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Abstract 

Spatial –OMICS technologies facilitate the interrogation of molecular profiles in the context of the 
underlying histopathology and tissue microenvironment. Paired analysis of histopathology and 
molecular data can provide pathologists with otherwise unobtainable insights into biological 
mechanisms. To connect the disparate molecular and histopathologic features into a single 
workspace, we developed FUSION (Functional Unit State IdentificatiON in WSIs [Whole Slide 
Images]), a web-based tool that provides users with a broad array of visualization and analytical 
tools including deep learning-based algorithms for in-depth interrogation of spatial –OMICS 
datasets and their associated high-resolution histology images. FUSION enables end-to-end 
analysis of functional tissue units (FTUs), automatically aggregating underlying molecular data to 
provide a histopathology-based medium for analyzing healthy and altered cell states and driving 
new discoveries using “pathomic” features. We demonstrate FUSION using 10x Visium spatial 
transcriptomics (ST) data from both formalin-fixed paraffin embedded (FFPE) and frozen 
prepared datasets consisting of healthy and diseased tissue. Through several use-cases, we 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2024. ; https://doi.org/10.1101/2024.07.09.602778doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.09.602778
http://creativecommons.org/licenses/by-nc-nd/4.0/


demonstrate how users can identify spatial linkages between quantitative pathomics, qualitative 
image characteristics, and spatial --omics  

Main 

Spatially-resolved, molecular –omics methods are poised to revolutionize medicine both in clinical 
care and investigative research.1-3 These techniques provide investigators with the ability to 
analyze biological processes down to subcellular resolution within large regions of interest 
(ROI).4,5 When further aligned with histology images, spatial molecular data enrich observations 
of tissue characteristics and lesions, thereby imparting further insights into localized tissue injury 
responses. However, the high dimensionality of –omics data represents a barrier toward 
alignment with histologic findings and paired interpretation. When a pathologist interprets a biopsy 
specimen, information from large whole slide images (WSI), often consisting of over one billion 
pixels at 40X magnification, is condensed into a few discrete features which inform treatment and 
diagnostic decisions. Spatial –omics, by comparison, can contain thousands of deep 
measurements across the entire tissue area.  A similar depth of histologic annotation, wherein 
every cell or functional tissue unit of an organ is manually characterized at the pixel level, would 
exceed a pathologist’s clinical capacity. Therefore, paired interpretation of spatial –omics and 
histology data requires the ability to execute queries of each modality of data, mining 
heterogeneous information in diverse regions of giga-pixel size. Facilitating this complex 
integration necessitates a tool, allowing users freedom to simultaneously interact and align 
multimodal information in a scalable, user-friendly interface, where data dimensionality is tractable 
and comparable. Such a tool will empower users with automated segmentation of tissue 
structures using deep learning (DL), quantification of tissue characteristics, dimensionality 
reduction and statistical analysis of spatial data, and merging both modalities of data in a 
biologically meaningful fashion. To enhance accessibility and interoperability with other data 
analysis pipelines, the proposed tool should enable integrated histology and derived data output 
to share results with the broader research community. 

We developed a cloud-based visualization and analysis tool, which combines morphological 
interpretation of functional tissue units (FTU) at high resolution with genome-wide spatial –omics 
data. This tool, called Functional Unit State Identification for WSIs (FUSION), enables dynamic 
interaction between users and their data as well as running algorithms with high-computational 
costs (e.g. GPUs for automated segmentation) utilizing cloud resources (Fig. 1). FUSION was 
designed in collaboration with the Human BioMolecular Atlas Program (HuBMAP)6 with the goal 
of aiding users in quantitatively linking spatial –omics datasets to histopathology and determining 
the distribution of cells and cell states within healthy and diseased tissue. Due to its structural 
diversity and complex functions, we used the kidney as a prototype organ to demonstrate how 
FUSION can generate easy-to-interpret visualizations of FTUs with their cellular composition. 
However, this process may also be applied to spatial –omics datasets from all major organs. 
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Fig 1. Schematic of FUSION: FUSION offers cloud-based AI solutions unimodal and multimodal analysis of histology 
images and associated spatial –omics datasets. (A) Frontend visualization of key features of FUSION, demonstrating 
qualitative and quantitative analysis of spatial tissue maps based on cell composition. (B) Preprocessing flow diagram 
for separate processing of histological FTUs and spatial –omics data prior to spatial aggregation and user interaction. 

Results 

We first discuss a broad system-level overview of FUSION (http://fusion.hubmapconsortium.org), 
and its various functionalities for diverse users, then describe features that are not available in 
existing cloud tools for large scale image analytics of digital pathology data. We next use paired, 
multi-modal histology tissue images and associated 10x Visium spatial transcriptomics (ST) data 
from kidney tissues of reference (healthy), chronic kidney disease (CKD), and acute kidney injury 
(AKI) subjects as a vehicle to demonstrate the potential application of FUSION in biological 
research and molecular pathology. 

FUSION 

A schematic of FUSION is shown in Fig. 1. Broadly, FUSION is organized into three pages to 
facilitate a broad array of biological queries of spatial –omics datasets. These pages represent 
distinct functions that are crucial to the organization and analysis of large datasets, including data 
uploading, dataset building, and data visualization. Each page allows users to access plugins 
which are implemented on the backend through a running instance of Digital Slide Archive (DSA).7 
On the data uploader page, users can click and drag WSI and associated spatial –omics data 
files prior to adding slide-level metadata, uploading manual annotations, and/or selecting 
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structures to automatically segment using DL (Fig. 1A). The 10x Visium spatial –omics data 
contains “spot” (55 µm diameter regions of interest or ROIs) by transcript count matrices, which 
can be converted into proportions of cell subtypes and their states through a method called cell 
deconvolution8 (Supp. Doc.). Currently, FUSION hosts 10x Visium ST sample data from both 
formalin-fixed & paraffin-embedded (FFPE) (n = 12) and frozen (n = 44) kidney biopsy tissues 
and includes reference (healthy), CKD, and AKI cases. End-users can upload their own data or 
navigate the processed and quality controlled (QC’d) data in FUSION. Through the dataset builder 
page, users can assemble their own datasets based on quantitative, aggregated slide 
characteristics including structure number, abundance of specific cell types within various 
structures, and morphometric properties and load those slides into a “visualization session” in the 
data visualization page.  

On the visualization page, FUSION enables users to visualize pathomic or cellular feature 
abundance as a spatial heatmap overlaid on top of the tissue, comparing quantitative cell type 
and state abundance in various segmented FTUs or manually selected regions (Supp. Fig. 1 & 
2). Aggregated cell composition data for each FTU is automatically determined when the user 
navigates to a new region in the histology image. Additionally, users can generate quantitative 
morphometrics by selecting individual or multiple morphological features or cell types in the 
“Morphological Clustering” tools tab and generate violin plots (for individual features) and scatter 
plots (for two or more features). When more than two features are selected, FUSION uses uniform 
manifold approximation projection (UMAP) to reduce the selected features into two dimensions. 
By clicking on individual points or selecting groups of points in the generated data plots, users 
can view the FTU associated with that point in the plot as well as their cell type and state 
abundance.  

