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Abstract   11 

Organisms must perform sensory-motor behaviors to survive. What bounds or constraints limit behavioral 12 

performance? Previously, we found that the gradient-climbing speed of a chemotaxing Escherichia coli is 13 

near a bound set by the limited information they acquire from their chemical environments (1). Here we 14 

ask what limits their sensory accuracy. Past theoretical analyses have shown that the stochasticity of single 15 

molecule arrivals sets a fundamental limit on the precision of chemical sensing (2). Although it has been 16 

argued that bacteria approach this limit, direct evidence is lacking. Here, using information theory and 17 

quantitative experiments, we find that E. coli’s chemosensing is not limited by the physics of particle 18 

counting. First, we derive the physical limit on the behaviorally-relevant information that any sensor can 19 

get about a changing chemical concentration, assuming that every molecule arriving at the sensor is 20 

recorded. Then, we derive and measure how much information E. coli’s signaling pathway encodes during 21 

chemotaxis. We find that E. coli encode two orders of magnitude less information than an ideal sensor 22 

limited only by shot noise in particle arrivals. These results strongly suggest that constraints other than 23 

particle arrival noise limit E. coli’s sensory fidelity.  24 

 25 

Introduction   26 

Organisms must rapidly and accurately sense their environment, and then act on that sensory information 27 

to perform motor behaviors. Despite the importance of these processes for organisms’ survival, it is 28 

unclear what factors limit sensory fidelity and how this fidelity impacts behavioral performance (3). Past 29 

works have demonstrated that physics external to an organism often place fundamental limits on sensing 30 

accuracy and have argued that biological sensory systems might approach these limits (4,5,2,6–9). 31 

Alternatively, it is possible that other, system-specific constraints combined with demands on cellular 32 

resources are instead limiting (10–17). Understanding which constituent processes of a behavior limit 33 

performance would reveal relevant constraints on evolution and learning of sensory-motor behaviors. 34 

Escherichia coli chemotaxis is an ideal system to study these questions. Bacteria use the chemotaxis 35 

system to navigate chemical gradients, which is important for fitness-relevant behaviors such as climbing 36 

quickly or localizing at sources (18–21). Furthermore, we understand in detail how E. coli sense and act 37 

on chemical signals (22–24). E. coli alternate between straight-swimming runs and randomly-reorienting 38 
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tumbles (25). As they swim, the local concentrations of attractant chemicals change in time. These 39 

extracellular ligands bind to the cell’s transmembrane receptors, which modify the activity of receptor-40 

associated CheA kinases inside the cell. CheA phosphorylates the diffusible response regulator CheY, 41 

which is dephosphorylated by CheZ. When conditions worsen, kinase activity increases, increasing CheYp 42 

concentration. CheYp then binds to the motor and increases the propensity to tumble, biasing the cell’s 43 

runs towards more favorable chemical environments. 44 

We recently demonstrated that E. coli chemotaxis is information-limited: cells climb shallow gradients 45 

near a bound set by their sensory capabilities (1). First, we showed theoretically that the rate at which a 46 

cell encodes information about chemical signals sets an upper limit on its gradient-climbing speed. Then, 47 

through a combination of single-cell Förster resonance energy transfer (FRET) experiments and 48 

measurements of cells swimming in gradients, we found that a typical E. coli cell gets very little 49 

information—about 0.01 bits/s in a centimeter-long gradient—but efficiently uses this information to 50 

climb gradients at speeds near the theoretical limit. This suggests that a bacterium with a more accurate 51 

sensor would climb gradients faster, likely increasing their fitness.  52 

What prevents E. coli from obtaining more information during chemotaxis? In their classic work, Berg and 53 

