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Abstract The oligomerization of protein macromolecules on cell membranes plays a fundamental role in
regulating cellular function. From modulating signal transduction to directing immune response, membrane
proteins (MPs) play a crucial role in biological processes and are often the target of many pharmaceutical drugs.
Despite their biological relevance, the challenges in experimental determination have hampered the structural
availability of membrane proteins and their complexes. Computational docking provides a promising alternative
to model membrane protein complex structures. Here, we present Rosetta-MPDock, a flexible transmembrane
(TM) protein docking protocol that captures binding-induced conformational changes. Rosetta-MPDock samples
large conformational ensembles of flexible monomers and docks them within an implicit membrane environment.
We benchmarked this method on 29 TM-protein complexes of variable backbone flexibility. These complexes
are classified based on the root-mean-square deviation between the unbound and bound states (RMSDUB)
as: rigid (RMSDUB <1.2 Å), moderately-flexible (RMSDUB ∈ [1.2, 2.2) Å), and flexible targets (RMSDUB > 2.2
Å). In a local docking scenario, i.e. with membrane protein partners starting ≈10 Å apart embedded in the
membrane in their unbound conformations, Rosetta-MPDock successfully predicts the correct interface (success
defined as achieving 3 near-native structures in the 5 top-ranked models) for 67% moderately flexible targets
and 60% of the highly flexible targets, a substantial improvement from the existing membrane protein docking
methods. Further, by integrating AlphaFold2-multimer for structure determination and using Rosetta-MPDock for
docking and refinement, we demonstrate improved success rates over the benchmark targets from 64% to 73%.
Rosetta-MPDock advances the capabilities for membrane protein complex structure prediction and modeling
to tackle key biological questions and elucidate functional mechanisms in the membrane environment. The
benchmark set and the code is available for public use at github.com/Graylab/MPDock.
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1. Introduction8

Protein-protein interactions play a pivotal role in biological signaling networks. Elucidating these signaling9

networks can provide insights into protein function and aid in engineering new therapeutics and de novo10

protein interfaces. Over the past few years, there have been dramatic advances in protein structure prediction11

and design(AlphaFold2,1 RFDiffusion,2 and Chroma3 to name a few); however, most of these advances12

are biased towards soluble proteins owing to the higher representation of soluble proteins in the Protein13

Data Bank (PDB).4 Membrane protein interactions, i.e., interactions between proteins engulfed within14

lipid bilayers, are one such avenue that is under-studied; with these interactions performing essential life15

processes ranging from motility and endocytosis, to signaling and sensory responses. The oligomerization of16

membrane proteins in their native cellular environment plays a fundamental role in the regulation of cellular17

functions, and their malfunction contributes to a plethora of diseases such as cancer, vascular anomalies,18

and skeletal syndromes.5–8 This role has resulted in a major fraction of pharmaceuticals (87% of biologics19

and 81% of small-molecule drugs) targeting membrane proteins even though membrane proteins span only20

30% of all existing natural proteins.9 Despite the interest in membrane protein interactions, experimentally21

determining the precise oligomeric states of membrane proteins remains a challenging problem owing to the22

heterogenous membrane environment.23

Conventionally, membrane protein oligomeric states are characterized in cells or on membrane-mimetic24

platforms.10 While cell-based methods preserve the native cell environment, they often lack high resolu-25

tion.11,12 Conversely, membrane-mimetic platforms offer high molecular resolution but do not replicate the26

native cell environment13,14. The presence of a non-uniform, biphasic membrane layer poses a significant27

limitation for efficient protein extraction, solubilization, stabilization, and eventually, generation of diffract-28

ing crystals or clear cryo-EM grids, hampering structure prediction.15 Owing to these challenges, MPs29

represent less than 3% of all protein structures in the protein data bank (PDB), with MP complexes being30

even scarcer.16,17 When experimental approaches are infeasible, computational modeling tools may address31

some of these challenges to model MP complexes and protein-protein interactions.32

