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Abstract 46 

Accurate quantification of transcript isoforms is crucial for understanding gene regulation, functional diversity, 47 

and cellular behavior. Existing RNA sequencing methods have significant limitations: short-read (SR) sequencing 48 

provides high depth but struggles with isoform deconvolution, whereas long-read (LR) sequencing offers isoform 49 

resolution at the cost of lower depth, higher noise, and technical biases. Addressing this gap, we introduce Multi-50 

Platform Aggregation and Quantification of Transcripts (MPAQT), a generative model that combines the 51 

complementary strengths of different sequencing platforms to achieve state-of-the-art isoform-resolved transcript 52 

quantification, as demonstrated by extensive simulations and experimental benchmarks. By applying MPAQT to an 53 

in vitro model of human embryonic stem cell differentiation into cortical neurons, followed by machine learning-54 

based modeling of transcript abundances, we show that untranslated regions (UTRs) are major determinants of isoform 55 

proportion and exon usage; this effect is mediated through isoform-specific sequence features embedded in UTRs, 56 

which likely interact with RNA-binding proteins that modulate mRNA stability. These findings highlight MPAQT’s 57 

potential to enhance our understanding of transcriptomic complexity and underline the role of splicing-independent 58 

post-transcriptional mechanisms in shaping the isoform and exon usage landscape of the cell.    59 

 60 

Introduction 61 

Nearly all protein-coding genes encode multiple transcript isoforms, resulting from a wide array of alternative 62 

transcription start sites (TSSs), transcription termination sites (TTSs), and/or alternative splicing of exons1. This 63 

isoform variation is a significant source of molecular and functional diversity, as proteins produced from different 64 

isoforms of the same gene can have distinct (and even opposite2) functions. Even transcript isoforms that encode the 65 

same protein can differentially affect cellular functions due to variations in mRNA localization, stability, and/or 66 

translation3-5. Thus, isoform abundances can reflect the biological state better than the gene-level aggregation of 67 

expression profiles. 68 

Given the sequence similarity of transcript isoforms, accurate quantification of isoform abundances by RNA 69 

sequencing remains a major challenge. Methods based on short-read (SR) sequencing can generate a large number of 70 

reads at increasingly low costs, providing high sequencing depth for reproducible quantification. However, the vast 71 

majority of short reads cannot be unambiguously assigned to a single isoform6. On the other hand, by generating reads 72 

that almost capture full-length transcripts, long-read (LR) RNA sequencing offers the ability to unambiguously resolve 73 

the isoform of origin of most reads. However, at comparable costs, current LR sequencing platforms produce 1-2 74 

orders of magnitude fewer reads compared to SR sequencing, increasing the noise and sacrificing the accuracy of 75 

quantification. Their complementary abilities suggest the potential for highly accurate, isoform-resolved, transcript 76 

quantification by combining short- and long-read sequencing strategies. However, while several existing tools 77 

leverage SR and LR data for a range of upstream tasks—such as splice site identification and splice junction 78 

refinement7, alternative polyadenylation site identification8, and de novo transcriptome assembly9, 10—none provide a 79 

principled statistical framework for transcript quantification from joint analysis of SR and LR data. 80 
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Here, we introduce Multi-Platform Aggregation and Quantification of Transcripts (MPAQT), a probabilistic 81 

framework for the inference of isoform-resolved transcript abundances. By integrating the quantification information 82 

across multiple platforms with different data-generating processes, such as SR and LR sequencing, MPAQT leverages 83 

their complementary advantages to obtain highly accurate isoform abundance profiles, as shown by extensive 84 

simulations and benchmarking experiments. By applying MPAQT to matching SR and LR data from an in vitro model 85 

of neuronal differentiation, we provide a high-resolution picture of isoform abundance changes that accompany the 86 

differentiation of human embryonic stem cells (hESCs) into cortical neurons. Machine learning-based models of the 87 

determinants of isoform abundance, trained using MPAQT measurements, revealed the role of alternative mRNA 88 

untranslated regions (UTRs) in determining the abundances of isoforms with different cassette exons, highlighting a 89 

previously overlooked relationship between cassette exon inclusion rate and distal sequence elements located in the 90 

mRNA UTRs. 91 

Results 92 

The MPAQT framework 93 

At the core of MPAQT is a generative model that connects the latent abundances of the transcripts to the observed 94 

counts of the “observation units” (OUs) (Figure 1a). Here, an observation unit is any entity that we can directly 95 

quantify from RNA-seq reads, defined in a technology-dependent manner. For example, in long-read (LR) sequencing 96 

data, in which most reads can each be unambiguously assigned to one transcript, we can simply define each transcript 97 

as one OU, resulting in a one-to-one relationship between the transcripts and the OUs. The expected count of each 98 

OU, thus, scales linearly with the abundance of its corresponding transcript, with factors such as transcript length or 99 

GC content affecting the slope of this relationship. The observed count is then modeled as a sample from a Poisson 100 

distribution whose mean is the expected count determined by the transcript abundance and transcript-level covariates. 101 

In short-read (SR) RNA-seq data, in which most reads can be mapped to multiple transcripts (or even multiple 102 

genes), the relationship between transcripts and OUs can be more complex. Here, we use the equivalence classes 103 

(ECs)6 as the OUs. In this case, each transcript may be connected to multiple OUs, and each OU may be connected to 104 

multiple transcripts (it is possible to extend the concept of EC’s to long-read data as well; see ref11). MPAQT models 105 

the expected count of each OU as a linear function of the abundances of all transcripts that may contribute to that OU 106 

(Figure 1a), with the parameters of this function (i.e., the transcript-OU weights) obtained through analysis of 107 

simulated short reads (see Methods for details). 108 

By explicitly modeling the OU counts as probabilistic functions of transcript abundances, MPAQT provides a 109 

natural framework for joint analysis of data across multiple platforms that assay the same RNA sample, such as short- 110 

and long-read sequencing data (Figure 1a)—MPAQT infers the transcript abundances by maximum a posteriori 111 

(MAP) estimation given the observed OU counts across all platforms, along with optimization of platform- and 112 

experiment-specific model parameters such as the length- or GC-biases and the library size. 113 

Improved gene-level quantification with MPAQT 114 
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To examine whether MPAQT might be broadly applicable to gene expression quantification, we began by 115 

benchmarking its performance against that of three leading SR analysis tools, salmon12, kallisto6, and RSEM13, for 116 

gene-level quantification using SR data alone. For this purpose, we used data from the MicroArray Quality Control 117 

(MAQC) project14. This dataset consists of single-end RNA-seq data for two MAQC samples15: MAQCA (Universal 118 

Human Reference RNA, pool of 10 cell lines) and MAQCB (Human Brain Reference RNA). Each MAQC dataset is 119 

accompanied by RT-qPCR expression measurements for 18,080 protein-coding genes in the form of Cq-values 120 

(representing the number of PCR cycles before a signal is seen for a given gene; higher Cq-values correspond to lower 121 

abundances). Of the genes that could be readily matched to quantifications from the RNA-seq-based methods based 122 

on their IDs, 14,956 genes had Cq-values between 11 and 32, a range deemed reliable in the original report15. For this 123 

subset, the ground truth differential expression (DE) was calculated as the difference of RT-qPCR Cq-values between 124 

