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Abstract

Statistical mediation analysis is used to uncover intermediate variables, known as mediators [M], 

that explain how a treatment [X] changes an outcome [ Y]. Often, researchers examine whether 

baseline levels of M and Y moderate the effect of X on posttest M or Y. However, there is 

limited guidance on how to estimate baseline-by-treatment interaction (BTI) effects when M and 

Y are latent variables, which entails the estimation of latent interaction effects. In this paper, 

we discuss two general approaches for estimating latent BTI effects in mediation analysis: using 

structural models or scoring latent variables prior to estimating observed BTIs and correcting for 

unreliability. We present simulation results describing bias, power, type 1 error rates, and interval 

coverage of the latent BTIs and mediated effects estimated using these approaches. These methods 

are also illustrated with an applied example. R and Mplus syntax are provided to facilitate the 

implementation of these approaches.

In the social sciences, statistical mediation analysis is used to investigate the intermediate 

variables, known as mediators (M), by which a treatment (X) led to a change in an outcome 

(Y; MacKinnon, 2008). Recent examples of mediation hypotheses include a program on 

adaptive regulation strategies (X) decreasing externalizing problems (Y) by improving 

emotion regulation (M) in adolescents (te Brinke et al., 2021), and an imagery rescripting 

treatment (X) decreasing nightmare distress (Y) by increasing self-efficacy (M) in individuals 

with nightmare disorder (Kunze et al., 2019). Often, researchers include baseline levels of 

M and Y in the mediation model (i.e., measures prior to the treatment or intervention) 

to account for confounding of the M to Y relation at posttest (Valente et al., 2020). 

Furthermore, with the inclusion of baseline measures, researchers could also test whether 

the effect of the program depends on the baseline levels of M and Y (Baron & Kenny, 

1986; Morgan-Lopez & MacKinnon, 2006), which helps inform future implementation of 

prevention programs (MacKinnon, 2008). For example, in a randomized prevention program 

(X) to decrease the use of anabolic steroids (Y) in high school athletes by increasing their 

knowledge of the effects of steroids on health (M), the program was shown to be most 

effective for athletes who had high intentions of using steroids at baseline (Fritz et al., 

2005). As such, baseline levels of M and Y could moderate the effect of the program on 
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the mediator or the outcome, and this moderation can be assessed by including baseline-by-

treatment interactions in the model (Morgan-Lopez & MacKinnon, 2006).

Measures of M and Y, such as sum or mean scores, often contain measurement error, which, 

if ignored, might either inflate or attenuate parameter estimates (Gonzalez & MacKinnon, 

2021; Hoyle & Kenny, 1999; le Cessie et al., 2012; VanderWeele et al., 2012). Measurement 

error can also reduce the reliability of the interaction terms (i.e., XM, XY), which attenuates 

both the interaction effects in regression (Aiken & West, 1991; Bohrnstedt & Marwell, 1978; 

Busemeyer & Jones, 1983; Kenny & Judd, 1984; McClelland & Judd, 1993) and mediation 

models (Cheung & Lau, 2017; Gonzalez & Valente, in press). A common solution for 

addressing measurement error is to specify multiple-indicator latent variables for M and Y. 

If M or Y interact with X, latent interactions must be estimated. There are many methods for 

estimating this type of interaction effects (e.g., Asparouhov & Muthen, 2021; Cox & Kelcey, 

2021; Hsiao et al., 2018; Klein & Moosbrugger, 2000; Marsh et al., 2012; Wall & Amemiya, 

2003).

Previous studies suggest that mediation effects can be accurately estimated in single 

mediator models with one latent interaction using methods cited above (e.g., Cheung & 

Lau, 2017; Gonzalez & Valente, in press). However, it is unclear if those same findings hold 

in two-wave mediation models with latent baseline-by-treatment interaction (BTI) effects. 

Estimating interaction effects in mediation models with two waves of data is more complex 

than in mediation models with a single wave of data because the inclusion of latent M
and Y at pretest and posttest creates two latent interaction terms (instead of one), and 

four interaction effects (instead of one). Additionally, correlated item residuals often arise 

when the same latent variable (e.g., M or Y) is assessed with the same measure at pretest 

and posttest, which must be adjusted for to obtain accurate parameter estimates. In this 

paper, we describe and evaluate the performance of methods developed to estimate latent 

interaction effects in two-wave mediation models with BTI effects and provide the following 

contributions. First, we provide covariance expectations for a better understanding of the 

two-wave mediation model with BTIs and apply the methods to empirical data. Second, we 

use Monte Carlo simulations to assess the recovery of the mediation paths and interaction 

effects across methods. Third, we provide code to estimate this model with the discussed 

methods. Our goal is to provide researchers with resources to understand and estimate in 

two-wave mediation models with latent BTIs and facilitate the implementation of these 

models.