Physics-based computational methods for modeling protein complex structures use a sampling routine and33

an energy function to approximate the thermodynamics of interactions. On the one hand, the constraints34

on the search space imposed by the lipid bilayer facilitate docking; on the other hand, the lipid bilayer in35

tandem with the solvent creates a biphasic environment that complicates modeling. Hence, in spite of several36

advanced protein docking protocols being available for soluble protein docking, there is a dearth of protocols37

for membrane protein docking. Conventionally, soluble protein docking protocols are extended for membrane38

protein docking while rescoring with a membrane-specific energy function. For instance, rigid-body docking39

algorithms such as DOCK/PIPER18 and Memdock19 rescore structures using membrane transfer energies in40

a lipid biphasic environment, but do not consider the membrane during the sampling. Recently, Rudden and41

Degiacomi developed a membrane docking protocol, Jabberdock20, that uses all-atom molecular dynamics42

to dock proteins while capturing protein backbone motion. Jabberdock first equilibrates the monomers in43

an explicit membrane environment and then extracts their volumetric mapping to maximize their shape44

complementarity. On an unbound dataset of 20 α-helical complexes of variable flexibility, Jabberdock was45

successful (i.e., yielding at least one acceptable model or better among its top 10 candidates) in 75% of cases46

(100% for flexible targets). However, the conformational changes sampled are limited by the MD time scale,47

and the volumetric mapping is computationally expensive (3.5 days on a GPU). Alternatively, to circumvent48
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the limitations of length and timescales with explicit membrane models, Alford et al. demonstrated the 49

use of implicit models that represent the membrane as a continuum.15 In exchange for an approximate 50

bilayer representation, implicit models offer a 50 − 100 fold sampling speed-up. Implicit membrane models 51

overcome the lipid layer and solvent complexity while maintaining atomic-level details for the molecule of 52

interest. Proof-of-concept work on Rosetta-MPDock15 showed this speed-up for rigid-body docking within 53

a membrane-based scoring scheme and has found successful high-ranking poses in three out of five rigid 54

benchmark targets. In that study however, conformational changes were not allowed. 55

Sampling backbone flexibility upon association has persisted as a long-standing problem even in soluble 56

proteins; evident by limited success rates in capturing flexible proteins in blind structure prediction chal- 57

lenges.21 Despite the advent of AlphaFold2 and its breakthrough performance in predicting accurate protein 58

structures, AlphaFold2 (particularly AlphaFold-multimer) predicts only up to 43% of protein complexes 59

accurately. Additionally, AlphaFold2 is found to be less reliable for membrane protein structure prediction.22
60

To address the limitations in flexible membrane protein docking and better sample membrane protein 61

interactions, we present here an update to Rosetta-MPDock that captures binding-induced conformational 62

changes. Rosetta-MPDock mimics the conformer selection mechanism of protein binding by docking large 63

conformational ensembles of membrane protein partners within an implicit membrane environment. Further, 64

we also combined AlphaFold-multimer with Rosetta-MPDock to predict better membrane protein interfaces. 65

This approach is inspired by the improved accuracy that we recently achieved by docking soluble proteins 66

while combining physics and deep-learning based methods.23
67

Here, we first present a curated dataset of 29 trans-membrane protein complexes with variable flexibility 68

that can serve as a benchmark set for validating the performance of membrane protein docking. Next, 69

we demonstrate the performance of Rosetta-MPDock and test whether flexibility improves MP complex 70

structure prediction. Finally, we assess whether AlphaFold-multimer predictions can be used in conjunction 71

with Rosetta-MPDock to predict models with higher recovery of native-like interfaces. 72

Results 73

Benchmark assembly and method overview. 74

Benchmark. To develop and assess computational modeling algorithms, it is crucial to first curate benchmark- 75

ing datasets. For protein-protein docking, an ideal benchmark set would constitute both bound and unbound 76

conformations of protein partners forming the complex.24 One such example is the Docking Benchmark Set 77

(DB 5.5) for soluble protein complexes, which is widely used for evaluating docking performance.24 However, 78

for TM protein complexes, the difficulty in experimental characterization has led to the scarcity of both 79

bound and unbound conformations for membrane protein docking.25 Prior benchmarks by Almeida et al.,25
80