An interactive illustration panel of various regions in the nephron and the corresponding 
hierarchical ontology is also presented using the framework developed by the Human Reference 
Atlas (HRA).9  By clicking on different regions within the nephron diagram, users can view a 
simplified graphic depicting the morphology of cells from that region. This feature increases the 
utility of this tool for users who are learning more about the cells that contribute to kidney 
functionality. 

FUSION complies with FAIR (findable, accessible, interoperable, reusable) principles. Our 
approach focusses on modular engineering and systems-level design for computation, scalability, 
and expansion to enable future integration of novel spatial data from emerging technologies. 
Codes and documentation for FUSION can be accessed at the GitHub repository: 
github.com/SarderLab/FUSION 

Multi-modal comparison between disease and reference tissues 

In the following sections, we present illustrative use-cases of FUSION that integrate histology 
images and 10x Visium ST data of kidney tissues from reference, CKD (and diabetic) and AKI 
patients. These data are analyzed separately using sections from 12 FFPE and 23 frozen section 
slides. For brevity, we only report analysis of FTU-level features in normal and sclerotic glomeruli, 
which are defined in the Supplemental Document. 
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Global Comparison of Digital Pathology Image Data 

Spatial transcriptomics research yields a large amount of multivariate and bulk measurement 
data. For decades, pathologists have summarized the histopathologic findings of an entire slide 
to derive a patient’s prognosis or diagnosis. FUSION embraces this clinically useful approach by 
enabling high-level, efficient aggregation of multivariate features across a whole slide image. The 
Dataset Builder page in FUSION facilitates this process in an easy-to-use interface, allowing 
users to filter datasets based on cell composition and morphometric features recorded across 
structures within each slide (Fig. 1A). The resulting filtered tissue sections allow visualization and 
plot generation as well as “local” analysis of histological characteristics within individual slides. To 
demonstrate this feature, we “globally” assessed our first dataset consisting of diabetic (nd = 4) 
and reference (nrc = 8) FFPE sections by examining morphometric and cellular features in these 
datasets (Fig. 2). The total number of sclerotic glomeruli and percentage of sclerotic glomeruli 
across all glomeruli in each biopsy specimen was assessed. Diabetic samples exhibited greater 
total sclerotic glomeruli (p < 0.05) and a higher proportion of sclerotic glomeruli (p < 0.05). Using 
aggregated measurements of cell type composition across different FTUs, FUSION also lets 
users globally assess specific cell types. When comparing diabetic and reference samples, one 
particular cell type of interest is the podocyte, a unique epithelial cell found in the kidney’s 
glomerulus that may become effaced or injured in diabetic kidney disease.10,11 FUSION enables 
the quantitation of podocyte transcripts in each glomerulus by implementing snRNA-seq 
deconvolution of spatial transcriptomic data.  FUSION was able to identify a reduction in podocyte 
transcriptional content in sclerotic glomeruli and in non-sclerotic diabetic glomeruli compared to 
healthy reference tissue  (p < 0.05).10,11 This example illustrates how FUSION is able to identify 
and annotate both pathological and molecular changes in DKD.  

Structure-Level analysis of Digital Pathology Image Data 

At a more granular level, FUSION enables the analysis of distributions of derived features within 
structures, and the examination of the spatial relationships between those structures. This type 
of query identifies structural “neighborhoods” which are associated with certain cell types or histo-
morphological features and can provide insights into pathogenetic mechanisms. Users can select 
FTU features to analyze, generate figures, and perform statistical analysis on features of 
biological interests. For a single feature, a violin plot is generated showing the distribution of the 
selected feature across user-selected labels present in the associated metadata. For two 
features, a scatter plot is generated to assess linearity between the two selected features. For 
more than two features, FUSION dimensionally reduces the assembled feature vectors into a 
UMAP which preserves relative sample variation.12 Users can then use their mouse to select 
individual data points or "lasso” groups of points to view the image and cell composition 
associated with that point, or group of points, on the current plot. This type of visualization allows 
users to associate the quantitative distribution of features with other qualitative findings in 
individual FTUs. In addition to hypothesis testing, these features can also result in discovery as 
the clustering is data driven and agnostic and therefore can reveal unanticipated relationships 
using morphology and molecular datasets. 
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Fig. 2. Global comparison of digital pathology image data using Dataset-Builder. (A) Dataset-Builder page in 
FUSION with all slides from two selected datasets. (B) Percentage of glomeruli that are sclerotic within each slide, 
separated by dataset (p < 0.05). (C) Proportion of podocytes in sclerotic and normal glomeruli across reference and 
diabetes samples. Each dot represents a tissue section. 

To demonstrate FUSION’s ability to succinctly and accurately report on histopathology and 
molecular features, we examined glomerular hypertrophy in reference and DKD samples. 
Glomerular hypertrophy, or the inordinate growth in tissue, is a manifestation of DKD resulting 
from mechanical and chemical stresses. To assess for hypertrophy, we measure the area of 
eosinophilic tissue within each glomerulus (i.e. histological structure). In glomeruli, these 
eosinophilic regions comprise cell cytoplasm, mesangial matrix, and basement membranes. As 
expected, diabetic and sclerotic glomeruli depict higher eosinophilic area (Fig. 3),13 coinciding 
with both the physical enlargement of the glomerulus in response to adaptive hyperfiltration, 
mesangial expansion, and the loss of both Bowman’s space and open capillary lumens in the 
setting of glomerulosclerosis.14  

To demonstrate structure-level analysis using multiple morphometric features, we next examine 
morphological features related to the relative thickness of each sub-compartment. These features 
are measured using the distance transformation, or the pixel-wise distance from one pixel in a 
sub-compartment to a pixel of another sub-compartment. Assembled features are first scaled so 
that each feature has zero mean and unit standard deviation prior to UMAP dimensionality 
reduction. The resulting scatter plot is then dynamically relabeled in FUSION so that the color of 
each point corresponds to either disease or structure phenotypes (Fig. 4). These plots may be 
used to assess data heterogeneity within respective phenotypes and to make inferences on key 
features within a particular group. 
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Fig. 3. Local comparison of digital histology images using a single feature. As an example, glomerular 
hypertrophy is compared in diabetes and reference. Percentage eosinophilic area between normal and sclerotic 
glomeruli from diabetic and reference kidney tissues. (A-D) Example glomeruli selected from the feature distribution 
where indicated. Dots represent the individual glomeruli. Sclerosis increases eosinophilic area by reducing open 
capillary lumens and Bowman’'s space. Diabetic kidney disease, in the absence of sclerosis, increases the eosinophilic 
area through hypertrophy and the expansion of the mesangium. Scalebar indicates 25 µm. 