The structure of the paper is the following. First, we introduce the statistical mediation 

model with BTIs. Then, we discuss five different ways to estimate latent BTI effects in the 

mediation model. Next, we present the results of a Monte Carlo simulation study on the bias, 

power, type 1 error rate, and interval coverage of the parameter estimates of the statistical 

mediation model with latent BTIs. Lastly, we demonstrate the methods with data from the 

JOBS II study. In the supplement, we include the covariance expectations for mediation 

models with BTIs, along with R and Mplus syntax for estimating those models.
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Two-wave mediation model

In this paper, we focus on the simplest mediation model for experimental studies with pretest 

and posttest data (Valente & MacKinnon, 2017). Although there are other ways to capture 

change in mediation models (e.g., Howe, 2019; Montoya, 2019; Valente & MacKinnon, 

2017), the two-wave mediation model allows researchers to control for baseline levels of M
and Y, which in turn mitigates confounding of the posttest M to Y relation (Valente et al., 

2020). Two-wave mediation models (some with other covariates) have been used to evaluate 

interventions for drug use (e.g., MacKinnon, 2001), internalizing symptoms (e.g., Jensen et 

al., 2014; Perrino et al., 2014), depressive symptoms (e.g., Chaudoir et al., 2021), antisocial 

behavior (e.g., Smith et al., 2014), and substance use and school discipline (e.g., Gonzales et 

al., 2012).

A mediation model with a randomized treatment, continuous pretest and posttest measures, 

and BTIs can be expressed as:

M2 = iM + aX + smM1 + cyY 1 + ℎ1XM1 + ℎ2XY 1 + eM

(1)

Y 2 = iY + c′X + bM2 + syY 1 + cmM1 + ℎ3XM1 + ℎ4XY 1 + eY .

(2)

In Eq. 1 and 2, X represents a binary randomized treatment/control group indicator; M1 and 

M2 represent the mediator at pretest and posttest, respectively; and Y 1 and Y 2 represent the 

outcome at pretest and posttest, respectively. Note that in randomized treatments, X does 

not correlate with pretest measures M1 and Y 1 in expectation. The a-path is the relation 

between X and M2, sm is the temporal stability of M, cy is the cross-lag path between M2

and Y 1, b is the relation between M2 and Y 2, c′ is the relation between X and Y 2, sy is the 

temporal stability of Y, and cm is the cross-lag path between Y 2 and M1. Furthermore, the 

four coefficients ℎ1, ℎ2, ℎ3 and ℎ4 represent the BTIs, where the relation between X and M2

or Y 2 is moderated by the baseline scores. In the absence of BTIs, the mediated effect is 

defined by the product of ab. We can construct confidence intervals and test for statistical 

significance of ab using the distribution of the product of two random variables (Tofighi 

& MacKinnon, 2011), bootstrapping (MacKinnon et al., 2004), or deriving a Bayesian 

credible interval for ab (Yuan & MacKinnon, 2009). If ℎ1 or ℎ2 are significant, then there is a 

baseline-by-treatment interaction on the mediator. As such, the a-path varies as a function of 

the pretest measures, indicating moderated mediation (Hayes, 2015; MacKinnon, 2008). If ℎ3

or ℎ4 are significant, then there is a baseline-by-treatment interaction on the outcome, so the 

c’-path varies as a function of the pretest measures.

To ascribe a causal interpretation to the mediated effect, some assumptions must hold. For 

example, we assume that we have specified the appropriate functional form and temporal 

precedence between the variables. We also assume that the scores on all variables have 
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high reliability and can be ascribed a valid interpretation (Gonzalez & MacKinnon, 2021). 

Furthermore, there are four no-confounding assumptions needed to identify the mediated 

effect (Imai et al., 2010; Pearl, 2001; Valeri & VanderWeele, 2013):

1. No confounders in the relation between X and M2, after controlling for 

covariates.

2. No confounders in the relation between M2 and Y 2, after controlling for 

covariates.

3. No confounders in the relation between X and Y 2, after controlling for covariates.

4. No confounders in the relation between M2 and Y 2 that are affected by X.

In randomized treatment scenarios, assumptions 1 and 3 are typically satisfied, but 

assumptions 2 and 4 are not satisfied because individuals self-select their value on M2. 

Controlling for pretest levels of M and Y  makes meeting assumptions 2 and 4 more tenable 

because M1 and Y 1 form a joint confounder of the M2 to Y 2 relation (Mayer et al., 2014; 

Valente et al., 2020) via the model stabilities and the cross-lags, which we control for in the 

model. Sensitivity analyses can be used to determine how likely it is that assumptions 2 and 

4 are met (Cox et al., 2013; Fritz et al., 2016; Liu & Wang, 2021). Lastly, as mentioned 

above, the model presented in Eq. 1 and Eq. 2 has linear relations, continuous M and Y , 

and no XM2 interaction, so traditional mediated effects estimated from regression models 

and the causal mediation estimates from the potential outcomes framework are equivalent 

(MacKinnon et al., 2020; Valeri & VanderWeele, 2013).