Roel-Torris et al.,26 and Rudden and Degiacomi20 have categorized membrane proteins with respect to 81

their secondary structures (α-helical and β-sheets), interface locations (cytosolic, TM domain, between TM 82

domains), and their conformational states (bound and unbound). Here, we build on these prior benchmarks 83

to curate a larger, comprehensive dataset of Protein Data Bank (PDB) structures with 29 TM protein 84

complexes and their corresponding unbound conformations. Table 1 includes each protein target highlighted 85

by its stoichiometry and the extent of flexibility as determined by the unbound-to-bound interface RMSDUB 86

(iRMS). We classified the benchmark set based on the target specifications defined by CAPRI (Critical 87

Assessment of PRedicted Interactions). The current benchmark set comprises 10 moderate to highly flexible 88
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Table 1. Membrane protein benchmark targets. Benchmark targets organized by flexibility categories: bound (no
unbound partners available in the PDB); rigid (RMSDUB < 1.2 Å); moderately-flexible (RMSDUB ∈ [1.2, 2.2) Å); and
flexible targets (RMSDUB > 2.2 Å).
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targets, encompassing a broad range of interface sizes, sequence lengths. These cleaned and renumbered 89

structures of both unbound and bound conformations are deposited at github.com/Graylab/MPDock to 90

facilitate reproducibility, analysis, and evaluation of alternative membrane modeling tools. 91

Rosetta-MPDock. Figure 1 illustrates the Rosetta-MPDock protocol with its rigid and ensemble docking 92

versions. Prior work with RosettaMP integrated the membrane-specific environment in Rosetta.15,27
93

The construction of the membrane environment is described in detail by Alford et al. and Leman et al. 94

respectively and illustrated in Figure 1.1. 95

In this work, we use this membrane environment for rigid backbone and flexible backbone protein docking. 96

Rosetta-MPDock performs rigid-body docking by orienting the protein partners in the membrane (as 97

determined by their membrane span files) followed by Monte Carlo moves, i.e. translational and rotational 98

Gaussian perturbations of 3 Å and 8◦, side-chain packing and relaxation (Figure 1.2a). To incorporate 99

conformational changes, we use the conformer selection approach described in RosettaDock 4.028 for soluble 100

proteins. First, structural ensembles for membrane proteins (100 structures for each protein partner) are 101

constructed by Rosetta Relax, Backrub, and Normal Mode Analysis (NMA) while proteins are embedded 102

in a membrane bilayer. Backbone swaps from the ensemble are performed during docking and docked 103

structures are packed and relaxed, then ranked based on their interface scores (i.e. binding energies) to 104

obtain a docked membrane protein complex structure (Figure 1.2b). Details are elaborated in Methods. 105

TM-rigid body docking samples high-quality decoys for rigid targets. 106

As a baseline, we first present the performance of two benchmark targets with the Rosetta-MPDock 107

rigid-body protocol for two MP targets a mitochondrial respiratory complex II from porcine heart (1ZOY), 108

1.2 Å RMSDUB
29 and formate channel (3KCU), 3.58 Å RMSDUB

30. Figure 2 shows the interface score 109

versus the interface RMSD with respect to native for a local docking scenario (protein partners moved 110

10 Å apart) for two targets across the two scorefunctions. The bound crystal structure is also relaxed to 111

obtain near-native energies (blue stars in Figure 2). For the rigid target 1ZOY, Rosetta-MPDock captures 112

CAPRI high-quality targets (green), and the sampled structures and scores retrace those of the refined 113

near-natives. This is a successful docking scenario. On the other hand, for a flexible target, 3KCU, the 114

performance is underwhelming, with no decoy sampled within 3 Å iRMSD with either scorefunctions. This 115

demonstrates a sampling failure for target 3KCU. This trend is also observed over other medium and highly 116

flexible targets; only 2 out of 11 (18%) medium/highly flexible targets have near-native decoys as opposed 117

to 4 out of 9 (44%) rigid targets (Supplementary Fig. S3-4). While rigid and bound targets are docked 118

with higher accuracy (success rate 56% for 9 targets), the accuracy of flexible targets is hampered despite 119

sampling in the native-like binding region. These results suggest a need to incorporating backbone motions 120

to capture binding-induced conformational changes within membrane-associated protein assemblies. 121

