532 

 533 

AmpC crystallization, data collection and structure determination. AmpC crystallization was 534 

carried out as previously described16. Briefly, co-crystals of AmpC and inhibitors were grown by 535 

vapor diffusion in hanging drops equilibrated over 1.7 M potassium phosphate buffer (pH 8.7) 536 

using microseeding. The initial concentration of protein in the drop was 6 mg/mL and the 537 

concentration of the inhibitor was 0.5 mM. The inhibitor was added to the crystallization drop in a 538 

4% DMSO, 1.7 M potassium phosphate buffer (pH 8.7) solution. Crystals appeared within 3–5 539 

days after equilibration at 23°C. 540 

Data were measured from a single crystal per complex on the Beamline 8.3.1 of the Berkeley 541 

Advanced Light Source, with wavelength 1.11583 Å  at 100 K. Before data collection, co-crystals 542 

of AmpC were immersed in a cryoprotectant solution of 20% sucrose, and 1.7 M potassium 543 

phosphate (pH 8.7) for about 20 s and then flash-cooled in liquid nitrogen. The structures were 544 

solved by molecular replacement with PHENIX45 using PDB 1L2S as the search model. Structure 545 

refinement was carried out with PHENIX and COOT46. MolProbity47 was used for validation 546 

(Extended Data Table 3); structural figures were prepared using ChimeraX48. 547 

Hit rate curves. To obtain hit rate curves, the experimentally tested molecules for each target 548 

(AmpC, the s2 and dopamine D4 receptors) were ordered by increasing DOCK score. A rolling 549 

window was passed over the list, calculating the hit rate as the percentage of molecules with 550 

experimentally determined affinity equal to or better than the hit definition, and the DOCK score 551 

as the average for the window. A window size of 100 was used for AmpC and σ2, and a window 552 

of 50 for D4 receptor. For all three targets, molecules were picked from both within and outside 553 

of what would typically be considered high-ranking regions. The rolling window was stopped for 554 
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those scores outside the high-ranking region since discrete score bins were used in the hit-picking 555 

of these likely non-binders. The scores at which the rolling window was stopped are -78 for AmpC, 556 

-52.5 for σ2 and -60 for D4. For the pProp rescaling, the same strategy was used, but the DOCK 557 

scores were transformed to fractional rank based on the observed score distribution. The negative 558 

base 10 logarithm of the fractional rank is then reported, termed “pProp”. 559 

Hit rate modelling. For sampling hit rate variability in relation to sample size, we used sample 560 

sizes for 10 to 1250 in jumps of 10. For each sample size, we picked 100,000 random samples 561 

of the uniform distribution [0, 1]. The hit rate of the sample was then defined as the number of 562 

observations with equal to or lower than the observed experimental hit rate for that target. A 563 

single-sided 95% confidence interval is built by taking the boundary value between the top 95% 564 

observed hit rates and the bottom 5%. 565 

  566 
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