Statistical mediation model with latent variables

As mentioned above, there are many situations in which the mediator or the outcome are 

measured with error (Gonzalez & MacKinnon, 2021). One way to adjust for measurement 

error is to specify latent variables for M and Y at each time point. The relation between items 

and latent variables can be represented using the linear factor model:

m1ij = τm1j + λm1jM1i + em1ij ; m2ij = τm2j + λm2jM2i + em2ij

(3)

y1ij = τy1j + λy1jY 1i + ey1ij ; y2ij = τy2j + λy2jY 2i + ey2ij,

(4)

where MTi and Y Ti represent the latent scores for individual i at time = T , which are assessed 

by a set of j items in vectors mTij and yTij. In this case, τmT j and τyT j represent the item 

intercepts, λmT j and λyT j are the factor loadings, and emTij and eyTij are the unique scores 

for individual i on item j at time T . For our purposes, we assume longitudinal scalar 

measurement invariance between pretest and posttest measures in the mediation model (e.g., 

Georgeson et al., 2021),
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τ1j = τ2j = τj; λ1j = λ2j = λj,

(5)

and estimate correlated residuals between like-indicators of the same construct across time. 

An example of the model is presented in Figure 1. Because the model now includes latent 

variables, the BTIs are necessarily latent interactions. Given that M1, M2, Y 1, and Y 2 are 

not observed, we consider two general approaches to estimate the latent BTI effect. The 

first approach is to compute an observed scores for M1, M2, Y 1, and Y 2, compute observed 

BTIs, and then adjust for unreliability and correlated errors. The second approach is to use 

structural models to estimate the latent BTI effects. We discuss five methods across these 

two general approaches next.

Scoring latent variables with reliability adjustment

As mentioned above, when measurement error in M and Y is ignored, interaction 

effects and mediation paths are attenuated (Gonzalez & Valente, in press). One can 

correct for measurement error by fitting the mediation model with BTIs to the full 

covariance matrix among the observed variables and interactions (e.g., the covariance 

matrix of X, M1, M2, Y 1, Y 2, XM1, and XY 1), and manually correcting the variances and 

covariances of the scores on M and Y for unreliability and the effect of the correlated 

residuals. Unreliability inflates observed score variances (i.e., variances of observed 

M1, M2, Y1, Y2, XM1, and XY1) but not the covariances. Ignoring correlated residuals among 

indicators of two latent variables inflates the covariances of the observed scores that 

represent said latent variables (e.g., the covariance of observed M1 and M2; Cole & Preacher, 

2014; Gonzalez & MacKinnon, 2021; Hayes & Usami, 2020). Here, we apply scoring 

methods to estimate latent interaction effects (Croon, 2002; Cox & Kelcey, 2021; Hayes & 

Usami, 2020) to the two-wave mediation model and extend the methods when noted.

The first step is to obtain scores for M and Y . One option to score the latent variable is to 

use unit-weighted summed scores (Method 1, referred to as summed scores with reliability 
adjustment; MacKinnon, 2008). For example, summed score M1s is calculated by adding the 

item responses of M1. Another option is to use factor scores (Method 2, referred to as factor 

scores with reliability adjustment; Bartlett, 1937; Lawley & Maxwell, 1971; Skrondal & 

Laake, 2001). Factor scores can be thought of as weighted summed scores where the weights 

are determined by the parameter estimates from the linear factor model. In this paper, we use 

Bartlett scores for Method 2. The weights (i.e., scoring matrix) are estimated by using the 

expression,

Bw = Λ′Θe
−1Λ −1Λ′Θe

−1 ,

(6)

where Λ is a j x p matrix of factor loadings, where j are the indicators and p are the 

latent variables, and Θe is the j x j covariance matrix of the unique scores. To obtain the 
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Bw weights to score M1 and M2, Λ and Θe are obtained from a correlated two-factor model 

with correlated residuals, specifying longitudinal scalar invariance. Once obtained, the item 

responses are multiplied by the weights and added to estimate factor scores M1f  and M2f. A 

similar procedure is used to estimate Y 1f  and Y 2f.

The second step is to estimate the full covariance matrix of observed scores and interactions 

and correct specific submatrices of the full covariance matrix. For Method 2, we propose to 

apply the versions of Croon’s (2002) correction to models with interaction effects (Cox & 

Kelcey, 2021) and correlated residuals (Hayes & Usami, 2020) simultaneously. For example, 

to correct the 2 × 2 submatrix ΣMf, comprised of the variances of M1f and M2f and their 

covariance, we need the scoring weights for M, BwM, and the submatrix of the variances and 

covariances of the residuals for the j indicators of M, ΘeM. As such, one can use: 1

ΣMfc = ΣMf − BwMΘeMBwM′

(7)

Similar steps are used to correct ΣYf. To correct the submatrices in the full covariance matrix 

for Method 1, we adapt Eq. 8 to summed scores by replacing BwM with an p x j summing 

matrix SM . SM is populated by 1s on the entries indicating which items load on each variable 

and 0s elsewhere. For example, to correct submatrix ΣMs, comprised of the variances of M1s

and M2s and their covariance, one can use:2

ΣMsc = ΣMs − SMΘeMSM
′ .

(8)

Similar steps are used to correct ΣYs. Once ΣMfc, ΣYfc, ΣMsc, and ΣYsc are obtained, then the 

variances of the observed interaction terms can be corrected. For interaction terms, their 

variance can be implied by the variances and covariances of their components (Bohrnstedt & 

Marwell, 1978). For example, when X and M1s are centered, the implied variance of XM1s is,

V ar XM1s = V ar X V ar M1s − Cov X, M1s
2 .