One of the first observations derived from the UMAP plot in Fig. 4B-C is that the sclerotic glomeruli 
predominantly group on the left-hand side along with non-sclerotic glomeruli from diabetic cases. 
To quantify this observed clustering behavior, silhouette scores are automatically calculated in 
FUSION and presented alongside other statistical measures and feature summaries in the Plot 
Report component. For the UMAP containing all glomeruli, silhouette scores of 0.22 and 0.06 are 
found for the diabetic and reference datasets, respectively, indicating a relatively stronger intra-
class grouping of diabetic glomeruli compared to those from reference patients. This observation 
hints at significant heterogeneity in reference glomeruli, while diabetic glomeruli are concluded to 
be more homogeneous in this dataset. 

FUSION enables the assessment of both inter- and intra-subject variability. For example, we 
observed within the UMAP that the glomeruli from one reference tissue section grouped together 
more closely. After selecting these points using the lasso tool, the presence of several red 
(possibly erythrocytes/RBCs) inclusions are identified within glomerular capillary lumens and are 
likely artifactual related to tissue preparation (Fig. 4D). It is common that histopathologic 
specimens will vary in their preparation, staining character, and image quality. FUSION can help 
to identify artifacts so users can assess whether there is biological relevance or whether artifacts 
should be excluded or corrected in their analyses.  

By selecting other points in the UMAP plot, we can begin to make qualitative conclusions on the 
relative ordering of glomeruli in the high dimensional scatter (Fig. 4D). Specifically, points 
sampled from right to left on the lower edge of the UMAP plot seem to depict gradual changes 
from normal glomeruli to fully sclerotic glomeruli. Furthermore, glomeruli towards the upper side 
of the UMAP plot seem to have a larger overall area. The tool allows discovery of different sub-
groups of glomeruli including large sclerotic, small sclerotic, small dense glomeruli, large dense 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2024. ; https://doi.org/10.1101/2024.07.09.602778doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.09.602778
http://creativecommons.org/licenses/by-nc-nd/4.0/


glomeruli, and generally normal glomeruli. Importantly, because FUSION integrates the molecular 
features (spatial transcriptomics), one can survey molecular expression in these different 
morphological variants and infer the molecular changes that may underlie these transitions.  

The included examples show FUSION’s ability to conduct spatial data QC, study data 
heterogeneity, and find patterns using an interactive approach applicable to disease and 
reference kidney biopsy sections (Fig. 2-4).   

Local Comparison of Spatial Molecular Data 

After using FUSION for global and local analysis of image morphometrics, our next focus is on 
the analysis of spatial molecular data and demonstration of multi-modal data integration.   

Among the primary cell types of the glomerulus are podocytes and endothelial cells. As described 
above, normal glomeruli exhibit a significantly higher proportion of podocyte transcript expression 
when compared to diabetic glomeruli (p < 0.05). Using FUSION’s plotting tool, lasso selection 
tool, and relative cell composition pie charts, a biomedical scientist user can confirm known 
changes in cell type composition of diabetic glomeruli, wherein the proportion of podocyte to 
endothelial cell signature shifts (Fig. 5). This shift reflects two phenomena: a reduction in 
podocyte transcript expression related to injury and effacement and an increase in glomerular 
capillary endothelial cell (EC-GC) transcript expression, potentially resultant from 
neovascularization in diabetic kidney disease.15 Furthermore, a significant difference was found 
in fibroblast cell fraction between sclerotic and normal glomeruli from both diabetic and reference 
tissue sections (Fig. 5B). 

Local Comparison Integrating Pathomic Image Features and Spatial Molecular Data 

Integrative analysis is achieved in FUSION by clustering combined morphometric and molecular 
features. The first UMAP in Fig. 6A was generated using only morphometric features from the 
distance transform and morphological categories. Diabetic samples are loosely grouped toward 
the left-hand side of the plot, with some glomeruli intermixed with the reference group. Two 
separate trends are apparent along the spectrum of reference glomeruli (right) to glomeruli (left), 
indicating two sub-groups of diabetic glomeruli with distinct morphological appearances.  

When evaluating glomerulus cell composition features (including non-tubule cell types such as 
podocytes, aggregate endothelial cells, mesangial cells, immune cells, and fibroblasts) (Fig. 6B), 
we observe heterogeneity in the reference glomeruli resulting in several clusters (upper portion 
of the plot). Diabetic glomeruli were intermixed, with a subpopulation of glomeruli grouped (bottom 
right). 
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Fig. 4. Local comparison of digital histology images using multiple features. (A) Frontend interface of FUSION 
when selecting multiple features for generating plots. UMAP of glomerular sub-compartment distance transform 
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features labeling (B) whether that glomerulus is from a diabetic or reference slide or (C) whether that glomerulus is a 
normal glomerulus or a sclerotic glomerulus. (D) Images taken from numbered locations in the above plots. Few 
different sub-groups of glomeruli are observed. These are large sclerotic, small sclerotic, small dense glomeruli, large 
dense glomeruli, and generally normal glomeruli. Scalebar indicates 25 µm. 

Fig. 5 Local comparison of spatial molecular data. Spatial distribution of major cell types in glomerular FTU in our 
diabetic and reference data. (A) Podocyte proportion in normal and sclerotic glomeruli from reference and diabetic 
cases. (B) Fibroblast proportion in glomeruli and sclerotic glomeruli from reference and diabetic cases. (C) FUSION 
frontend example plotting podocyte proportion and endothelial cell proportion with a representative diabetic glomerulus 
featuring both low podocyte and endothelial cells. Each dot represents a glomerulus. Scalebar indicates 50 µm. 

Integrating these two modes of data resulted in the strongest separable clustering of diabetic and 
reference glomeruli. Diabetic glomeruli were grouped towards the upper left-hand portion of the 
resulting UMAP plot while reference glomeruli spreading between the middle to lower-right 
portions with some intermixing of the two groups in between (Fig. 6C). By combining 
morphometrics and cell composition features, silhouette scores for glomeruli in the diabetic group 
increased from 0.35 with just morphometrics and 0.37 with just cell composition to 0.53. FUSION 
integrates a common analytical technique found in the Seurat R package, Cluster Markers, to 
determine key features which separate different groups in dimensionally reduced clusters. This 
backend implementation offsets the computational costs of this process away from the 
visualization server, greatly increasing scalability of this process. By selecting the “Find Cluster 
Markers” button, users can send all data that is used to generate a plot to the backend server in 
order to determine representative features and their adjusted p-values. In this example of diabetic 
and reference glomeruli, the significant discriminative features for glomeruli from the diabetic 
group include both mean and maximum distance transform values for eosinophilic regions 
(normalized by object area), increased contents of fibroblasts and immune cells, and nuclear 
morphology. Specifically, some measures of nuclear aspect ratio indicated a departure from 
circular nuclei to a more elliptical shape. These features consistently demonstrate a change from 
a normal glomerulus phenotype to that of a typical diabetic glomerulus, often with associated 
sclerosis/fibrosis, inflammation, and changes in cellular composition. Glomeruli from the 
reference group exhibited a higher proportion of podocyte transcript expression and reduced 
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fibroblast transcript expression. To query reproducibility, we repeated the clustering of Fig. 6 
using slide identity phenotypes as labels of the respective glomeruli and found the expected 
cluster patterns (Supp. Fig. 3-5). 