MAQCA and MAQCB (representing log2 fold-change of expression), which was then compared to gene-level log 125 

fold-change of TPM (transcripts per million) calculated from SR RNA-seq data by different tools (gene-level TPM 126 

values in each sample were calculated by summing up transcript-level TPMs for each gene). 127 

We observed excellent agreement between log fold-changes inferred by MPAQT and the ground truth DE values 128 

(Pearson r=0.91, Figure 1b). In contrast, for all other existing tools, we saw distinct outliers that were visibly separated 129 

from the remainder of the data points (Figure 1b). Figure 1c shows kallisto’s outliers, isolated from other, well-130 

behaving genes. Interestingly, MPAQT preserves differential expression information for these outlier genes (Figure 131 

1c). A similar trend is observed for outliers from salmon and RSEM (Supplementary Figure 1). These outliers 132 

represent ~2-3% of genes in our data (Figure 1d), and correspond to genes with higher mean Cq-values (Figure 1e), 133 

suggesting they are genes with low expression; this trend toward higher mean Cq-values is even stronger for the 154 134 

outliers shared among kallisto, salmon, and RSEM (Figure 1e), suggesting that low-abundance genes are commonly 135 

mis-quantified by existing tools. We also examined an extended filtering range (Cq-value between 8-35) to assess 136 

MPAQT’s performance on noisier qPCR measurements, allowing for an additional 1148 genes to be included in the 137 

analysis. Surprisingly, MPAQT’s performance remained comparable to the more conservative filtering range (Cq-138 

value between 11-32), whereas the number of outliers for the other SR tools approximately doubled (Supplementary 139 

Figure 2), highlighting the volatility of existing methods in the presence of very high- or very low-abundance genes. 140 

MPAQT improves isoform-level quantification with short- and long-read data 141 

Since no transcriptome-wide benchmarking datasets exist for isoform-level quantification, we used simulated data 142 

to benchmark the ability of MPAQT and other existing tools for isoform-level quantification, starting with SR data 143 

alone. We used six different simulated datasets: three with ground truth TPM values sampled randomly from an 144 

exponential distribution, and another three with ground truth TPM values sampled from a distribution that was 145 

modeled after measurements from real RNA-seq data (see Methods for details). In both simulations, we observed that 146 

MPAQT substantially outperforms the other tools in terms of Pearson correlation and Root Mean Square Deviation 147 

(RMSD) (Figure 2a-b). The amount of variance in the ground truth log-TPMs that is captured by MPAQT (i.e., R2 148 

between MPAQT inferences and ground truth) is ~13%–32% higher than the next best method (13% for the data 149 

simulated for TPMs that are modeled after real RNA-seq measurements, and 32% for the data simulated for TPMs 150 
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that are exponentially distributed).  Together, these simulation experiments suggest that, even without LR data, 151 

MPAQT outperforms the state-of-the-art in transcript quantification from SR data alone. 152 

Next, we set out to examine whether LR data can further improve MPAQT’s estimates of transcript abundances. 153 

We used the same ground truth TPM sets that we created for SR data simulation and generated a simulated LR dataset 154 

with moderate coverage for each replicate. Specifically, we simulated the LR full-length transcript counts by sampling 155 

from independent Poisson distributions, with the ground truth TPM of each transcript as the mean of its Poisson 156 

distribution (adjusted to obtain ~200K transcript counts per sample). Then, the combination of simulated SR data and 157 

LR counts was used as input to MPAQT, and the results were compared between SR-alone and SR+LR quantifications 158 

(Figure 2c). When MPAQT’s inferences from SR data are directly compared to those from SR+LR data, we can 159 

identify a subset of transcripts whose quantified abundances differ substantially between the two measurements 160 

(Figure 2d), despite the moderate depth of the simulated LR datasets. For this subset, we see substantial improvement 161 

in SR+LR data in terms of agreement with ground truth (Pearson correlation 0.67-0.71 for SR+LR, compared to –0.26 162 

to –0.18 for SR data alone, Figure 2d and Supplementary Figure 3a), suggesting that LR data can substantially 163 

improve transcript quantification when combined with SR data. 164 

Interestingly, although the simulations were based on independent (uncorrelated) ground truths, among the 490 165 

transcripts for which inclusion of LR data had a significant effect in at least one simulation, ~30% were identified in 166 

more than one simulation (Supplementary Figure 3b), suggesting that these transcripts may have intrinsic features 167 

that make them sensitive to the presence/lack of LR data. The genes encoding these transcripts have significantly more 168 

exons, are longer, and have more isoforms compared to other genes (Figure 2e). Furthermore, pathway enrichment 169 

analysis revealed a significant and recurrent enrichment of “nervous system development” among the LR-sensitive 170 

genes in all replicates (P<7×10–5 for the three replicates, based on g:Profiler16). This finding is consistent with previous 171 

reports showing that genes preferentially expressed in the nervous system tend to be longer, have more exons, and 172 

exhibit more complex splicing patterns compared to other tissues 4, 17, and suggests that joint analysis of SR and LR 173 

data using MPAQT is particularly beneficial to the quantification of isoforms involved in the nervous system 174 

development. 175 

Isoform quantification during neuronal differentiation with MPAQT 176 

The analyses presented above suggest that profiling the transcriptome using a combination of SR and LR 177 

sequencing can substantially improve isoform quantification for genes related to neuronal differentiation. To further 178 

investigate the landscape of isoform usage during neuronal cell differentiation, we analyzed human embryonic stem 179 

cells (hESCs) undergoing in vitro differentiation toward cortical neurons (Supplementary Figure 4), by joint SR and 180 

LR RNA-seq from cells collected at days 0, 41, and 61 since the start of growth in neural induction medium (see 181 

Methods for details). 182 

We first used MPAQT to analyze the SR data of each sample, which provided further evidence demonstrating 183 

superior performance of MPAQT over state-of-the-art SR-based quantification tools: first, MPAQT’s SR-based 184 

quantifications show a minor but consistent improvement in accuracy compared to other tools for synthetic mRNAs 185 

that were spiked in the samples at known concentrations (Figure 3a); secondly, MPAQT’s SR-based quantifications 186 
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of gene isoforms are more consistent than other tools with full-length LR counts obtained from the same sample 187 

(Figure 3b).  However, we generally see only a moderate correlation between SR quantifications and LR counts, 188 

suggesting the presence of potential biases in LR RNA-seq data. We found that the deviation between LR and SR data 189 

can be at least partially explained by transcript length and GC content: longer and GC-poor transcripts are more likely 190 

to be captured by LR sequencing (Figure 3c). Once we account for the biases introduced by these factors, we see a 191 

far larger agreement between SR and LR data (Poisson likelihood ratio test P<10–16, Figure 3d). Importantly, the same 192 

biases can be replicated when we compare the LR counts of spike-in RNAs to their ground truth concentrations 193 

(Figure 3e-f). We note, however, that these LR biases might be due to experiment-, instrument-, and/or protocol-194 

specific factors. MPAQT’s statistical model enables the inference of sample-specific sources of bias and incorporates 195 

them in its framework for integration of LR and SR data (Figure 1a; see Methods for details). 196 