Next, we compare the discrimination ability of scorefunctions, ref201531(Rosetta energy function for 122

soluble proteins) and franklin201932 (Rosetta energy function for membrane proteins). Comparing 123

between the soluble and membrane protein scorefunctions (column-wise panels), we were surprised to 124

observe hardly any improvement in native structure discrimination with the membrane scorefunction. Even 125

though the membrane environment energy terms drive sampling, the high-resolution discrimination at the 126

interface is driven by van der Waals and side-chain packing energy terms, similar to observations in prior 127

work from Alford et al.32 and Mravic et al.33
128
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Fig. 1. Overview of membrane protein docking protocol. Panel 1: RosettaMP architecture: The membrane bilayer
is represented using three components namely: MEM residue that describes the geometry of the membrane bilayer; a
topology object that stores the transmembrane region information; and a FoldTree object that defines the jump edges
to establish the connection between the membrane residue and the protein. Panel 2a: Rigid docking protocol with
Rosetta-MPDockPanel 2b: Ensemble docking protocol with Rosetta-MPDock that involves a conformer-selection approach
over an ensemble of pre-generate backbone conformations of the protein partners within the membrane environment.
Panel 3: A representation of the final docked membrane protein structure that could be obtained from either of the two
protocol schemes.

6 | Samanta and Harmalkar et al.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2024. ; https://doi.org/10.1101/2024.07.09.602802doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.09.602802
http://creativecommons.org/licenses/by-nc/4.0/


DRAFT

Fig. 2. Rigid-body docking energy funnels for protein targets 1ZOY (mitochondrial respiratory complex II, RMSDUB =
1.20 Å) and 3KCU (Portable formate transporter, RMSDUB = 3.56 Å). Plots show the interface score (REU) vs all-atom Cα

rmsd (Å). Blue stars denote the refined native structures; green, high quality; red, moderate quality; yellow, acceptable
quality; gray, incorrect)
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Ensembles capture binding-induced conformational changes and improve docking performance on129

flexible targets.130

To incorporate diverse backbones in membrane protein docking, we developed ensemble docking within131

Rosetta-MPDock. The ensemble stage in Rosetta-MPDock (Figure 1, right panel) draws on the existing132

conformer-selection functionality of RosettaDock4,28 and adapts it for membrane proteins. Conformer-133

selection34 models for protein interactions obey a statistical mechanical view of protein binding; with134

unbound states of protein partners existing in an ensemble of low-energy conformations, among which the135

bound conformations are selected during protein association. We implement this strategy by pre-generating136

an ensemble of conformations of the individual protein partners to use as inputs for docking. While137

docking, the ligand (smaller protein partner) and the receptor (larger protein partner) undergo rigid body138

moves coupled with backbone swaps from the pre-generated ensembles. We adapted this strategy for139

Rosetta-MPDock by implementing the membrane environment for both pre-generating ensembles and140

making docking moves. By including this backbone diversity, we tested whether we could obtain better141

near-native sampling for flexible targets.142

Fig. 3. Ensemble-MPDock improves docking performance on flexible targets. (A) Interface Score (REU) vs Interface
RMSD (Å) (top), and fraction of native-like contacts (bottom) for target 3KCU. (B) Best sampled decoy for 3KCU (portable
formate transporter, RMSDUB = 3.56 Å). (C) Comparison of ⟨N5⟩ values after full protocol for Rosetta-MPDock rigid and
ensemble cases respectively. Dashed lines highlight the region in which the two protocols differ significantly, i.e. by more
than one point in their ⟨N5⟩ values. Different symbols correspond to each target’s difficulty category (circle: rigid; triangle:
medium; diamond: flexible). Points above the solid line represent better performance with franklin19 scorefunction, while
points below the line represent better performance with mp15 scorefunction.
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To demonstrate the performance of ensemble docking vs rigid docking, we compare the docking metrics 143