Fig. 6. Multimodal data FUSION integrating image feature and cell abundance data derived from spatial –omics 
data. Glomerular features from both reference and diabetic glomeruli were used to generate UMAP plots. (A) UMAP 
generated using only morphometric features. (B) UMAP generated using only cell composition features. (C) UMAP 
generated using a combined set of morphometric and cell composition features. Each dot represents a glomerulus.  

Spatial Visualization of Immune Cell Infiltration 

Thin FFPE sections generally have improved morphology over thick frozen sections. Despite this, 
FUSION has the sensitivity to distinguish some morphologic features in frozen tissue. In the next 
use case, 23 kidney samples prepared using a frozen tissue section protocol are derived from 
individuals with AKI (na = 6), CKD (nc = 11), and reference (nr = 6). The presence and 
characteristics of inflammation are known to vary greatly between these conditions.16-19 AKI, being 
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an acute pathology, often features acute inflammation in the form of infiltrating lymphocytes, but 
fewer chronic fibrotic changes.16,17 CKD, by contrast, shows evidence of continual injury over a 
longer time, manifested as fibrosis throughout the tubulointersitium in the underlying tissue.20,21 
The reference tissues may feature some age-related glomerulosclerosis or tubulointerstitial 
fibrosis, but typically have minimal inflammation.22,23 

In Fig. 7A, an example with an overlaid heatmap depicts the 10x Visium spots and glomeruli with 
greater than 30% immune cell composition. Strong localization of immune cells is seen around a 
central glomerulus. Fully sclerotic glomeruli in the lower portion of the image exhibit comparatively 
less immune cell infiltration. This use case illustrates that FUSION is able to identify FTUs and 
regions of inflammation even with the sub-optimal morphology of a frozen section.  

Fig. 7. Spatial visualization of immune cell infiltration.  (A) Screenshot of a CKD section in FUSION with heatmap 
set to indicate proportion of immune cells. (B) Same view as in (A) but with annotations turned off for better view of 
underlying histology. Scalebar indicates 200 µm. 

Integrating Pathomics and Cell Composition to Study the Impact of Inflammation 

Morphological properties can be selected in the clustering tab of FUSION along with non-tubule 
cell types to generate UMAP visualizations (Fig. 8). Reference glomeruli clustered distinctly from 
those of diseased samples (Fig. 8A). Cluster markers for these groups revealed statistically 
significant increased content of immune cells in both AKI and CKD groups compared to the 
reference glomeruli while the fibroblast content helps to distinguish CKD glomeruli from the AKI 
glomeruli. FUSION enables users to determine the key features driving clustering (Fig. 8B). In 
the Reference group, the primary source of heterogeneity between glomeruli stemmed from the 
different proportions of both podocytes and endothelial cells, both cell types are crucial to normal 
glomerular function. As expected, the podocyte content of glomeruli in the AKI group (mean = 
35.2%) was not substantially lower than that of the reference group (mean = 45.4%). This is 
expected as changes in podocyte and endothelial cells are often chronic processes, not acute. 
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In contrast, more immune cell infiltration was found in AKI glomeruli (mean = 16.1%) compared 
to reference glomeruli (mean = 1.9%). An increased proportion of fibroblast transcripts were found 
in CKD glomeruli (mean = 10.9%) compared to both AKI (mean = 6.9%) and reference (mean = 
3.2%) which aligns with the increased fibrosis in these samples (Fig. 8C-D).16,17 See in Supp. 
Fig. 6 the same UMAPs in Fig. 8A-B but using slide identity phenotypes as labels of the 
respective glomeruli. 

Fig. 8. Integrating pathomics and cell composition to study the impact of inflammation. (A) A UMAP plot 
generated using combined non-tubule cell type composition and morphologic features of glomeruli from AKI, CKD, and 
reference groups. Select glomeruli pulled out from indicated locations. Each dot represents a glomerulus. (B-E) Same 
UMAP as in (A) but with the color of each dot corresponding to the content of (B) podocyte, (C) endothelial cell, (D) 
fibroblast, and (E) immune cell transcripts. Scalebar indicates 25 µm. 

Discussion 

We present FUSION, a novel visualization, analytic and interactive platform for spatially resolved 
molecular data that combines histomorphological evaluation with spatial –omics. FUSION 
empowers a wide variety of users to incorporate spatial –omics into their workflows by providing 
them with user-friendly tools to reveal underlying pathobiological mechanisms. This process 
serves to increase the accessibility of quantitative computational analyses to a larger user base 
which normally requires specific skills.   

Continuously linking derived data with the source histology image allows for broad associations 
of quantitative features with established pathological lesions. For a clinical pathologist, this type 
of interaction enables more direct comparison of segmented structures from one tissue section 
with those in other sections. When presented with information from many tissue sections, the 
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extensive data visualization methods implemented in FUSION provide supportive contextual 
information which can help clarify ambiguity associated with disease severity grading. This is 
especially true if longitudinal data are available for those other tissue sections in the dataset. An 
additional benefit of continuously enabling image and quantitative feature association is that it 
allows users to validate whether a given image morphometric or textural feature is valuable or 
robust in distinguishing different types of structures or different diseases. Outlier detection is also 
possible by identifying data points which correspond to images that contain tissue artifacts such 
as a fold or tear or presence of red blood cells which can interfere with accurate feature 
calculation. By enabling users to interact with their data at both the level of a single tissue section 
as well as for dataset comprising of a set of tissue sections, the efficiency and rigor of biological 
discovery is enhanced. 

One strength of FUSION is its extensibility to other modes of spatial –omics. In this work, we 
present several examples using 10x Visium spatial data which consists of many ROIs covering 
the tissue. To effectively translate this data to provide users with structural cell composition, we 
implemented specialized analytical methods for spatial aggregation of molecular data. These 
aggregation techniques can be expanded for technologies that provide single-cell resolution such 
as 10x Xenium, CosMx, and Co-Detection by Indexing (CODEX), providing direct insights into 
cellular composition of complex FTUs.24-26 Moreover, our tool is generalizable for any organ 
systems with spatial and histology data (Supp. Fig. 7), and such data can be accessed through 
the HuBMAP portal.27 

It is noteworthy to discuss one limitation of FUSION. Namely, due to the requirement for large, 
annotated, single-nucleus RNA-sequencing (snRNAseq) datasets, cell deconvolution is currently 
only available for kidney.1 We expect that this deconvolution operation can be expanded for other 
organ systems with the availability of large scale and comprehensive snRNAseq atlas for other 
organ systems in the near future. 