Next, we used MPAQT to jointly analyze the LR and SR (SR+LR) data obtained from neuronal differentiation 197 

samples at days 0, 41, and 61, while accounting for the biases described above. We found 6309 transcripts whose 198 

inferred abundances based on SR+LR analysis deviated substantially from abundances inferred from SR-only analysis 199 

in at least one of the three time points (Mahalanobis distance >2.32, equivalent to upper-tail P<0.01 for normally 200 

distributed data). Even at a substantially stricter cutoff (Mahalanobis distance >6.36, equivalent to upper-tail P<10–201 

10), there were still 2459 transcripts whose SR+LR and SR-only quantifications differed significantly in at least one 202 

time point (Figure 4a). Interestingly, these transcripts corresponded to larger genes with  more exons and more 203 

isoforms (Supplementary Figure 5), which is in line with the findings from our simulations (Figure 2e). 204 

To validate the higher accuracy of SR+LR transcript quantifications, we first used the inferred transcript 205 

abundances to estimate the usage of alternatively spliced exons, and then selected nine cassette exons for which the 206 

change in percent-spliced-in (Ψ) between day 0 and day 61 was significantly different between SR and SR+LR 207 

measurements (Figure 4b)—more accurate transcript quantifications are expected to result in more accurate Ψ 208 

quantifications, of which the latter can be validated by RT-qPCR using junction-specific primer pairs. The selected 209 

cassette exons were mostly from genes that are neuron-specific and often associated with nervous system and/or 210 

mental disorders (Supplementary Figure 6). For these exons, we quantified the true change in Ψ using RT-qPCR 211 

and compared to differential Ψ measurements from SR or SR+LR analyses. As shown in Figure 4c, we found that 212 

SR+LR analysis provides substantially more accurate estimates of differential Ψ (r=0.81, P=0.0087) compared to SR-213 

only analysis (r=0.33, P=0.39). These results further support the notion that joint analysis of SR+LR data is crucial 214 

for accurate estimation of the abundances of many transcripts, especially those involved in neuronal function and 215 

related diseases. 216 

Sequence determinants of mRNA abundances during neuronal differentiation 217 

Accurate measurement of isoform abundances in differentiating neurons provides the opportunity to study the 218 

sequence determinants of mRNA abundance in these cells. We sought to examine the extent to which the observed 219 

mRNA abundances in progenitor and differentiated neuronal cells could be explained by the binding sites of sequence-220 

specific RNA-binding proteins (RBPs). To this end, we predicted the affinities18 of 128 RBPs, based on their known 221 

motifs19, toward the 5’ and 3’ untranslated regions (UTRs) of each mRNA isoform, removed redundancies by grouping 222 
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the motifs with similar affinity profiles into 35 motif archetypes, and, for each differentiation time point and replicate, 223 

developed a random forest machine learning (ML) model that could predict the abundance of each mRNA from its 224 

motif archetype scores (see Methods for details). Based on gene-stratified five-fold cross-validation experiments, we 225 

found that our ML models achieved an overall Pearson correlation of 0.38 (Figure 5a, minimum and maximum r of 226 

0.36 and 0.40 across individual timepoints/replicates). 227 

Interestingly, for mRNAs with significant differential abundance across time points (one-way ANOVA), the 228 

sequence-based predictions correlated strongly with the observed differential abundances (mean r of 0.35 and 0.64 for 229 

isoforms with significant differential expression at FDR ≤0.05 and ≤0.01, respectively; Figure 5b). Analysis of the 230 

Shapley additive explanations (SHAP) suggests that several 3’ UTR motif archetypes dominate the top features that 231 

are differentially used by ML models across time points (Figure 5c), nominating these motifs as the main drivers of 232 

differential mRNA abundance. As shown in Figure 5c, presence of these motifs in the 3’ UTRs is generally associated 233 

with higher mRNA abundance—on average, larger motif archetype scores correspond to larger positive SHAP values. 234 

For the mRNAs with the highest scores for these motif archetype, the SHAP values increase even further at later time 235 

points, consistent with the up-regulation of these mRNAs during differentiation. Figure 5c shows the top individual 236 

motifs associated with these motif archetypes and the RBPs that recognize them. For each motif archetype, at least 237 

one RBP can be identified whose expression pattern and known function in mRNA regulation is consistent with the 238 

increased expression of the mRNAs associated with that motif archetype. For example, one motif archetype represents 239 

several A-rich motifs recognized by various poly-A binding proteins, including PABPC5, which is known to stabilize 240 

the mRNAs it binds to20, and whose expression increases during neuronal differentiation in our dataset. Similar 241 

observations nominate the CELF21, CPEB22, 23, and KHDRBS24 families of proteins as major regulators of differential 242 

mRNA abundance during neuronal differentiation (Figure 5c). 243 

Surprisingly, even though our models do not include features that are directly attributable to alternative splicing, 244 

we found that they can explain the isoform usage patterns of a large number of genes within each time point. Figure 245 

6a shows a few examples, wherein differences in the 3’ UTR sequences of the isoforms of the same gene can predict 246 

the differences in the relative abundances of those isoforms in terminally differentiated neurons. In these examples, 247 

the region that is unique to the longer 3’ UTR contains instances of motifs with large positive SHAP values, suggesting 248 

that the higher relative abundance of the dominant isoform is due to higher stability conferred by the binding of 249 

stabilizing RBPs to its 3’ UTR, as opposed to preferential splicing. Overall, for genes with more than two isoforms, 250 

differences in UTR sequences can predict the isoform usage in differentiated neurons with mean r=0.23. For 25% of 251 

such genes (2508 out of 10,010), the correlation between UTR-based predictions and isoform usage in differentiated 252 

neurons exceeds 0.7. This fraction increases to 41% if we focus on the subset of genes with the most reproducible 253 

isoform usage profiles (166 out of 405 genes with isoform imbalance F-value >500; Figure 6b). For genes with two 254 

isoforms and highly reproducible isoform imbalances (F-value >500), in 73% of cases (377 out of 517) the UTR-255 

based predictions can correctly identify the dominant isoform. Overall, these results suggest that alternative UTR 256 

usage is a major determinant of isoform ratios. This raises the possibility that alternative UTR usage may also be 257 

responsible for variations in other, locally measured, metrics of alternative splicing, such as percent-spliced-in (PSI) 258 

of cassette exons. Figure 6c shows an example cassette exon that is excluded in an isoform that also harbors short 5’ 259 
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and 3’ UTRs. In contrast, the isoforms in which this cassette exon is included have longer UTRs—this association 260 

between cassette exon inclusion and the choice of UTR enables accurate exon inclusion prediction based on UTR 261 

sequences alone (predicted PSI of 0.963 vs. observed PSI of 0.956 for the example cassette exon shown in Figure 6c), 262 

without any knowledge of the local sequence features of the cassette exon itself. When we expanded this analysis to 263 

all expressed cassette exons (inclusion + exclusion TPM ≥1), we observed that our UTR-based ML models can predict 264 