for the same flexible target 3KCU. Figure 3A plots both the interface score (top) and the fraction of 144

native-like contacts made by the interface residues of the sampled decoys with respect to native (bottom) 145

as a function of the interface RMSD. Ensemble docking shows better sampling, as evident from the lower 146

energy decoys sampled within near-native RMSDs and higher f nat scores (Figure 3A). This observation 147

supports our hypothesis that backbone sampling allows capturing native-like binding interfaces for flexible 148

targets with considerable conformational change. Figure 3B illustrates the best-sampled decoy structure 149

superimposed over the native, highlighting the correct binding orientation in the membrane bilayer being 150

sampled. 151

Next, to compare the two scorefunctions, we measured the number of near-native decoys in the top 5 152

structures (⟨N5⟩) for the full benchmark set of 29 targets. A near-native structure is considered to be 153

a success if it is a decoy with a CAPRI rank of acceptable or higher. The protein target is considered 154

a docking success if three of the top five scored structures are near-native, accessed with bootstrapped 155

sampling (⟨N5⟩≥3). Figure 3C compares the ⟨N5⟩ scores of rigid docking and ensemble docking with the 156

dashed lines signifying the region of little difference. Targets in the upper half indicate that the ensemble 157

docking performs better, whereas those in the lower half indicate that rigid docking performs better. Almost 158

all flexible targets (red diamonds) exhibit equal or better performance with ensemble docking. However, for 159

medium targets (blue triangles), ensemble docking often reduces the performance. The docking funnel plots 160

(Supplementary S3-S4) show that although lower RMSD structures are sampled, some docking trajectories 161

led to false positive minima, suggesting a need to improve the energy function. The false positive minima 162

could also arise from backbone motion in regions of the protein that do not move in reality, resulting 163

in an unrealistic backbone conformation that seems to fit better in silico. Overall, the improvement by 164

franklin19 scorefunction is modest. Franklin2019 focuses on the hydrophobic interaction between the 165

proteins and the membrane bilayer however, it misses the electrostatic interaction (Supplementary figures 166

S1-S6). Recently, we developed a new energy function, franklin23, to add the electrostatic effect of the 167

phospholipid layer and variable dielectric constant in the membrane bilayer. A comparison of interface rmsd 168

and the fraction of native contacts by franklin23 shows similar or slightly better results in comparison 169

to franklin2019 as shown in Supplementary Figures S7 and S8. scorefunctions and their details are 170

discussed in SI section 1. Irrespective of functions, ensemble docking improves docking for flexible targets 171

over conventional rigid body docking (Supplementary Fig. S5-6). 172

MPDock efficiently refines AlphaFold predictions and recapitulates native-like contacts. 173

Deep-learning approaches such as AlphaFold2 and RoseTTAFold have enabled highly accurate three- 174

dimensional structure prediction. Further, AlphaFold-multimer (AFm) has improved the structure pre- 175

diction of protein complexes, however flexible protein complexes and transmembrane proteins are still 176

a challenge.23,35,36 Here, we assess the performance of AFm for membrane protein assemblies on the 177

benchmark set. Note that most of the targets were deposited in the Protein Data Bank (PDB) before 178

AFm’s training date, so performance on novel structures may be worse. We evaluate whether refining AFm 179

predicted structures with Rosetta-MPDock (AFm+Rosetta MPDock) can improve performance. Figure 4A 180

shows the RMSDs for medium and flexible targets of the benchmark set across different docking protocols 181

(starting from the unbound conformers) compared to the AFm predicted structures. We compare the Cα 182