(9)

For our specific model, Eq. 9 simplifies because X is a perfectly reliable, randomized 

variable, so it does not covary with the pretest measures of M1s (i.e., Cov X, M1s = 0), and 

its variance does not have to be corrected for measurement error. To correct V ar XM1s , we 

use the corrected variance of M1s (which is an entry in ΣMsc) in Eq. 9 instead of the observed 

variance of M1s. Similar steps would follow to correct V ar XY 1s , V ar XM1f , and V ar XY 1f .

1The general term in the right hand side of the equation is BwΛM
−1[ΣMf − BwΘeMBw

′ ] ΛM
′ Bw

′ −1
 but Bartlett scores have the 

property that BwΛ = I, which simplifies the expression. Regression scores do not have this property.
2In Eq. 7 and 8 we are summing the residual variances to estimate the error variance of the observed score. By subtracting the residual 
variance from the observed score variance, what remains is the reliable variance.
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Once the variances and covariances of the scores and the interaction terms are corrected, the 

final step is to fit the mediation model with interactions (Eq. 1 and 2) to the full corrected 

covariance matrix using any structural equation modeling program. Note that by fitting 

the model to the full covariance matrix with maximum likelihood, we assume multivariate 

normality.

Structural models for latent BTIs

Another option to estimate latent BTI effects is to use structural models. Below we apply 

three approaches to the two-wave mediation model that have been shown to recover 

parameters well in single mediator models with a latent interaction (Gonzalez & Valente, in 

press).

Unconstrained product indicator (UPI) approach.

Product indicator methods estimate latent interaction effects by specifying a latent 

interaction variable (e.g., a latent variable for XM1), whose indicators are products of the 

indicators of the variables involved (Kenny & Judd, 1984; Marsh et al., 2012). There are 

many ways to specify latent interactions with product indicators (e.g., Aytürk et al., 2021; 

Jaccard & Wan, 1995; Jöreskog & Yang, 1996; Kenny & Judd, 1984; Marsh et al., 2004; 

Ping, 1996). In this paper, we use the unconstrained product indicator (UPI) approach 

(Method 3; Marsh et al., 2004). For our specific model, indicators of the XM1 latent 

variable were the product of each M1 indicator and X, the mean of latent XM1 was fixed to 

Cov X, M1 = 0 (because X is a randomized treatment), and the variance of latent XM1 was 

fixed to V ar X V ar M1  per Eq. 9. The latent variable for XY1 can be similarly specified. 

We chose the UPI approach because there are no constraints placed on the estimation of 

the factor loadings and residual variances of the indicators of the latent interaction terms, 

which differs from other product indicator methods. Note that the UPI approach relies on 

multivariate normality.

Latent Moderated Structural Equations (LMS)

Latent Moderated Structural Equations (LMS) is an indirect approach to estimate latent 

interaction effects (Method 4; Klein & Moosbrugger, 2000) and is available to Mplus users 

(Muthen & Muthen, 2002–2018). LMS approximates the likelihood of the model with latent 

interactions using a mixture of normal distributions. A mixture of distributions is used 

because the conditional distribution of the outcome given the predictors is nonnormal due to 

the nonlinear relations present in the model (i.e., the linear-by-linear interactions; Kelava et 

al., 2011). We can represent this model by separating Eq. 1 and 2 into linear and nonlinear 

effects:

M2 = a sm cy

X
M1

Y 1

+ X M1 Y 1

0 ℎ1 ℎ2

0 0 0
0 0 0

X
M1

Y 1

+ eM

(10)
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Y 2 = c′ b cm sy

X
M2

M1

Y 1

+ X M2 M1 Y 1

0 0 ℎ3 ℎ4

0 0 0 0
0 0 0 0
0 0 0 0

X
M2

M1

Y 1

+ eY .

(11)

The model is estimated using the EM algorithm (Dempster et al., 1979, Ng & Chan, 2020). 

Details of the procedure are highly technical, so we refer interested readers to Kelava et 

al., (2011) and Klein and Moosbrugger (2000). Note that LMS also relies on multivariate 

normality.

Bayesian mediation

Bayesian approaches have been shown to yield accurate parameter estimates from mediation 

models (Method 5; Enders et al., 2012; Miočević, 2019; Yuan & MacKinnon, 2009) and 

handle latent interactions (Asparouhov & Muthén, 2021; Miočević et al., 2018). In general, 

we can sample from posterior distributions of the model parameters in a mediation model 

with latent variables (with no interactions) using Markov-chain Monte Carlo (MCMC) 

estimation (Miočević, 2019). An intermediate step in the estimation of the statistical 

mediation model with latent variables using a Gibbs sampler is the sampling of a latent 

variable score for each latent variable (Miočević, 2019). As such, we can incorporate latent 

BTIs in a Bayesian mediation model by multiplying in each iteration the sampled value of 

the latent M1 or Y1 score by X and regress the posttest mediator and outcome on those values.