PSI with a Pearson correlation of 0.65 (Figure 6d), and can separate “included” exons (defined as those with PSI≥0.8) 265 

from “excluded” exons (PSI≤0.2) at AUROC (area under the receiver operating characteristic curve) of 0.92 266 

(Supplementary Figure 7). These observations suggest that the sequence determinants of exon inclusion rate are not 267 

limited to the local context of the exon, and distal elements in the UTRs contribute significantly to the exon usage 268 

landscape, potentially through non-splicing mechanisms such as regulation of mRNA stability. 269 

 270 

Discussion 271 

MPAQT’s generative model can effectively combine sequencing data from multiple platforms to enhance gene- 272 

and isoform-level mRNA quantification. This superior performance stems from MPAQT’s ability to leverage the 273 

complementary strengths of each platform, while overcoming the limitations posed by the inherent properties of each 274 

sequencing technology. Compared to SR data alone, we show that combining SR and LR data with MPAQT leads to 275 

more accurate isoform-level quantifications, owing to the unambiguity of LR-transcript assignments. Compared to 276 

LR data alone, combining LR data with SR data provides the coverage needed to obtain low-uncertainty measurements 277 

across the spectrum of mRNA abundances. In this work, we simulated LR data with a library size  of ~200K reads per 278 

sample to emphasize the information gained even by inclusion of low-to-moderate amounts of LR data (relative to 279 

SR-only). Nonetheless, even in our neuronal differentiation dataset, with a mean library size  of ~1.1M mappable full-280 

length long reads per time point, only the most highly abundant transcripts are quantified accurately with LR data 281 

alone (e.g., see spike-in measurements in Figure 3f). Other recent studies also report similar sequencing depths for 282 

LR-RNA-seq (e.g., ~1.4M full-length long reads per sample in ENCODE4 human LR data25), falling considerably 283 

short of the sequencing depths routinely obtained from SR-RNA-seq. 284 

In addition, combining LR and SR data overcomes sequence-dependent biases that may be introduced by reliance 285 

on LR data alone: analysis of spike-in mRNAs with known concentrations suggests that LR sequencing data may be 286 

biased toward AT-rich and/or longer transcripts, while SR data appear to be unaffected by these factors (Figure 3a,f). 287 

The LR biases may be study- and/or protocol-specific (e.g., see ref26 for nucleotide composition biases that are 288 

different from our observations), underlining the need to learn such study- and/or experiment-specific biases from the 289 

data. When the ground-truth abundances of the mRNAs are not known, however, it may not be feasible to distinguish 290 

technical biases from biologically relevant phenomena; for example, if we see higher long read counts for low-GC 291 

transcripts, is it because these transcripts are truly expressed at higher levels, or is it a bias introduced by the sequencing 292 

procedure? This unidentifiability issue, however, is alleviated when unbiased SR data are combined with LR data, 293 

since SR data provide an implicit reference for MPAQT to learn the source and magnitude of biases in LR 294 
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quantifications. Thus, even without considering the higher cost (and, thus, lower depth) of LR sequencing, combining 295 

LR data with SR data is still advantageous. 296 

We show that the increased accuracy that we gain from combining SR and LR data is especially important when 297 

quantifying mRNAs from longer genes with complex alternative splicing landscapes, a common feature of genes 298 

expressed in neuronal systems. By applying this approach to an in vitro model of neuronal differentiation, followed 299 

by ML-based modeling of the measured transcript quantities, we uncovered the sequence determinants of isoform 300 

abundance within and across differentiation time points. The most important sequence features correspond to RBP 301 

recognition sequences located in 3’ UTRs (Figure 5c), suggesting a critical role for post-transcriptional mechanisms 302 

in shaping the mRNA landscape of differentiating neurons. Most surprisingly, we observed that these UTR-based 303 

features are also strong predictors of within-gene isoform usages, and can even predict, to a large extent, the usage of 304 

cassette exons without any knowledge of the local features surrounding such exons (Figure 6b,d). A substantial body 305 

of work has been dedicated to identifying the determinants of cassette exon usage, including ML-based modelling of 306 

the sequences that surround these exons (e.g., see refs27-30). However, recent work has highlighted the challenges of 307 

predicting cell type-specific exon inclusion using only the local sequence features, especially in neurons31.  Our results 308 

underline the importance of considering global mRNA sequence features in models of splicing regulation and exon 309 

usage, given that non-local sequence features can also affect exon inclusion levels through splicing-independent 310 

mechanisms, such as isoform-specific regulation of mRNA stability. Identification of such splicing-independent 311 

determinants of exon inclusion can also have implications in the design of therapeutics aimed at modulating disease-312 

associated exons32. 313 

Although MPAQT offers state-of-the-art inference of isoform abundances, it also comes with current limitations 314 

that motivate further work. For example, at the core of MPAQT’s generative model are platform-specific matrices 315 

whose elements represent the probabilities of transcript-OU associations—for short-read data, the current 316 

implementation of MPAQT relies on generation and analysis of a large number of simulated reads to obtain this 317 

matrix, which is computationally expensive. While this matrix only needs to be generated once per reference 318 

transcriptome, more efficient approaches for its derivation could expedite the analysis of new reference 319 

transcriptomes. On the other hand, MPAQT’s reliance on simulated data to construct the OU-transcript association 320 

matrix provides advantages, such as awareness of the probabilities that reads get assigned to the wrong OU by the 321 

read-OU mapping tool. This ability to implicitly account for the errors introduced by the read-OU mapping algorithms 322 

(such as kallisto) may underlie MPAQT’s superior performance even when applied to short-read data alone, although 323 

this speculation needs further examination. 324 

Another limitation of our current implementation lies in our assumption that read-isoform assignments are 325 

unambiguous for long reads. While this assumption may be true for a large fraction of long reads, factors such as 326 

transcript degradation, read truncation, and other sequencing or alignment artifacts can introduce ambiguities in at 327 

least a fraction of read-transcript assignments11. The statistical framework of MPAQT in principle allows for these 328 

ambiguities to be taken into consideration, for example by using “read classes”11 as OUs, each of which may be 329 

compatible with multiple isoforms. With tools that are capable of simulating long read data33, a simulation-based 330 
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strategy can be used to construct the transcript-OU association matrix for long-read data, which may further increase 331 

the accuracy of MPAQT’s inferences. 332 

 333 

  334 
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Methods 335 

MPAQT generative model 336 

As described in the Results section, MPAQT’s generative model connects the latent transcript abundances to the 337 

expected counts of a set of “observation units” (OUs), which are defined based on the technology/platform. Consider 338 

an RNA-seq dataset, generated by K different platforms from sequencing the same mixture of transcripts from the set 339 

T, with each transcript t∈T having the relative abundance ft so that Σt∈T ft=1. We also define f=(f1,…,f|T|)⊤ to be the 340 

vector of relative abundances; f∈(0,1)|T|. For each platform k∈{1,…,K} and each transcript t, let’s define the “effective 341 

length6” lk,t to be a normalization factor such that ftlk,t=Pk(t), where Pk(t) is the probability of observing a read (or 342 

fragment) from transcript t in platform k (Σt∈T Pk(t)=1). In other words, Pk(t) is the expected proportion of reads that 343 

originated from transcript t, given the transcript abundance profile and the platform. 344 