RMSDs of the protein complexes obtained from prediction tools (AFm, JabberDock, Rosetta MPDock, and 183
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AFm+Rosetta MPDock) with the experimental structures. AFm results are highlighted as a red cross. In184

comparison to AFm and JabberDock, AFm+Rosetta MPDock (rigid and ensemble) captures lower RMSD185

structures. For cases of interface rmsd over5 Å, for instance, targets 3CHX, 4DKL, and 1Q90, the higher186

interface rmsd may be explained by poor prediction of protein partner structures, i.e., if individual protein187

partners were themselves predicted incorrectly, MPDock protocol fails to dock them successfully. Therefore,188

a major limitation in utilizing docking protocols over structure prediction tools is that the accuracy of189

docking would depend upon the prediction accuracy of protein partners.190

To obtain a head-to-head comparison between AFm and AFm+MPDock (ensemble), we compare the191

interface RMSDs and f nat of top-5 structures from respective methods (Figure 4B). Alphafold2 captures192

near-native structures in a few cases, but we observe that in almost all the cases, Rosetta MPDock refinement193

improved Alphafold2 predictions to capture near-native structures, evident from the lower interface RMSD194

(Irms) and a higher fraction of native-like contacts (fnat) for Rosetta MPDock. Thus, refinement and195

docking with a physics-based scorefunction that accounts for the membrane environment can generate196

better membrane protein assemblies.197

Fig. 4. Performance of MPDock with AlphaFold2 predicted structures. (A) Interface RMSD (on top) and fraction
of native-like contacts (fnat) for Rosetta-MPDock (ensemble and rigid docking starting from unbound monomers) and
AFm+RosettaMP dock (ensemble and rigid docking starting from Alphafold2 predicted monomers). Performance is
indicated by lower Irmsd ad higher fnat). (B) RMSD of the predicted protein monomer (shaded) or protein complex (blank )
structure relative to the native/bound crystal structure for moderately flexible/medium (top) and difficult targets (bottom).
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Discussion 198

Despite their significant importance as pharmaceutical drug targets, structure determination is notoriously 199

difficult for membrane proteins. In this work, we developed, benchmarked, and evaluated a docking pipeline 200

that accommodates the membrane environment and enables flexible backbone protein-protein docking. We 201

built on the foundations of RosettaMembrane modeling tools to create a modular framework for membrane 202

protein docking with backbone flexibility. Rosetta-MPDock combines the features of the membrane 203

environment ( membrane topology, span, and geometry) with docking features and a conformer-selection 204

mechanism to provide a membrane protein docking algorithm. Further, by incorporating Alphafold2 205

modeled structures and assessing them in energy functions suitable for a membrane-specific environment, 206

we demonstrate an ability to sample better docked models. The results on a membrane protein benchmark 207

of 29 targets improve membrane protein structure determination and lay the groundwork for answering 208

underlying questions in biology involving trans-membrane proteins. 209

The membrane protein docking benchmark that we curated, is to the best of our knowledge, the most 210

comprehensive database of transmembrane protein structures with known bound and unbound forms. 211

We further demonstrated the utility of a flexible backbone protocol over conventional rigid-body docking 212

approaches in sampling moderately-flexible and flexible targets. By incorporating diverse backbones 213

generated from different ensemble generation protocols along with an improved membrane energy function, 214

Rosetta-MPDock can effectively identify near-native interfaces. This is reflected by a boost in docking 215

performance relative to alternative state-of-the-art docking methods (e.g. HADDOCK, JabberDock) as 216

Rosetta-MPDock successfully docks 67% of moderately flexible targets and 60% of flexible targets. 217

One of the limiting factors in conformer-selection methods has been the difficulty of ensemble-generation 218

methods in capturing native-like structures. With the advent of Alphafold2 (and recently AlphaFold337), 219

there is an opportunity to leverage its structural predictions to diversify conformational ensembles and 220

provide plausible backbones for protein docking. We demonstrate this by coupling AlphaFold2 predictions 221

with Rosetta-MPDock. In cases where AlphaFold2 predicts unbound protein partners with high accuracy, 222

Rosetta-MPDock refines on those inputs to create CAPRI-acceptable or better models. We have previously 223

shown that augmenting AlphaFold2 with physics-based sampling strategies has demonstrated potential 224

for soluble protein docking and antibody-antigen targets.23 Our results here extend these observations for 225

membrane proteins and show that physics fused with deep learning structure prediction tools can guide 226

better sampling in the relatively difficult challenge of sampling membrane protein conformations. We 227

anticipate that the availability of the benchmark and the modeling tools will make membrane protein 228

modeling accessible to the broad scientific community and enable better design of this exquisite class of 229

biomolecules. 230

Methods 231

Dataset Curation. 232

We built on prior benchmarks20,25 and curated a consolidated set with 29 TM proteins and their unbound 233

conformations. We classified these complexes based on their extent of flexibility, (unbound-to-bound 234

root-mean-square-deviation for interface residues, RMSDunbound-bound) into the following categories: bound 235