Present Study

Examining baseline-by-treatment interactions in statistical mediation analysis can provide 

insight into how and for whom an intervention works (MacKinnon, 2008). However, it is 

unknown whether the methods that have been shown to recover parameter estimates well 

in a single mediator model with one latent interaction (Cheung & Lau, 2017; Gonzalez & 

Valente, in press) will also recover parameters well in a more complex model, such as the 

two-wave mediator model with two latent interactions and four BTI effects. Continuing, we 

are not aware of any resource that generally describes how to incorporate latent BTI effects 

in mediation analysis and that provides syntax to guide researchers on the estimation of 

these theoretically relevant models to intervention research. Below, we conduct a simulation 

study to examine the bias, power, type 1 error rate, and interval coverage of the estimates 

in the two-wave mediation model and the latent BTIs, illustrate the methods with an applied 

intervention example and provide syntax in the supplement to fit these models.

Method

Simulation Factors

True covariance matrices for the two-wave mediation model with baseline-by-treatment 

interactions were derived and are shown in the supplement. Datasets were generated in the 

R statistical environment by varying the factors found in Table 1. Factors that did not vary 
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in the simulation were the effect size of the c’-path (small), the stabilities of M and Y
(at r = . 7), the cross-lag effects (zero effect), and the correlation of M1 and Y1 at baseline 

(r = . 575). Overall, there were 96 conditions, with 500 replications per condition.

All path effect sizes were obtained from Valente & MacKinnon (2017) and approximately 

match Cohen’s f2 benchmarks. Residual covariance values were specified to be similar to 

Cohen’s effect sizes of small and medium correlation, and the sample sizes studied are 

achievable in social science applications and have been found to recover parameter estimates 

well in a single mediator model with one latent interaction (Gonzalez & Valente, in press). 

Items for M1, Y1, M2, and Y2 were simulated to be unidimensional and adhere to strict 

invariance across time. All item intercepts were zero, factor loadings for M1, Y1, M2, and 

Y2 were drawn from a uniform random distribution with limits between .5 and .7, and the 

residual variances were the complement of the factor loadings so that the total variance of 

each item at baseline was equal to 1. Note that all the indicators for the conditions presented 

here are multivariate normally distributed, so they meet the distributional assumptions of 

the methods examined. In the supplement, we show that the stability paths are biased when 

discrete, nonnormally distributed indicators are treated as continuous. Therefore, we do not 

recommend using these methods in these scenarios.

General Procedure

Each dataset was analyzed with each of the five methods to estimate the latent BTI 

effect: summed scores with reliability adjustment, factor scores (Bartlett) with reliability 

adjustment, unconstrained product indicator (UPI) approach, latent moderated structural 

equations (LMS), and Bayesian mediation analysis. Note that all longitudinal latent variable 

models fit to the data were specified to be scalar invariant and correlated residuals were 

prespecified. For the summed scores and factor score methods, we used the parameter 

estimates from the longitudinal factor model for M1 and M2 and the longitudinal factor 

model for Y1 and Y2 to correct the covariance matrices as discussed above. Then, the 

statistical mediation model with observed BTIs was fit to both corrected covariance matrices 

using lavaan in R (Rosseel, 2012). Furthermore, the LMS approach (using the XWITH 

argument for latent interactions, random effect estimation, and numerical integration) and 

UPI approach (with constraints explained above) were estimated in Mplus and processed in 

R using the MplusAutomation package (Hallquist & Wiley, 2020). Finally, the Bayesian 

mediation model was estimated in JAGS (Plummer, 2003) in R using the R2jags package 

(Su & Yajima, 2020).3 Similar to Gonzalez & Valente (in press), we specified diffuse 

prior distributions for model parameters to mimic situations with limited prior beliefs about 

the parameters: factor loadings had normal distributions N(1, 20) truncated at 0 (i.e., the 

loadings were positive), item intercepts had normal distributions N(0, 20), residual variances 

had inverse gamma distributions IG(1,1), latent variable means for exogenous variables 

had a normal distribution N(0,1), and regression coefficients and equation intercepts had 

3We imposed longitudinal scalar invariance constraints by using the same parameter in different parts of the model. For example, a 
single posterior distribution represented the relation between M1 and the item m11 and M2 and the item m21. Also, we modeled the 
correlated residuals like the specific factors in bifactor models: the factor had two indicators, which were the same item across time, 
and these factors were orthogonal to all other variables.
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normal distributions N(0, 1000). Pilot analyses suggested that the chains for each parameter 

achieved a potential scale reduction (PSR) factor < 1.1 with at most 5,000 iterations. As 

such, we used three chains which each sample 5,000 MCMC iterations (1,000 of which were 

burn-in iterations).

Monte Carlo Outcomes

We examined three bias outcomes. Raw bias was computed in each replication by the 

difference between the estimated parameter and the data-generating value.4 We also report 

relative bias (i.e., raw bias divided by the true value of the estimate) for conditions in which 

the true value of the parameter is nonzero, and standardized bias (i.e., raw bias divided 

by the standard deviation of the parameter estimates across replications per condition) 

for conditions in which the true value of the parameter is zero. Bias outcomes were 

analyzed using a mixed ANOVA as a function of the simulation factors as between-group 

factors, the latent variable method as a within-group factor, and all possible interactions. 