Through integrations with DSA, FUSION enables users to run complex and computationally 
intense machine learning algorithms on their own data. The Slicer CLI plugin framework provides 
computational researchers with a method to share their pipelines with the community in 
accordance with FAIR principles.28 Further development into the addition and design of new 
plugins for feature extraction, segmentation, and analysis of spatial –omics data will be the 
primary aim of future iterations of FUSION.  
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Methods 

Datasets 

Table 1. Datasets used in this work. HuBMAP: Human Biomolecular Atlas Program consortium.29,30 KPMP: Kidney 
Precision Medicine Project.31,32 

Collection Source Preparation FTUs Patients/ 
Number of 
sections 

Reference HuBMAP FFPE Glomeruli, Sclerotic 
Glomeruli, Tubules, 
Arteries/Arterioles 

8/8 

Diabetic HuBMAP FFPE Glomeruli, Sclerotic 
Glomeruli, Tubules, 
Arteries/Arterioles 

4/4 

Acute Kidney Injury 
(AKI) 

KPMP Frozen Glomeruli 6/6 

Chronic Kidney 
Disease / Diabetic 
Kidney Disease 
(CKD/DKD) 

KPMP Frozen Glomeruli 11/11 

Reference (Ref) KPMP Frozen Glomeruli 6/6 
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Input Data Structure 

10x Visium data used in the development of FUSION consisted of two separate types of files as 
input into the pre-processing steps. The first set of files were the high-resolution scanned WSIs. 
WSIs varied in file extension depending on the brand name of the scanner that was used or due 
to downstream post-processing (OME-TIFF). Reading these different types of image files can be 
accomplished through a number of open-source libraries including OpenSlide, Tiffslide, and large-
image which is developed by Kitware.7,33 These libraries are capable of opening and extracting 
image regions for a large variety of file formats. FUSION, through DSA, uses the large-image 
Python library to read uploaded WSIs, and generate tile sources which are then exposed through 
an endpoint in the DSA WebAPI.7 

The second set of files contain transcriptomics read counts and spot center coordinates. These 
can either be R Data Serialization (RDS) files (“.rds” file extension) or “h5ad” files downloaded 
from the HuBMAP data portal. RDS files contain the Seurat object which is output by the 
Load10X_Spatial() command in Seurat (v4.0).34 Cell subtype proportions for each spot are 
generated using the TransferData function in Seurat using a large atlas of single-nucleus RNA-
seq (snRNA-seq) data gathered from reference patients as a part of the HuBMAP and KPMP 
consortia.9,31 After this step, the dimensions of the data per-spot are reduced from ~17k 
transcriptomic read counts to ~70 cell subtypes. These cell subtypes are further grouped together 
according to a smaller set of main cell types of 16 classes, and a varying number of cell states for 
each main cell type (Table 2). This manual data reduction technique was chosen to simplify 
available visualizations while maintaining the most important information in the pertaining tissue 
sections. As the spots that are integral to the 10x Visium Spatial Transcriptomics technique are 
much larger than a cell (spot diameter = ~55 µm), each spot is assigned a proportion value for 
each main cell type that is related to the transcriptomics reads collected at that location. 

Spot-level cell type composition data is stored as metadata within the structure annotation text 
file along with geometry. In FUSION, these are formatted following GeoJSON convention, where 
each spot is a Feature within a FeatureCollection for each slide. Following automated 
segmentation of select FTUs, cell type composition data is projected from the spots to intersecting 
FTUs using a weighted sum, where the weight for each spot is equal to the percentage of FTU-
area occupied by that spot. Intersection tests, intersection area, and structural area are calculated 
using the Shapely package in Python. 

Table 2. Breakdown of main cell types, subtypes, and their states. Kidney cell types and states determined using 
single cell kidney atlas produced by Lake et. al.1 

Main Cell Types Sub-Types States 

Ascending Thin Limb (ATL) ATL, dATL Reference, degenerative 

Connecting Tubule (CNT) CNT, CNT-PC, dCNT, cycCNT Reference, degenerative, cycling 

Distal Convoluted Tubule (DCT) DCT, DCT1, DCT2, dDCT, cycDCT Reference, degenerative, cycling 

Descending Thin Limb (DTL) DTL, DTL1, DTL2, DTL3, dDTL3 Reference, degenerative 

Endothelial Cell (EC) EC, EC-GC, EC-AEA, EC-DVR, EC-
PTC, dEC-PTC, EC-AVR, dEC, 
cycEC, EC-LYM 

Reference, degenerative, cycling 
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Fibroblast (FIB) FIB, MYOF, cycMYOF, M-FIB, dM-
FIB, dM-FIB, aFIB, dFIB 

Reference, cycling, degenerative, 
adaptive 

Immune (IMM) IMM, B, PL, T, NKT, MAST, MAC-
M2, cycMNP, MDC, cDC, pDC, 
ncMON, N 

Reference, cycling 

Intercalated Cell (IC) IC, C-IC-A, CCD-IC-A, CNT-IC-A, 
dC-IC-A, OMCD-IC-A, M-IC-A, tPC-
IC, IC-B 

Reference, degenerative, 
transitioning 

Neural-like Cells (NEU) NEU, SC/NEU Reference 

Papillary Tip Epithelial (PapE) PapE Reference 

Principal Cell (PC) PC, C-PC, CCD-PC, OMCD-PC, M-
PC, dOMCD-PC, dM-PC, IMCD, 
dIMCD 

Reference, degenerative 

Parietal Epithelial Cell (PEC) PEC Reference 

Podocyte (POD) POD, dPOD Reference, degenerative 

Proximal Tubule (PT) PT, PT-S1, PT-S2, PT-S3, aPT, 
cycPT, dPT, dPT/DTL 

Reference, adaptive, cycling, 
degenerative 

Thick Ascending Limb (TAL) TAL, aTAL1, aTAL2, M-TAL, dM-
TAL, C-TAL, dC-TAL, MD 

Reference, adaptive, degenerative 

Vascular Smooth Muscle/ Pericyte 
(VSM/P) 

VSM/P, MC, REN, VSMC, VSMC/P, 
dVSMC 

Reference, degenerative 

Analytics 

Cell Deconvolution 

Cell deconvolution for 10X Visium spatial transcriptomic counts is carried out using the Seurat 
package in R. Following normalization and dimensionality reduction using the SCTransform, 
RunPCA, and RunUMAP functions, identified labels are mapped back to the reference atlas 
containing sequencing single nucleus information from over 200,000 cells.1 Predicted cell subtype 
proportions are saved back to the RDS file format and used in conjunction with spot centroid 
locations to derive spot annotation files containing geometry and cell composition data. 

Automated Segmentation of FTUs 

Segmentation of FTUs is performed using one of a few plugin implementations of DL deployed 
using the Slicer CLI Web schema. Each of these models includes PAS-stained kidney sections in 
their training data. More details on each of the models can be found in Table 3. Our prior work 
HistoCloud outlines plugin creation using DSA.7,35  

Table 3. FTU segmentation plugins implemented for FUSION. 