Each read from each platform k is assigned to one OU from the set Uk. For a read that originated from a given 345 

transcript t, the probability of being assigned to a given observation unit u∈Uk is represented by Pk(u|t). In other words, 346 

Pk(u|t) is the probability of a read mapping to u conditional on that read having been selected from t. We also define 347 

pk,u,t=lt,kPk(u|t). Note that pk,u,t does not depend on the abundance of transcript t, and is rather a function of transcript 348 

properties/sequence and the platform k. It follows that Pk(u) = Σt∈T Pk(t)Pk(u|t) = Σt∈T ftlk,tPk(u|t) = Σt∈T ft pk,u,t, where 349 

Pk(u) is the probability that a read in platform k is assigned to the observation unit u (i.e., Pk(u) is the expected 350 

proportion of reads in the dataset that map to u; Σu∈Uk Pk(u)=1). Subsequently, the expected number of reads from 351 

platform k mapping to u is given by λk,u= Pk(u)Nk, where Nk is the total number of reads obtained from platform k. In 352 

turn, the observed number of reads from platform k mapping to u is drawn from a Poisson distribution (which is 353 

commonly used to model count data, e.g., see ref34), with expectation λk,u. This generative model can be summarized 354 

as follows: 355 

∀𝑘 ∈ {1, … , 𝐾} | 𝝀𝑘 = (𝜆𝑘,1, … , 𝜆𝑘,|𝑈𝑘|)
⊤

= 𝑠𝑘𝑷𝑘𝜷  356 

∀𝑢 ∈ 𝑈𝑘| 𝑛𝑘,𝑢~Pois(𝜆𝑘,𝑢) 357 

Here, Pk∈ℝ≥0
|Uk|×|T| is a platform-specific matrix whose elements, pk,u,t, are described above, β∈ℝ+

|T| is a column 358 

vector of scaled abundances for transcripts T, and sk is a platform-specific scaling factor. Note that β and sk are 359 

differently scaled representations of f and Nk, respectively, so that β=Nf/sk. Since β and sk together form an 360 

underdetermined system, we impose a log-normal prior for β with a mean of zero to enforce a unique solution: 361 

log 𝜷 ~𝒩(𝟎, 𝜎2𝑰) 362 

Given {n1, n2, …, nK}, which is the set of observed OU counts across K platforms, and {P1, P2, …, PK}, which is 363 

the set of matrices that connect transcript identities to OU probabilities in each platform as described above, MPAQT 364 

finds the maximum a posteriori (MAP) estimate of β and {s1, s2, …, sK} using an expectation maximization (EM) 365 

algorithm, as described in Supplementary Methods. The MAP estimate of β is then used to obtain the vector of 366 

relative abundances f (and TPM) by rescaling. 367 
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Obtaining the platform-specific matrices Pk 368 

For any platform k that represents short-read (SR) data, we obtain the matrix Pk by simulation from a reference 369 

transcriptome in which all transcripts have exactly equal abundances, using the Rsubread “simReads” function35, 370 

followed by read-EC assignment using kallisto6. To make sure that Pk accurately approximates the EC probabilities, 371 

we simulate 24 replicates of 100 million reads with the same length as those of the query platform, for a total of 2.4 372 

billion reads. Since each simulated read is tagged with its transcript of origin (t) and is mapped to a unique EC (u), we 373 

can calculate the proportion of reads that originate from transcript t and map to EC u, i.e., pu,t. In practice, however, 374 

we do not calculate the proportions pu,t, but instead directly use the read count mu,t. Since mu,t is proportional to pu,t, it 375 

only affects the scale sk. The scripts for these steps are available at https://github.com/csglab/MPAQT. 376 

For long-read data, in the simplest scenario, we can assume that each long read is unambiguously assigned to one 377 

transcript; thus, Uk=T, and Pk(u|t)=1 when u=t and zero otherwise. Furthermore, we can assume that read counts are 378 

proportional to the transcript abundances, i.e., no biases exist and all transcripts have the same effective length (∀t∈T 379 

lk,t=1). The matrix Pk for long-read sequencing data is then simply the |T|×|T| identity matrix I. However, both these 380 

assumptions can be violated in real-life applications. Particularly, as discussed in the Results section, we have found 381 

that substantial length and GC-biases exist in PacBio Sequel II data. Therefore, MPAQT provides the option to 382 

explicitly learn these biases from data and incorporate them in the matrix Pk. We model lk,t, the effective length of 383 

transcript t in long-read platform k, as a function of transcript-level variables ct (ct ∈ℝ|D|, where D is the set of 384 

transcript-level covariates whose effects we want to model). Specifically, log lk,t = ct⋅γk, where ⋅ is the dot product, and 385 

γk∈ℝ|D| is the vector of coefficients representing the effect of the covariates on the propensity of the transcripts to be 386 

captured by long-read platform k. The log-link ensures that lk,t is restricted to the domain ℝ≥0
|T|. The MAP estimate of 387 

γk is obtained during model fitting as described in Supplementary Methods. 388 

Cortical neuron differentiation and RNA-seq data generation 389 

Cortical neuron differentiation 390 

The hESC SOX10::GFP bacterial artificial chromosome reporter line (in the H9 background) was used for neural 391 

differentiation according to the protocol adapted from a study of brain organoids36.  In brief, the hESC line was 392 

maintained in feeder-free conditions with the E8 medium. Neural differentiation was initiated when the cells reached 393 

90-100% confluency. From days 0-11, the cells were maintained in neural induction medium (10 µM SB431542 and 394 

100 nM LDN193189 in E6 medium) with medium change every two days. From day 12, the cells were fed the cortical 395 

neuron medium (10 ng/mL GDNF, 100 µM ascorbic acid, 1x Glutagro, 1x N2 supplement, 1x B27 without vitamin A 396 

in neurobasal medium) with medium change every other day until rosette structures became visible. Then, neurons 397 

were detached using Accutase and replated on poly-L-ornithin/fibronection/laminin-coated plates. Neurons were 398 

maintained in cortical neuron medium with medium change every other day. On days 22-24, neurons were checked 399 

for the presence of axonal projections and 10 µM DAPT was included in the cortical neuron medium until the 400 

projections appeared. From day 30, neurons were considered mature with the medium feeding frequency reduced to 401 

1-2 times per week.  402 
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RNA extraction, short-/long-read RNA-seq library prep, and sequencing 403 

Cells were harvested at days 0, 41, and 61, followed by RNA extraction using Zymo Quick-RNA Microprep kit 404 

according to the manufacturer’s protocol. SIRV set 4 (Lexogen) was spiked at 1% in the hESC and differentiated 405 

neuron-derived RNA samples. Short-read RNA-seq libraries were prepared using the SMARTer Stranded Total RNA-406 

Seq Kit v3. Libraries were sequenced on a NextSeq 550 sequencer (2x75 bp paired-end). PacBio Iso-seq libraries 407 

from the same RNA samples were generated using the NEBNext Single Cell/Low Input cDNA Synthesis & 408 

Amplification Module, PacBio Iso-Seq Express Oligo Kit and SMRTbell express template prep kit 2.0 according to 409 

the manufacturer’s protocol. The libraries were sequenced on a PacBio Sequel IIe. 410 