Conditions with relative bias > .10 (Kaplan, 1988) or standardized bias > .40 (Collins et 

al., 2001), and predictors with partial-η2 > .005 were further discussed. We also estimated 

95% nonparametric percentile bootstrap confidence intervals (with 500 bootstrap draws) 

for model parameters and the mediated effect across all methods (MacKinnon et al., 2004) 

except Bayesian mediation, in which equal-tail credible intervals based on the posterior 

distributions were used (Yuan & MacKinnon, 2009). Power was defined as the proportion of 

replicates in which the interval did not contain zero for parameters with nonzero true values, 

and type 1 error was the proportion of replicates in which the interval did not contain zero 

for parameters with zero true values. Note that power was estimated for the a-path, b-path, 

c-path, stability estimates, and the BTI effects, while type 1 error was only estimated for the 

BTI effects and cross-lag effects. Finally, interval coverage was defined as the proportion 

of replicates where the derived interval contained the true value of the parameter. Power, 

type 1 error rates, and interval coverage were analyzed with regression trees (Gonzalez et 

al., 2018), where splits had to yield an increase of at least R2 = . 005 on the outcome to be 

interpreted.

Results

Parameter Bias and Interval Coverage

Table 2 shows the parameter bias for the mediated effect and the BTI coefficients. In 

the ANOVAs predicting parameter bias (i.e., raw, relative, and standardized bias) from all 

simulation factors and methods used to estimate the latent interaction effect, there were three 

parameters with factors that had effect sizes with η2 > . 005. There were main effects for 

the method used on the raw bias of the a-path η2 = 0.007 , c-path η2 = 0.007 , cross-lag 

effect of Y η2 = 0.011 , and on the raw bias η2 = 0.041  and relative bias η2 = 0.041  of the 

stability of Y. Also, there were significant interactions between the method and sample size 

and the method and the number of items on the raw bias (η2 = 0.014 and 0.030, respectively) 

4Rescaled true values for the corrected summed score model were derived to serve as reference values for raw bias. Summed scores 
are on a different metric than the latent variable models, similar to Georgeson et al., (2021).
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and relative bias (η2 = 0.014 and 0.030, respectively) of the stability of M, and a significant 

interaction between the method and sample size for the standardized bias on the cross-lag 

effect of Y η2 = 0.007  . However, across methods, all the relative bias estimates for nonzero 

parameters were below .05, and all the standardized bias estimates for zero parameters were 

below .40. Furthermore, Table 2 shows the interval coverage across methods. Regression 

trees predicting coverage from the simulation factors and the BTI estimation method did 

not yield any splits, so there were no important differences in interval coverage across 

simulation factors. All interval coverage estimates are within the range of .925 and .975.

Statistical Power and Type 1 error rate

Regression trees for the analysis of statistical power and type 1 error by the simulation 

factor are shown in the supplement. For statistical power, the effect size of the parameter and 

sample size were significant predictors, as expected. Furthermore, the h1 coefficient (e.g., 

the relation between the XM1 interaction and M2) had higher power in conditions with six 

items than with four items at N = 500. Recall that all BTI effects had a small effect size. 

Power was .310 and .430 for conditions with four and six items in the mediator, respectively. 

We presume that difference in power might be because more items yield more stable latent 

variables. Also, the c-path had higher power in conditions when the a-path had a small effect 

size (power = . 750) than in conditions with a medium effect size (power = . 650 ). Although 

Table 3 might suggest that there are some power differences across methods, the method to 

estimate the latent interaction effect was not an important predictor in the trees. On the other 

hand, results suggest that there were no significant predictors for type 1 error rate for the 

BTI estimates and cross-lag effects. Table 4 shows the type 1 error rates across methods, and 

all the estimates were within the bounds of .025 and .075.

Summary

Our results suggest that, as long as the indicators are multivariate normally distributed, 

summed scores with reliability adjustment, factor scores with reliability adjustment, UPI, 

LMS, and Bayesian mediation provide unbiased parameter estimates in the mediation 

model, the 95% confidence/credible interval coverages perform appropriately, and the type 1 

error rates were close to .05. Furthermore, methods did not differ significantly on parameter 

bias, power, type 1 error rates, and interval coverage. As such, similar to the findings in the 

single mediator model with one latent interaction, the studied methods (which include our 

proposed extension to the scoring approaches to adjust for measurement error and the effect 

of correlated residuals simultaneously) recover the parameter estimates well.

Illustration

Data were obtained from The Job Search Intervention Study (JOBS II), which is a 

randomized field intervention study that, among other aims, examined if a job training 

intervention for unemployed workers improved symptoms of depression (outcome) by 

enhancing job search self-efficacy (mediator), controlling for baseline covariates (Vinokur et 

al., 1995; Vinokur & Schul, 1997). The original sample size was N = 1,801, but to simplify 

the analyses, we used only participants who had complete item-level data for the mediator 

and outcome at both timepoints. Therefore, the sample size used for this illustration was 
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N = 1126, with N = 347 in the control group and N = 779 in the treatment group. Depressive 

symptoms were measured by the eleven five-category items on the Hopkins Symptoms 

Checklist (coefficient α = . 807 at pretest and α = . 884 at posttest), which asked about the 

frequency of several symptoms, such as loneliness and hopelessness, experienced by the 

respondent in the past two weeks. Higher scores represented more depressive symptoms. 