Plugin Name FTUs Architecture Reference 

MultiCompartment Cortical interstitium, 
Medullary interstitium, 
Glomeruli, Sclerotic 
Glomeruli, Tubules, 
Arteries/Arterioles 

Detectron236 Lucarelli, et al., Kidney360, 
202337 

PTC Peritubular capillaries U-Net38 Chen, et al., Kidney360, 
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202339 

IFTA Interstitial Fibrosis and 
Tubular Atrophy (IFTA) 

DeepLab V240 Ginley, et al., JASN, 
202141 

Morphometric Feature Extraction 

Morphometrics are calculated for each segmented FTU and added to per-structure metadata 
alongside cell type composition data. These morphometrics are used in the Morphological 
Clustering tab of FUSION to dynamically cluster structures based on specific morphological 
characteristics. Morphometrics calculated in this step quantify the size, shape, color and texture 
of sub-compartments within each segmented FTU. These sub-compartments are segmented 
using user-defined thresholds during the upload process in an interactive procedure. A full 
description of these features is provided in Table 4. 

Table 4. Morphometric feature descriptions. Square brackets ([]) indicate the name of each sub-compartment. The 
sub-compartment denoting ‘Total’ is the boundary of a structure and all its contents. 

Feature Name Sub-Compartments Group Description 

[ ] Area By Object Area All Morphology Ratio between sub-
compartment area and 
total structural area 

[ ] Area All Morphology Total area of a given sub-
compartment 

Nuclei Number Nuclei Morphology Number of nuclei 
contained within a 
structure 

Mean Aspect Ratio Nuclei Nuclei Morphology Mean aspect ratio (major 
axis length divided by 
minor axis length) across 
all nuclei within a structure 

Standard Deviation Aspect 
Ratio Nuclei 

Nuclei Morphology Standard deviation of 
aspect ratio (major axis 
length divided by minor 
axis length) across all 
nuclei within a structure 

Mean Nuclear Area Nuclei Morphology Mean area of all nuclei 
within a structure 

Total Object Area Total Morphology Total area of structure 
measured in number of 
pixels 

Total Object Perimeter Total Morphology Total perimeter of structure 
boundary measured in 
number of pixels 

Total Object Aspect Ratio Total Morphology Aspect ratio (major axis 
length divided by minor 
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axis length) for a structure 

Major Axis Length Total Morphology Length of longest axis of 
ellipse with same 
normalized second central 
moments as structure 

Minor Axis Length Total Morphology Length of shortest axis of 
ellipse with same 
normalized second central 
moments as structure 

Contrast [ ] All Texture Measures intensity 
contrast between a pixel 
and its neighbor over the 
whole sub-compartment. 0 
for ‘constant’ (An image 
consisting of one color with 
no variation). 

Homogeneity [ ] All Texture Measures the closeness of 
the distribution of elements 
in the Gray-Level Co-
occurrence Matrix 
(GLCM). 1 for a diagonal 
GLCM (constant, single 
color image) 

Correlation [ ] All Texture Measures how correlated a 
pixel is to its neighbor over 
the whole sub-
compartment. 1 or -1 for a 
perfectly correlated image 
and a perfectly negative 
correlated image, NaN for 
a constant image 
(constant, single color 
image). 

Energy [ ] All Texture Sum of the square 
elements in the Gray-Level 
Co-occurrence Matrix 
(GLCM). 1 for a constant, 
single color image. 

Mean Red [ ] All Color Mean of red values (first 
color channel in a RGB 
image) across a sub-
compartment. 

Mean Green [ ] All Color Mean of green values 
(second color channel in a 
RGB image) across a sub-
compartment. 

Mean Blue [ ] All Color Mean of blue values (third 
color channel in a RGB 
image) across a sub-
compartment. 
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Standard Deviation 
Red [ ] 

All Color Standard deviation of red 
values across a sub-
compartment. 

Standard Deviation 
Green [ ] 

All Color Standard deviation of 
green values across a sub-
compartment. 

Standard Deviation 
Blue [ ] 

All Color Standard deviation of blue 
values across a sub-
compartment. 

Sum Distance Transform 
By Object Area [ ] 

All Distance Transform Sum of the distance 
transform values divided 
by total object area for a 
sub-compartment 

Sum Distance 
Transform [ ] 

All Distance Transform Sum of the distance 
transform values for a sub-
compartment. 

Sum Distance Transform 
by [ ] Area 

All Distance Transform Sum of distance transform 
values for a sub-
compartment divided by 
total area of the same sub-
compartment. 

Mean Distance Transform 
By Object Area [ ] 

All Distance Transform Mean of distance 
transform values for a sub-
compartment divided by 
total object area. 

Mean Distance Transform 
By [ ] Area 

All Distance Transform Mean of distance 
transform values for a sub-
compartment divided by 
total area of the same sub-
compartment. 

Mean Distance Transform [ 
] 

All Distance Transform Mean distance transform 
values for a sub-
compartment. 

Max Distance Transform 
By Object Area [ ] 

All Distance Transform Maximum distance 
transform value for a sub-
compartment divided by 
total object area. 

Max Distance Transform 
By [ ] Area 

All Distance Transform Maximum distance 
transform value for a sub-
compartment divided by 
the total area of the same 
sub-compartment. 

Max Distance 
Transform [ ] 

All Distance Transform Maximum distance 
transform value for a sub-
compartment. 

Frontend 
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FUSION is built using Dash, a web-based visualization framework for Python applications.42 
Components within FUSION are derived from either the core components library or several open-
source community components including Dash-Leaflet (for large image visualization), Dash-
Bootstrap-Components (for grid-style layouts, icons, and organization), Dash-Extensions (for 
integrating JavaScript functions), among others. 

The visualization page (http://fusion.hubmapconsortium/vis), contains the majority of interactive 
components in FUSION. These are divided amongst WSI visualization and overlays, interactive 
plotting, cell graphics and hierarchy viewing, and data downloading. The WSI Viewer card 
contains the WSI, FTU/spot annotations and their associated overlays, and custom ROIs. 
Integrated JavaScript functions are used to control boundary color, fill color, transparency, and 
filtration of overlaid FTU and spot annotations according to user inputs. Annotations and image 
tiles are hosted in DSA and accessed through the annotations and item tiles WebAPI endpoints. 
By logging in through FUSION, users can access their personal uploaded images. Although 
annotation correction is not implemented for FTUs in FUSION, users may correct predicted FTU 
boundaries using HistomicsUI, which is accessed through DSA at the host address. Combined 
morphometrics and cell composition plotting is available in the Morphological Clustering tab. In 
this tab, users can select features, labels, and filters to generate an interactive plot of data in their 
current dataset. For single features, violin plots of the raw data are generated. Selecting two or 
more features results in a two-dimensional scatter plot containing either raw data (for two 
features) or UMAP coordinates for dimensionally reduced data. Users can select one or multiple 
points to view the FTU or spot with that feature value. By selecting multiple points, an animation 
is generated that allows the user to scroll through several images or FTUs at a given location at 
a time (maximum 100 points, for efficiency) as well as view their mean cell composition. This 
visualization allows users to make broader connections for qualitative observations to the 
quantitative morphometric or –OMICS values present in a given FTU. Users can also download 
the cell composition data for FTUs which are in the current view in either Comma Separated 
Values (CSV) or Excel (XLSX) format. These files will list each FTU in the current view and have 
a column corresponding to a particular cell. 