Processing of short-read RNA-seq data 411 

All SR data, including those generated from the neuronal differentiation model (above), those obtained from 412 

publicly available data, and simulated data (below) were processed using RSEM 13 (version 1.3.3, following alignment 413 

with bowtie2 version 2.4.2), salmon 12 (version 1.3.0, with the --validateMappings and --gcBias flags ), kallisto 6 414 

(version 0.48.0) and MPAQT.  415 

The MAQC data was taken from GEO accession GSE83402, and single-end samples MAQCA_1 (four technical 416 

replicates: SRR3670977, SRR3670978, SRR3670979, SRR3670980) and MAQCB_1 (four technical replicates: 417 

SRR3670985, SRR3670986, SRR3670987, SRR3670988) were processed with the above SR quantification tools 418 

(RSEM, salmon, kallisto and MPAQT). Technical replicates for each sample were combined (at the level of FASTQ 419 

files) during quantification. Differential expression was calculated as the logarithm of fold-change (logFC) between 420 

MAQCB_1 and MAQCA_1, separately for each quantification tool.  421 

Simulated datasets for benchmarking, in the form of paired-end FASTQ files, were generated from ground truth 422 

TPM values using the simReads function from the Rsubread R package 35. Rsubread takes as input the number of 423 

reads to simulate and a list of transcripts with their desired TPMs. We generated two simulated datasets using two 424 

different sets of ground truth TPMs. For the first dataset, ground truth TPMs were sampled from an exponential 425 

distribution (using rexp R function with default rate=1). For the second dataset, we first used kallisto to quantify 426 

transcript abundances from RNA-seq data of the MDA-MB-231 cancer cell line (GEO entries GSM4886854, 427 

GSM4886855) 37 and then used the resulting TPMs as the ground truth for read simulation. For the rexp.sim dataset, 428 

three simulated “replicates” were generated, and one sample was generated for the MDA-MB-231-based dataset, each 429 

with 30 million paired-end reads of 75 bp. These samples were processed with RSEM, salmon, kallisto and MPAQT, 430 

as described above. 431 

SR sequencing data for the neuronal differentiation samples were processed using the paired-end options for above 432 

tools. For this dataset, we added the spike-ins to the reference transcriptome of the above tools to enable their 433 

quantification. Each spike-in was added in as its own separate chromosome, and 1000 “N” spacer nucleotides were 434 

added on either side of each spike-in sequence. As described above, we used the SIRV-Set 4 from Lexogen, which 435 

contains 114 spike-in transcripts. We used 107 in this analysis, since SIRV-403 to SIRV-410 were not included in the 436 

reference FASTA provided by Lexogen. 437 
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Processing of long-read RNA-seq data 438 

The IsoSeq pipeline (Pacific Biosciences) was used to process the neuronal differentiation LR data and generate 439 

circular consensus sequence (CCS) reads, which were stored in uBAM (unaligned BAM) format. Next, lima (PacBio) 440 

was used to remove primer sequences. IsoSeq3 ‘refine’ command was used to remove poly-A tails and concatemers 441 

(reads which are attached end-to-end), followed by the ‘cluster’ command to cluster reads that represent the same 442 

transcript (i.e. make them adjacent). The ‘align’ command of pbmm2 (PacBio) was then used to align reads to the 443 

reference genome, followed by the Isoseq3 ‘collapse’ command to condense the data into a transcriptome (fasta + 444 

GFF) and provide an abundance file containing full length counts (FL counts).  445 

The quality control script from SQANTI338 (sqanti3_qc.py) was used together with supporting data types (CAGE 446 

peak, polyA motif list, polyA peaks file, and Intropolis splice junctions), removing low-quality transcripts according 447 

to SQANTI’s quality criteria. Next, the rules filter script (sqanti3_RulesFilter.py) was run to further filter transcripts 448 

based on the following criteria: if a transcript is a full splice match (FSM), then it is kept unless the 3' end is unreliable 449 

(intrapriming); if a transcript is not a FSM, then it is kept only if all of below are true: (a) 3' end is reliable; (b) the 450 

transcript does not have a junction that is labeled as RT Switching; and (c) all junctions are canonical. Finally, the 451 

full-length (FL) LR counts from SQANTI3 output that had the same “associated_transcript” were combined, providing 452 

transcript counts for input to MPAQT and for use in benchmarking. 453 

For all analyses, reference transcriptome and genome annotations from GENCODE39 v38 was used, corresponding 454 

to human genome assembly GRCh38.p13. 455 

RT-qPCR measurement of differential cassette exon inclusion 456 

Selection of cassette exons 457 

To aggregate isoform-level abundances into cassette exon-level measurements, we obtained the annotation of 458 

cassette exons using the “generateEvents” command from SUPPA2 v.2.340 for the reference transcript annotations. 459 

The abundances of all transcripts supporting each of the two possible outcomes of every event were then aggregated, 460 

providing, for each cassette exon in each sample, the sum-TPM of isoforms supporting the inclusion of the cassette 461 

exon and the sum TPM of isoforms supporting exon exclusion. This process was repeated separately for TPM 462 

inferences obtained by MPAQT using SR data and MPAQT using SR+LR data. We then fitted a limma41 model (using 463 

“limma” package v3.56.2) with the following formula for each cassette exon across all samples/measurement types: 464 

y~s+w+x+t:x+x:w+t:x:w. Here, y is the log-sum-TPM, s is a multi-level sample indicator, x is a binary indicator of 465 

whether the measurement belongs to the inclusion (x=1) or exclusion (x=0) set of transcripts, w is a binary indicator 466 

of whether the measurement is based on SR+LR data (x=1) or SR-only data (x=0), and t is a multi-level timepoint 467 

indicator, with t=0 as the reference level. The coefficient of the t:x:w interaction term indicates the degree to which 468 

Δlogit-PSI between days 0 and 61 changes if we switch from SR-only measurements to SR+LR measurements (note 469 

that logit-PSI of each exon is equal to log-sum-TPM of inclusion minus log-sum-TPM of exclusion transcripts). We 470 

used the empirical Bayes functionality of limma to extract the coefficient and associated P-value of this coefficient, 471 

followed by selection of the top nine cassette exons with the smallest P-values (P<4×10–5). 472 
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RT-qPCR measurements 473 

Transcript levels were measured using RT–qPCR by reverse transcribing total RNA to complementary DNA 474 

(Maxima H Minus RT, Thermo), then using PerfeCTa SYBR Green SuperMix (QuantaBio) per the manufacturer’s 475 

instructions (for primer sequences, see Supplementary Data Table 3). 476 

Sequence-based prediction of mRNA abundances 477 

RNA-binding protein (RBP) motifs 478 

Human RBP motifs were downloaded from CISBP-RNA19 (v0.6) and filtered to include only motifs obtained by 479 