(with no unbound conformations available); rigid; medium; and difficult. The curated benchmark set 236

features 9 bound targets, 9 rigid targets, 6 medium targets, and 5 difficult targets (Table 1). 237
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Energy functions.238

We tested franklin1932, the current standard for membrane protein modeling in Rosetta; and three different239

membrane energy functions along with one soluble protein energy function in our benchmarking analysis. The240

membrane energy functions were membrane protein framework 2015 (MP15)15, franklin2019 (franklin19)32
241

and franklin2023 (franklin23,16 new energy function in Supplementary); with ref2015 (ref 15)15 as the242

soluble energy function. Further details about individual energy functions are described in the supplement.243

All the energy functions correspond to Rosetta’s all-atom mode and have been benchmarked on experimental244

metrics such as tilt angle, stability, and design.17 We use the motif dock score (MDS) energy function for the245

low-resolution phase in Rosetta MPdocking protocols due to the lack of a membrane-based low-resolution246

version of franklin19. MDS relies on a pre-calculated residue pair energy that resembles ref15 energies247

mapped onto backbone coordinates; however, it lacks the membrane context.248

Rosetta MPDock protocol.249

Rigid docking. Rosetta MPDock15 is an extension of the conventional RosettaDock protocol to incorporate250

the complexities of modeling membrane proteins. Rosetta MPDock protocol transforms the input pose to the251

membrane environment, pre-packs the input structure (optimizing rotameric conformations for side chains)252

and then engages in docks within the lipid membrane with rigid-body rotations and translations performed253

in 2D cartesian space (x, y coordinate space as the z coordinate is constant owing to membrane-depth).254

The lipid membrane is fixed throughout the sampling procedure, and each sampled conformation is scored255

with a membrane-specific scorefunction. The details of the protocols are in Alford and Leman et. al.15
256

Ensemble docking. Building over the Rosetta MPDock rigid-body docking protocol, ensemble docking257

incorporates diverse backbones to mimic conformer selection in docking. Following the transformation of258

the Pose object into the membrane environment, the ensemble docking protocol performs three steps: (1)259

ensemble generation to diversify the protein backbone, (2) the pre-packing to refine the side chains and create260

a starting structure, and (3) protein-protein docking in the membrane bilayer. In the ensemble generation261

step, to generate diversity in backbone conformations for the proteins, we used three conformer generation262

methods: perturbation of the backbones along the normal modes by 1 Å38 using RosettaScripts39 refinement263

using the Relax protocol in Rosetta,40 and backbone variation using the Rosetta Backrub protocol.41
264

Complete command lines are provided in the Supplementary Method. We have used 40 Backrub conformers,265

30 normal mode conformers, and 30 relax conformers to comprise an ensemble of 100 conformers. Similar266

to the rigid docking, in the pre-packing step, the side chains of the ensembles of the unbound structures267

(keeping their membrane embedding constant) are repacked using rotamer trials. Next, the docking step268

uses a Monte Carlo plus a minimization algorithm42 consisting of a low-resolution stage simulating conformer269

selection and a high-resolution stage simulating induced fit. The low-resolution stage includes rotating270

and translating the ligand around the receptor coupled with swapping of the pre-generated backbone271

conformations using Adaptive Conformer Selection.28 In the high-resolution stage, the side chains are272

reintroduced to the putative encounter complex, and those at the interface are packed for tight binding. At273

all steps, the membrane is kept fixed.274
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Data Availability. 275

The source code for docking, with interface-tests, global and local docking examples and directed induced-fit, 276

is available at rosettacommons.org, including scripts and tutorials. The benchmark and other utility scripts 277

are available at github.com/Graylab/MPDock. 278
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