From the dataset builder page (http://fusion.hubmapconsortium/dataset-builder), users can 
manually select which datasets they would like to examine in their current visualization session. 
We provide 56 pre-processed samples from both FFPE and frozen preparations (Table 1) from 
both healthy, reference and disease groups. After selecting one or more datasets, users can make 
preliminary visualizations of aggregated metadata including FTU-level cell type composition 
statistics, counts of each FTU, and other features of interest. This feature can help inform users 
whether there are certain slides they would like to remove from their current selection. Once a 
user is satisfied with their collection of slides, they can then click the ‘Go To Visualization’ button 
to be redirected to the visualization page where their selected slides can be viewed, and their 
clustering features accessed. 

Pre-processing workflows are accessed through the data upload page 
(http://fusion.hubmapconsortium/dataset-uploader). Here, users can select what kind of data they 
would like to upload, upload the required files, select FTUs to segment, select parameters to use 
to segment sub-compartments within segmented FTUs, and calculate which morphometric 
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features they would like to calculate. All of which is accomplished using simple user-interface 
components with descriptive instructions throughout. 

Backend 

FUSION works in concert with a running instance of DSA.7 DSA is a containerized cloud platform 
which provides users with a secure, flexible, and scalable interface for the analysis of WSIs. 
Included in DSA is a rich RESTful API (Representational State Transfer Application Programming 
Interface) and Girder for data management operations. DSA (specifically the Web API) is used 
by FUSION to store pre-processed and newly uploaded data, run Slicer CLI Web plugins 
(specially formatted Docker images), access WSI tiles for large image visualization at multiple 
levels of resolution, and user registration. Using the Girder Client Python library as well as the 
requests Python library, requests can be made to the DSA server from an external host. This 
means that the deployment of FUSION and its corresponding DSA instance can have separate 
resource allocations/specifications which fit what is expected of frontend and backend servers. 
For example, WSI segmentation jobs are accelerated using graphics processing units (GPUs), 
and cell deconvolution requires a significantly higher amount of random-access memory (RAM) 
compared to rendering visualization components on the frontend. 

Data, Code, Tutorial, & Promotional Video 

Codes for FUSION may be accessed at the GitHub repository: github.com/SarderLab/FUSION. 
Data used in this project may be accessed through the data portals of participating consortia 
(portal.hubmapconsortium.org). FUSION can be accessed via 
http://fusion.hubmapconsortium.org/. A promotional video on FUSION is available at 
https://www.youtube.com/watch?v=d1tHayLENEE   
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Glomerulus: Normal and Sclerotic 

Glomeruli are the primary filtration units of the kidney, consisting of a bundle of capillaries with 
fenestrated endothelial cells and specialized, terminally differentiated epithelial cells (podocytes) 
suspended in a matrix created by mesangial cells together referred to as the glomerular tuft.43-45 
In addition to the glomerular tuft, healthy glomeruli also feature a large empty space (Bowman’s 
space) which contains fluid prior to drainage into the lumen of nearby proximal tubules.46 Due to 
the specialized nature of these cells and capillaries, glomeruli are especially sensitive to increases 
in blood pressure (hypertension) as well as the production of advanced glycation end-products 
(AGEs) which are both typically present in cases of diabetes mellitus.47 As chronic injuries 
accumulate, capillary loops, cross-sectional views of capillaries in the glomerular tuft, are closed 
off and overtaken by expanded mesangial matrix and fibrotic scars.13 The resulting glomerulus 
has no ability to filter blood and is rendered inert, becoming known as a sclerotic glomerulus (or 
globally sclerotic glomerulus). Sclerotic glomeruli are not exclusively a diabetic lesion; glomeruli 
can also become sclerotic over the course of normal aging.22,23 

Supp. Fig. 1. Visualization of cell type and state distribution spatially with respect to FTUs. Overlaid color 
corresponding to (A) proportion of proximal tubule cell type, (B) proportion of proximal tubule with the degenerative cell 
state, (C) highest proportion cell type per structure, and (D) proportion of proximal tubule with the cycling cell state. 
Scalebar indicates 500 µm 

Overlaid Visualizations on Histology 

Annotations in histology images have the potential to contain a diverse amount of derived data. 
A primary aim of digital pathology is to quantify underlying patterns in histological structures to 
increase the objectivity of pathological assessment. One approach is to use a combination of 
classical and modern image analysis methods to calculate hand-engineered morphometric 
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features for annotated structures. These morphometric features can encompass morphologic 
quantifications such as size and shape but can also include color, texture, and relative positioning 
of structures and their sub-compartments. FUSION enables users to calculate a wide range of 
morphometrics as a part of its preprocessing procedure. This data is combined with spatially 
aggregated –omics data for correlative analysis of histologic phenotype and gene expression. 
One way to view spatial distributions of specific cell types and morphological properties is through 
a heatmap overlaid on the histology WSI. This visualization also allows for users to determine 
relative similarity between structures as well as which structures are the most different from each 
other based on a specific value.  

Upon loading a new slide in FUSION, the properties which can be used to generate overlaid 
heatmaps are automatically determined and added to a searchable dropdown menu. These 
properties include standalone structural metadata properties as well as sub-properties (e.g., Main 
Cell Types → Podocyte). Selecting one of these properties prompts FUSION to collect the value 
for that property from all structures where that property is present in their metadata. If this is a 
numeric property (e.g., proportion of endothelial cells), these values are then arranged from 
smallest to largest and assigned a color from dark blue (smallest) to dark red (highest) according 
to the “JET” colormap. For categorical properties (e.g., maximally present cell type), each label is 
assigned its own color alphabetically with a categorical colorbar indicating each color and its label. 
In this section, we will present two possible use-cases of overlaid heatmaps and describe how 
they facilitate efficient deduction. 

Sub-Categorization of FTUs by Cell Composition 

This first application of overlaid heatmaps involves sub-categorization of different FTUs by cell 
composition. This task is important because it allows users to approximate the functional role of 
various structures within their image. In spatial transcriptomics, cell types can be defined by the 
expression of one or more transcripts. When two or more transcripts define a cell type, such as 
those derived from a single cell RNA-seq cell cluster, these expression signatures can be 
summarized as a single vector, sometimes called a transfer score. These transfer scores can 
then be used to determine which cell types are heavily localized along sites of injury or in various 
regions in the tissue. This information can also be used to establish FTU neighborhoods with 
shared cell type or cell state proportion within a small area. 

After selecting a cell type from a dropdown menu, users can use the FTU filter slider to change 
the acceptable value range for FTUs. This slider has both a minimum and a maximum value which 
can be adjusted in response to queries like, “Show me all structures with a Proximal Tubule cell 
proportion greater than 0.5.” Using this filter helps remove unwanted structures from the current 
slide and allows users to focus more on their desired structures of interest.  