The job search self-efficacy measure had six five-category items (coefficient α = . 868
at pretest and α = . 886 at posttest), which asked how confident respondents were about 

several aspects of the job process, such as completing a job application and a resume. 

Higher scores represented higher job search self-efficacy. Preliminary analyses suggest that 

the mediator and outcome measures are largely unidimensional and meet the longitudinal 

scalar invariance assumptions (see supplement). Here, we test a statistical mediation model 

with latent baseline-by-treatment interactions to investigate if the effect of the training on 

job search self-efficacy and depressive symptoms depends on the baseline levels of those 

constructs. The methods examined were summed scores with reliability adjustment, factor 

scores with reliability adjustment, UPI, LMS, and Bayesian mediation, and used either 95% 

percentile bootstrap confidence intervals or 95% equal-tail credible intervals for statistical 

inference. The specification of the models, including the prior distributions of parameters in 

Bayesian mediation, closely follow the specification described for the simulation.

Results

Table 5 shows the parameter estimates of the mediation model from Eq. 1 and 2. The 

estimates were similar across models, so we will only interpret the estimates for the 

factor scores with reliability adjustment. The treatment significantly increased job search 

self-efficacy (a = . 267, 95%CI = . 151, . 359 ), and job search self-efficacy was significantly 

associated with lower depressive symptoms (b = − . 224, 95%CI = − . 390, − . 163 ). There 

was also a significant baseline-by-treatment interaction on the mediator at posttest 

(XM1; h1 = − . 144, 95%CI = − . 250, − . 027 , which indicated that the relation between 

the program and job search self-efficacy at posttest was stronger for individuals who 

had low job search self-efficacy at pretest. There was a significant mediated effect at 

the mean of M1 ab = − . 059, 95%CI = − . 118, − . 029 , and a significant mediated effect 

for individuals 1 SD below the mean of M1 ab = − . 104, 95%CI = − . 202, − . 103 ), 

but the interaction was not significant for individuals 1 SD above the mean of 

M1 ab = − . 016, 95%CI = − . 059, . 016 ). Given these findings, future implementations of 

the intervention might consider screening for job search self-efficacy before enrolling 

individuals in the intervention because individuals with low job search self-efficacy might 

benefit more from the program.

Discussion

Estimating baseline-by-treatment interactions can reveal how and for whom an intervention 

works, which is valuable information for the dissemination and implementation of 

interventions. In this paper, we discussed five different methods (e.g., summed scores 

with reliability adjustment, factor scores with reliability adjustment, unconstrained product 

indicator approach, latent moderated structural equations, and Bayesian mediation) for 

estimating the statistical mediation model with baseline-by-treatment interactions when the 
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mediator and outcome are latent variables. We also evaluated the estimation properties of the 

approaches and illustrated the methods using an applied example and presented code in the 

supplement to facilitate testing for latent baseline-by treatment interactions. Our simulation 

results suggest that the five approaches examined led to unbiased effects, similar power, 

interval coverage of approximately .95, and type 1 error rates close to .05. As such, each 

of these methods estimated the mediation effects and the latent BTI effects accurately. 

However, across methods, the estimates of power to detect small effect sizes were well 

below .80 even for a condition with N = 500, which might be a limiting factor in applied 

research. Larger sample sizes might be needed to detect small effects using this model.

Given that all methods provided accurate results, additional simulations may reveal 

situations in which they provide different answers. Determining which latent interaction 

approach to use with any given model remains an open question (Kelava & Brandt, 2022). 

As such, researchers estimating latent BTI effects in mediation models could follow current 

recommendations from the literature. In a recent review of work in latent interactions, 

Kelava and Brandt (2022) recommend using the LMS approach in situations in which 

there are normally-distributed latent variables and indicators. Kelava and Brandt (2022) 

mention that LMS is more efficient than the UPI approach (there is a loss of degrees 

of freedom when the estimation of the latent interaction term is unconstrained) and the 

Bayesian mediation approach (where efficiency depends on the specified prior), and that 

more research is needed to understand the performance of the scoring approaches. Other 

considerations include amount of background, analytical flexibility, computational time, and 

programming needed for their implementation. For example, the specification of the LMS 

procedure is relatively simple and took about 1–3 minutes to estimate a single model, and 

the procedure is available in Mplus. If access to Mplus is a limitation, then researchers could 

use any of the other methods presented – Bayesian mediation can be used in any program 

that does MCMC estimation, while the others can be estimated in any structural equation 

modeling program that takes a covariance matrix as an input. However, estimating the 

Bayesian mediation model would require researchers to be familiar with Bayesian inference 

and specifications of prior distributions, which might pose a challenge, along with long 

computation times. For the model in the illustration, the estimation and parallelization per 

MCMC chain took around 50 minutes in JAGS using a 13in MacBook Pro 2020 with 32GB 

of RAM. On the other hand, the coding to estimate the model using the UPI approach or 

summed scores and factor scores with reliability adjustment could be cumbersome, but the 

estimation time is almost immediate. As such, we advise researchers to review the code we 

provide in the appendix to gain familiarity with each of these approaches.