RNAcompete assays, encompassing 99 direct and 116 indirect (homology-based) motif-RBP associations, with 128 480 

unique motifs and 128 unique RBPs (Supplementary Data Table 4). We used AffiMx18 to scan the 5’ and 3’ UTRs 481 

of all isoforms in GENCODE v38 with the 128 RNAcompete motifs, limiting to transcript isoforms with both 482 

annotated 5’ and 3’ UTRs. For each of the 5’ and 3’ UTR sets, the affinities were log-transformed and scaled for each 483 

motif separately (mean=0, variance=1), followed by application of convex nonnegative matrix factorization42 to obtain 484 

a non-redundant set of 35 “motif archetypes” and the score of each UTR for each archetype—each motif archetype is 485 

a convex combination of several motifs (usually with similar affinity profiles across the UTRs); in turn, the affinity 486 

profile of each motif can be reconstructed by a convex combination of motif archetypes. The number of motif 487 

archetypes was selected so as to result in a minimum Pearson correlation of 0.9 between the original and reconstructed 488 

affinity profiles per motif. 489 

Training/validation of machine learning models 490 

The 5’ and 3’ UTR motif archetypes were collated to obtain 70 motif archetype scores per transcript, which were 491 

used as predictive features for construction of machine learning models of isoform abundances. Specifically, for each 492 

neuronal differentiation time point (days 0, 41, and 61) and each of the two replicates, random forest models were 493 

constructed to predict log10 TPM of each isoform from its 5’ and 3’ UTR motif archetype scores, using a 5-fold gene-494 

stratified cross-validation approach. In other words, genes were randomly assigned to five different folds, each time 495 

all isoforms of the genes in one of the folds were held out, a random forest model was trained on the remaining 496 

isoforms (using R “ranger” package v0.16.0 with default parameters), and the model was used to predict the 497 

abundances of held-out transcripts. SHAP values were also calculated on held-out transcripts, using the “explain” 498 

function from “fastshap” package v0.1.0. 499 

Identification of differentiation-associated motif archetypes 500 

For each motif archetype, we tested its contribution to differential mRNA abundances by examining how the 501 

relationship between the motif archetype scores and SHAP values change as a function of differentiation time point. 502 

For example, for transcripts with high motif archetype scores, if the SHAP value of that motif archetype increases 503 

through differentiation, it signifies increased stability of those transcripts due to the contribution of that motif 504 

archetype. In order to identify such associations, for each motif archetype, we concatenated the SHAP values across 505 

all transcripts and time points, and fitted a linear regression model of the form y~t+x+t:x, where y is the SHAP value, 506 

t is the differentiation time point (0, 41, or 61), and x is the binary variable indicating whether a transcript is among 507 
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the top 500 transcripts with the largest score for the motif archetype of interest (x=1) or not (x=0). The coefficient of 508 

the interaction term t:x represents the change in the SHAP value of top-scoring transcripts as a function of time, which 509 

we used to identify differentiation-associated motif archetypes. 510 

 511 

 512 

 513 

  514 
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Data availability 515 

All processed data generated as part of this study are provided as Supplementary Datasets. ML models are available 516 

via Zenodo (DOI: 10.5281/zenodo.12637434). Raw RNA-sequencing data generated in this study are available via 517 

GEO (accession numbers GSE271530). 518 

Code availability 519 

MPAQT is available at https://github.com/csglab/MPAQT. 520 
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Figures 619 

  

Figure 1. Overview of MPAQT and its performance for inference of gene-level abundances. (a) The generative 

model of MPAQT. Open circles, closed circles, and the diamonds represent latent variables, observed variables, 

and deterministic computations, respectively. β: vector of transcript abundances; sk: library size for platform k; C: 

set of transcript sequences; nk,u: number of reads mapping to the observation unit u in platform k. See Methods 

for description of other variables. (b) Inferred log fold-change between MAQCA and MAQCB, calculated from 

TPM predictions by MPAQT, RSEM, kallisto, and salmon, plotted against the ground truth qPCR difference. 

Each point is one gene (n=14,956). (c) Top: kallisto’s outliers, isolated from other genes. Bottom: MPAQT’s 

inferences for kallisto’s outlier genes (n=234). (d) Venn diagram showing overlap of outliers among kallisto, 

salmon, and RSEM. (e) Density curves of mean of MAQCA and MAQCB Cq-values for each tool’s outliers and 

for all genes. For benchmarking results with the expanded filtering range, see Supplementary Figure 2. Data 

underlying this figure can be found in Supplementary Data Table 1. 
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Figure 2. Accurate inference of transcript abundances using MPAQT. (a) Benchmarking of MPAQT and three 

other tools using simulated SR data with ground-truth TPMs generated from an exponential distribution. (b) 

Similar to (a), but for a simulated sample with ground-truth TPM values modeled after real data (see Methods for 

details). (c) Performance of MPAQT using SR data alone (left) or SR+LR data (right), on simulated data 

generated from ground truth TPMs with an exponential distribution (top) or modeled after real RNA-seq data 

(bottom). SR plots are identical to the top-left plots in panels (a) and (b) and are repeated here for easier 

comparison to SR+LR. (d) Left: Comparison of SR vs. SR+LR inferences for one dataset simulated from an 

exponential distribution (see Supplementary Figure 3 for more simulation repeats). Transcripts with 

substantially different inferences are highlighted (outlier analysis based on Mahalanobis distance >6.36, 

equivalent to upper-tail P<10–10 for normally distributed data). Right: Comparison of inferred vs. ground truth 

TPMs for transcripts that are significantly differentially quantified (i.e., transcripts highlighted in the left panel). 

(e) Distributions of number of exons, gene width, and number of isoforms for genes encoding the transcripts that 

are differentially quantified between SR and SR+LR analyses. The distributions for all genes are also shown, for 

comparison. 
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Figure 3. Application of MPAQT to SR and LR data collected from cells undergoing differentiation toward 

neurons. (a) Performance of MPAQT, kallisto, and salmon based on 107 spike-in transcripts with known 

abundances. Each point represents one spike-in RNA in one sample/replicate. (b) Comparison of SR-based 

abundances and full-length LR counts for genomic transcripts. Left: Pearson correlation between LR log-counts 

and SR-based inferences, for each tool and each time point/replicate separately. Right: Poisson deviance is shown 

as an alternative measure of goodness of fit. (c) The effect of GC content and length on LR counts, estimated by 

including them as covariates in a Poisson regression with log-scale SR-based inferences as the regressor.  (d) The 

scatterplots show the relationship between full-length LR counts and SR-based abundances (left) or SR-based 

abundances after adding the effect of covariates (transcript GC content and length). The SR-based abundances are 

scaled separately for each sample and each model to maximize the likelihood of LR counts. Each point in each 

scatterplot shows one transcript in one sample (six samples combined in each plot). Data points with LR count of 

zero were removed to allow log-scale plotting of the y-axis. (e and f) Similar to (c-d), showing the coefficients of 

GC content and length for models that are fitted to spiked-in transcript LR counts with log-scale ground-truth 

RNA concentration as the regressor (e), and the scatterplots of LR counts vs. ground truth concentration without 

(left) and with (right) the covariate effects (f). Data underlying this figure can be found in Supplementary Data 

Table 2.  
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Figure 4. Inclusion of LR data significantly improves transcript abundance quantification in neuronal 

differentiation models. (a) Comparison of inferred TPMs based on SR data alone (x-axis) vs. SR+LR data (y-axis) 

in each of the three time points during neuronal differentiation. For each measurement, the mean of two replicates 

is used. Each data point is one transcript, with the dot color representing the number of time points in which the 

inferred abundance of the transcript differs significantly between SR and SR+LR measurements (Mahalanobis 

distance >6.36). (b) Quantification of cassette exon percent-spliced-in (PSI) from transcript isoform abundances. 