In the examples shown in Supp. Fig. 1, the proportion of proximal tubule is selected first for 
overlaid viewing followed by the highest proportion cell type. In the proximal tubule view, the 
majority of tubules in this slide represent the proximal tubule cell type with a smaller proportion of 
tubules coming from different portions of the nephron. As expected, structures such as glomeruli 
and arterioles exhibit minimal proximal tubule content. In the maximum expressed cell type view, 
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the tubules that do not contain a large amount of proximal tubule cells seem to contain more thick 
ascending limb cells. Interspersed throughout the slide, we also see distal convoluted tubules 
grouped together. Another observation that can be made is that most of the glomeruli have the 
podocyte as the cell type present in highest proportion. For this particular WSI, a healthy reference 
sample, the difference in glomerular cell composition is not very large. However, decreasing 
podocyte fraction is an important factor in glomeruli of certain diseased groups. 

Cell State Comparison between FTUs 

Another application of overlaid heatmaps is to combine multiple FTU properties into one 
visualization. We demonstrate this functionality using cell state proportions. In the context of 
kidney, cell states are defined from a large single nucleus RNA-seq (snRNA-seq) dataset 
consisting of more than 200K kidney cells.12 Intra-cluster variation observed for different cell types 
are further examined for relative presence of specific markers which inform researchers on more 
specific functions or reactions of those cells to certain stimuli. Possible cell states in kidney data 
include reference (health), degenerative, adaptive, and transitioning.12 Cell state composition is 
stored for each FTU as a nested sub-property wherein each “Main Cell Type” contains a varying 
set of possible cell states and a value for each state. This can be interpreted as the proportion of 
each cell type made up by each cell state. A glomerulus can therefore contain, for example, 75% 
podocyte with 90% of that coming from the reference (healthy) cell state and the remaining 10% 
belonging to an injury cell state (e.g., degenerative). Combining these two properties is 
accomplished by multiplying the total percentage of each cell type by the selected cell state. For 
the earlier example, the glomerulus consists of 67.5% reference podocytes and 7.5% 
degenerative podocytes. This method of combination is particularly useful for comparison in cell 
states between FTUs in a WSI, as we are interested in the total content of a particular cell state, 
and therefore, need to know both the total proportion of a given cell and its composite cell states. 

In Supp. Fig. 1, localization of both degenerative and cycling proximal tubules are observed in 
various sub-regions throughout the same region of tissue. This observation can be especially 
useful in identifying localized patterns of injury, stress, or repair mechanisms. Combined overlay 
visualizations can also be filtered using the same FTU filter slider described in the previous 
section. 

Defining Custom ROIs for Spatial –omics Aggregation 

A key form of interaction with data favored by the pathology community is drawing on or 
annotating regions or structures of interest in WSIs. These annotations are used for counting, 
highlighting, sharing findings with collaborators, and secondary analyses. When dealing with 
spatial –omics data, researchers are also interested in underlying molecular data in regions which 
are annotated. Therefore, dynamic aggregation of cell composition data is a necessity for spatial 
–omics interfaces.

In FUSION, aggregation of spatial molecular data is included both as a pre-processing step for 
automatically segmented FTUs as well as being incorporated into a variety of manual annotation 
tools (Supp. Fig. 2). Annotation shapes include freeform polygons, rectangles, and markers 
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which are located on the left-hand side of the WSI viewer component. Each of these tools triggers 
an aggregation function for structures which are enclosed within the annotation boundaries or 
intersecting with the marker. Freeform polygons and rectangles are used for annotating whole 
regions of tissue, including regions outside of existing FTU boundaries. This process enables 
users to collect information for loosely defined areas such as regions of interstitial fibrosis and 
tubular atrophy (IFTA). After making a manual annotation with either of these tools, the same 
visualization properties are available as those for FTUs including overlaid heatmap colors and 
cell composition plotting. Since these manual ROI cell composition charts are static (independent 
of position on WSI), users can readily compare the cellular makeup of their manually annotated 
regions with different regions of tissue or FTU groups. Alternatively, users can use the marker 
tool to select FTUs to group together from different regions in the current WSI. This process 
ensures that the aggregated cell composition values correspond only to the selected FTUs of 
interest. FTUs can also be marked automatically from selected data points in the morphological 
clustering tab that are in the current slide. 

Supp. Fig. 2. Visualization of cell type and state distribution spatially with respect to arbitrary annotations. (A) 
Two manually annotated regions of interest with overlaid color corresponding to proportion of degenerative proximal 
tubule. (B) Cell composition pie charts for each FTU where each tab indicates the FTU name and number contained 
within the current viewport. Manual ROI 1 here contains a higher proportion of cycling proximal tubule. (C) Cell 
composition pie chart for Manual ROI 2 indicating a much higher proportion of degenerative proximal tubule cell type 
than Manual ROI 1. Scalebar indicates 200 µm. 

Once a user has manual annotations on a slide, they can also download image and molecular 
data for selected regions for secondary analysis in the “Download Data” tab. Annotations can be 
downloaded in three different formats for visualization on other platforms such as Aperio 
ImageScope, QuPath, and HistomicsUI.19-21 
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Supp. Fig. 3. UMAP of morphometric features from reference and diabetic slides. Each dot indicates a glomerulus. 
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Supp. Fig. 4. UMAP of cell composition features from reference and diabetic slides. Each dot indicates a 
glomerulus.  
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Supp. Fig. 5. UMAP of morphometric and cell composition features from reference and diabetic slides. Each 
dot indicates a glomerulus.  
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Supp. Fig. 6. UMAP of morphometric features and cell composition from AKI, CKD, and reference slides. Each 
dot indicates a glomerulus.  

Use Case in Organs other than Kidney 

To demonstrate the full utility of FUSION for other organs, one can use spatial data available for 
various reference organs from the HuBMAP portal. To increase the interoperability of our tool and 
better serve the HuBMAP community, FUSION is designed to accept HuBMAP processed 
datasets (.h5ad files) as well as ome-tiff formatted WSIs. One such example is shown for 
reference uterus tissue sections in Supp. Fig. 7. Users can select transcripts, whether that is the 
top-k highly variable transcripts, a list of named transcripts, or the top-k most prevalent transcripts. 
To gain further biological insights of these transcripts while navigating them spatially over tissue 
morphometry, FUSION leverages the HRA.9 The HRA includes information on molecular 
biomarkers, and their associated hierarchy of FTUs and organs in the human body. By integrating 
HRA’s publicly available API tools, FUSION can function as spatial guidebook for hypothesis 
generation for processed datasets imported from the HuBMAP portal. 
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Supp. Fig. 7. Biological queries using FUSION. Example usage of 10X Visium data from a uterus section processed 
by the HuBMAP consortium and downloaded from their data portal. Enclosed section underneath heatmap overlay 
selection corresponds to information gathered pertaining to a particular gene along with a table with anatomical 
structures and cell types in the HRA that include that gene.9 Scalebar indicates 400 µm. 
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