Extensions to the Model

In applied settings, researchers often use extensions of the two-wave model examined 

here to test specific theories. Depending on the model and situation, these extensions 

might or might not be easily accommodated by the procedures examined. These extensions 

require more simulation work to determine their performance, but we list how the methods 

examined could handle these extensions. For example, it may be of interest to include other 

covariates in Eq. 1 and 2 to increase statistical power (e.g., Gonzales et al., 2012). In cases 

in which the covariates are observed and perfectly reliable, the extensions are simpler. If 
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using summed scores and factor scores with reliability adjustment, the covariates would 

be included in the covariance matrix that is analyzed and additional adjustments to the 

covariance matrix would not be necessary. For the UPI, LMS, and Bayesian methods, the 

observed covariate could be specified and included in the corresponding equations. In cases 

in which the covariates are latent or have measurement error, adding a covariate adds another 

layer of complexity. The methods with summed scores and factor scores with reliability 

adjustment would need to score the covariate, correct its variance for measurement error, and 

include it in the analyzed covariance matrix. For the UPI, LMS, and Bayesian mediation, a 

latent covariate could be specified and included in the corresponding equations.

Furthermore, the methods examined could be extended to situations in which M and Y
are measured at baseline and at two additional timepoints (i.e., three-wave experimental 

designs). A third wave adds a layer of complexity to the two-wave model because M3 and 

Y3 are two additional latent variables to estimate. Perhaps in this design, the mediated 

effect of most interest is the X M2 Y3 relation, where each path can be moderated 

by baseline levels of M and Y. The methods with summed scores and factor scores with 

reliability adjustments would correct the 3 × 3 variance-covariance submatrices of M and Y
for measurement error and correlated residuals. If interested, researchers can take the steps 

to correct the XM1 and XY1 effects in the former Y2 equation and correct the XM2 and XY2
effects in the Y3 equation. For the UPI, LMS, and Bayesian methods, latent M3 and Y3 could 

be specified and included in the models.

Finally, the methods examined could be extended to situations in which X is a continuous 

variable (e.g., an intervention fidelity indicator). Although the procedures would stay the 

same when X is perfectly reliable, the procedures would differ when X has measurement 

error or is represented by a latent variable. The methods with summed scores and factor 

scores with reliability adjustments would need to correct the variance of X for measurement 

error, and consequently the variances of XM1 and XY1, in the analyzed covariance matrix. 

For the UPI, LMS, and Bayesian methods, a (single-indicator or multiple-indicator) latent 

variable could be specified for X and latent interactions for XM1 and XY1 and then the 

researcher would proceed as described. Note that we assume multivariate normality for 

all of these effects. Beyond the modeling complexity, it is important to note that the 

nonrandomized nature of X opens the door to unmeasured confounders in the X M2 and 

X Y2 relations.

Limitations and Future Directions

An important limitation of this study is that the results we presented rely on the 

correct specification of the models. A future direction is to investigate how longitudinal 

noninvariance (Georgeson et al., 2021), unmodeled multidimensionality (Gonzalez & 

MacKinnon, 2018), distribution of the latent variables (Cham et al., 2012), or structural 

misspecifications (Kelava & Brandt, 2022) affect the estimation of the statistical mediation 

model with latent BTIs. Specifically, it would be important to study whether ignoring 

these aspects leads to spurious observed baseline-by-treatment interactions. Additionally, we 

could have studied how sensitive our results are to different specifications of the models. 

For example, one could study how sensitive our results are to prior distributions used in the 
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Bayesian mediation model. In our study, diffuse priors were able to recover the parameters 

well, but this might not always be the case. Furthermore, although previous research 

suggests that varying stability does not affect the accuracy of the mediated effect estimate 

in two-wave mediation models without interactions (Valente & MacKinnon, 2017), one 

could examine if these findings also hold in two-wave mediation models with latent BTIs. 

Also, it would be interesting for future studies to increase the number of replications per 

simulation condition to obtain more precise estimates of our Monte Carlo outcomes. Finally, 

there are other methods to handle latent BTIs that we did not study, such as two-stage 

least squares methods (Bollen & Paxton, 1998) or others discussed by Kelava and Brandt 

(2022). Overall, we encourage researchers to estimate statistical mediation models with 

latent baseline-by-treatment interactions using any of the methods discussed in this paper for 

accurate estimation of the effects and to help with the implementation and dissemination of 

interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Statistical mediation model with latent baseline-by-treatment interactions and correlated 

residuals.
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Table 1.

Simulation factors

Factor (Levels) Values

sample size (2) 250, 500

a-path effect size (2) 0.285 (S), 0.845 (M)

b-path effect size (2) 0.145 (S), 0.435 (M)

h-path effect size (3)
[h1-h4 = 0]

[h1-h4 = 0.30 (S)]
[h1 & h4 = 0.30 (S), h2 & h3 = 0]

# of items (2) [4 for M and 8 for Y]
[6 for M and 6 for Y]

Residual covariance (2) 0.10, 0.30

Note: S is small effect size; M is medium effect size
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