Left: An example cassette exon for gene GABRG2, shown in red. PSI (shown with ψ) is calculated as the sum of 

abundances of the isoforms that include the exon divided by that of all isoforms. We use the logit of PSI for 

regression analysis and compatibility with qPCR , which is equal to the logarithm of the sum of abundances of 

inclusion isoforms divided by that of exclusion isoforms. Right: Top cassette exons for which the inferred change 

in PSI between days 0 and 61 differ significantly depending on whether SR or SR+LR quantifications are used. (c) 

Scatterplot of qPCR-based differential PSI quantification (y-axis) vs. differential PSI values inferred from SR data 

alone (x-axis of the left plot) or SR+LR data (x-axis of the right plot). Data underlying this figure can be found in 

Supplementary Data Table 3. 
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Figure 5. Sequence-based prediction of transcript abundances in neuronal differentiation samples. (a) Observed 

vs. predicted transcript abundances (5-fold gene-stratified cross-validation). Each point represents one transcript 

in one time point/replicate. Histograms represent marginal distribution of predicted (x-axis) and observed (y-axis) 

log-TPM values. (b) Correlation of predicted vs. observed log-fold changes across differentiation. Each point 

represents one transcript. The x-axis represents the statistical significance for differential log-TPM across time 

points (one-way ANOVA test). The y-axis represents the Pearson correlation between predicted and observed 

abundances across time points/replicates for each transcript. (c) Left: Volcano plot of the differentiation-

associated change in SHAP value per motif archetype. The x-axis shows the effect size obtained by modeling the 

SHAP value as a function of differentiation time point and motif archetype score (see Methods for details). The 

y-axis shows the p-value associated with the regression coefficient. The size of each circle represents the sum of 

transcript-wise variances of the SHAP values across time points/replicates. Middle: Example motif archetypes 

with the largest effect sizes and sample-to-sample variances. For each motif archetype, the moving average chart 

of SHAP vs. motif archetype score is shown (transcripts were sorted by their motif archetype scores, following by 

mean calculation over sliding windows of 500 transcripts). Each curve represents one time point. The shaded 

areas correspond to the standard error of mean of SHAP values per sliding window. The top three motifs 

associated with each motif archetype are shown next to each chart, along with the RBPs that recognize each motif 

(RBPs shown in grey are inferred to recognize the motif based on homology19). Right: Gene-level TPM profiles 

for example RBPs across differentiation time points. Each replicate is shown with a separate point. Data 

underlying this figure can be found in Supplementary Data Table 4. 
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Figure 6. UTR features predict isoform-level and exon-level splicing. (a) Example isoforms of UNC13A (top) 

and PRRT2 (bottom). For each gene, one dominant isoform and one low-abundance isoform is shown, along with 

the top five motifs whose presence in the 3’ UTR explains the higher abundance of the dominant isoform. For 

each motif, the position of the best-matching sequence in each isoform is shown, along with the SHAP value of 

the associated motif archetype (shown with the bar height) and the motif hit score (yellow: low-scoring hit; red: 

high-scoring hit). The predicted and observed abundances of the highlighted isoforms (along with other isoforms 

of each gene) are shown in the scatterplot on the right. (b) Pearson correlation of predicted vs. observed isoform 

abundances (log10TPM) for each gene. Each point represents one gene with at least three isoforms. The x-axis 

shows the F-value from one-way ANOVA test for unequal abundances of isoforms. (c) The isoforms associated 

with inclusion or exclusion of an example cassette exon (shown in red) for gene PREPL. The observed TPM of 

each isoform is shown using the bar graph on the right (the color gradient specifies the predicted TPM). (d) The 

scatter plot of predicted vs. observed PSI. Each point represents one cassette exon in one time point/replicate 

(cassette exons for which the sum of TPMs of inclusion and exclusion isoforms was <1 were excluded). Data 

underlying this figure can be found in Supplementary Data Table 5. 

 625 

  626 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2024. ; https://doi.org/10.1101/2024.07.11.603067doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.11.603067
http://creativecommons.org/licenses/by-nc/4.0/


 26 

Contents of Supplementary Information 627 

 628 

Supplementary Methods. 629 

 630 

Supplementary Figure 1. MPAQT’s performance on salmon and RSEM’s outliers. 631 

Supplementary Figure 2. Comparison of quantification tools after widening the range of acceptable Cq values. 632 

Supplementary Figure 3. Transcripts differentially quantified by MPAQT upon addition of LR data. 633 

Supplementary Figure 4. Differentiation of hESCs to neurons. 634 

Supplementary Figure 5. Differentially quantified transcripts between SR-only and LR+SR inferences at day 61. 635 

Supplementary Figure 6. Cell type and disease associations of top genes whose cassette exons are differentially 636 

quantified between SR-only and LR+SR analyses. 637 

Supplementary Figure 7. Predicting cassette exon inclusion. 638 

 639 

List of Supplementary Data Tables 640 

 641 

Supplementary Data Table 1. Inference of gene-level expression using SR data from MAQC. 642 

Supplementary Data Table 2. SR- and LR-based quantification of spike-in and endogenous mRNAs during hESC 643 

differentiation into cortical neurons. 644 

Supplementary Data Table 3. RT-qPCR analysis of exon inclusion in hESCs and differentiated cortical neurons. 645 

Supplementary Data Table 4. ML-based modeling of isoform abundances during hESC-to-neuron differentiation. 646 

Supplementary Data Table 5. ML-based prediction of cassette exon inclusion during hESC-to-neuron 647 

differentiation. 648 

 649 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2024. ; https://doi.org/10.1101/2024.07.11.603067doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.11.603067
http://creativecommons.org/licenses/by-nc/4.0/

	Abstract
	Introduction
	Results
	The MPAQT framework
	Improved gene-level quantification with MPAQT
	MPAQT improves isoform-level quantification with short- and long-read data
	Isoform quantification during neuronal differentiation with MPAQT
	Sequence determinants of mRNA abundances during neuronal differentiation

	Discussion
	Methods
	MPAQT generative model
	Obtaining the platform-specific matrices Pk
	Cortical neuron differentiation and RNA-seq data generation
	Cortical neuron differentiation
	RNA extraction, short-/long-read RNA-seq library prep, and sequencing

	Processing of short-read RNA-seq data
	Processing of long-read RNA-seq data
	RT-qPCR measurement of differential cassette exon inclusion
	Selection of cassette exons
	RT-qPCR measurements

	Sequence-based prediction of mRNA abundances
	RNA-binding protein (RBP) motifs
	Training/validation of machine learning models
	Identification of differentiation-associated motif archetypes


	Data availability
	Code availability
	Acknowledgements
	Author contributions
	Competing interests
	References
	Figures
	Contents of Supplementary Information
	List of Supplementary Data Tables