Purcell demonstrated that the stochastic arrival of particles at the cell surface places a fundamental limit 54 

on the accuracy of chemical sensing (2), regardless of its sensor’s molecular details. Since then, theoretical 55 

works have studied the effects of receptor binding (26–28), maximum-likelihood estimation (29), energy 56 

consumption with noisy readout molecules (10,30–32), time-varying concentrations (11,33,34), constant 57 

concentration ramps (8,35,36), and other factors (28,37) on this fundamental limit. Furthermore, several 58 

studies have argued that the sensitivity of bacteria’s chemosensing apparatus approaches the molecule-59 

counting limit (2,8). However, it is still unclear whether this fundamental limit meaningfully constrains the 60 

information E. coli get about chemical signals, and thus their speed at climbing gradients. Answering this 61 

question has been challenging because it has been unclear how the fidelity of chemosensing relates to 62 

chemotaxis performance, and because of difficulties with measuring, quantifying, and interpreting cells’ 63 

internal encoding of external signals. 64 

Here, we address these challenges with a combination of information theory and single-cell FRET 65 

measurements. Information theory allows us to quantify the fidelity of signal encoding in a cellular system, 66 

and single-cell FRET measurements give us a direct readout of the kinase activity in which E. coli encode 67 

environmental information. We first derive the physical limit on the rate at which an ideal sensor can 68 

acquire behaviorally-relevant information, set by ligand arrival noise. Next, we derive the rate at which E. 69 

coli encode this information in their kinase activity. By measuring signal statistics, kinase response 70 

functions, and fluctuations in kinase activity, we quantify both the physical limit and how much 71 

information a typical E. coli cell gets during chemotaxis. We find that E. coli get orders of magnitude less 72 

information than the physical limit. Therefore, when signals are weak and sensor quality matters, cells 73 

climb gradients much slower than an ideal, single-molecule-sensing agent could. Our work opens up new 74 

questions about what costs, constraints, or competing objectives prevent them from being closer to the 75 

physical limit. 76 

 77 

Chemotaxis requires information about the current time derivative of concentration  78 
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Determining whether particle arrival noise is a limiting factor during E. coli chemotaxis presents 79 

conceptual challenges. Cells process measurements of their chemical environment into internal states, 80 

like the activity of kinases and the concentrations of signaling molecules. However, the goal of the 81 

chemotaxis system is not to represent the current concentration with high accuracy per se, but instead to 82 

utilize the concentration signal to move up a chemical gradient. Thus, cells need to capture certain aspects 83 

of signals that are behaviorally-relevant, but not necessarily in a format which is simply interpretable to 84 

an observer. To quantify how accurate such internal representations are thus requires a mathematical 85 

understanding of what features of the concentration signal are relevant to chemotaxis.  86 

Our approach for addressing this builds on our recent work (1), where we identified the behaviorally-87 

relevant information for E. coli chemotaxis. In particular, we showed that the amount of such information 88 

that the cell uses at the motor determines its gradient-climbing speed, 𝑣𝑑 ∝ (𝐼)̇
1/2

. Furthermore, due to 89 

the data-processing inequality (38,39), the amount of this information in any intermediate variable 90 

bounds performance (see also SI). The key chemical signal that the cell needs to encode is the (relative) 91 

rate of change of concentration, 𝑠(𝑡) =
𝑑

𝑑𝑡
log(𝑐) (Fig. 1). Then, the behaviorally-relevant information is 92 

the “transfer entropy rate” (40) from current signal, 𝑠(𝑡), to a time-dependent variable 𝑥(𝑡) that encodes 93 

the signal in its trajectory, {𝑥}, up to time 𝑡:  94 

𝐼�̇�→𝑥
∗ ≡ lim

𝑑𝑡→0

1

𝑑𝑡
𝐼(𝑥(𝑡 + 𝑑𝑡); 𝑠(𝑡)|{𝑥}) , (1) 95 

where 𝐼(𝑋; 𝑌|𝑍) is the mutual information between 𝑋 and 𝑌, conditioned on 𝑍 (38,41). Importantly, the 96 

current value of 𝑥(𝑡) does not need to be an explicit representation of 𝑠(𝑡); it just has to carry information 97 

about 𝑠(𝑡) in its trajectory. 98 

This points to a way of quantifying how molecule-counting noise limits behaviorally-relevant information 99 

for chemotaxis, and how E. coli compare to the limit. The stochastic arrival rate of ligand molecules at the 100 

cell surface, 𝑟(𝑡), is the first quantity that a cell can physically measure that encodes information about 101 

signals 𝑠(𝑡) (Fig. 1). Thus, the transfer entropy rate 𝐼�̇�→𝑟
∗  (i.e. with 𝑥 = 𝑟 in Eqn. 1) is a fundamental physical 102 

limit on the sensory information available for chemotaxis. An ideal agent would make navigation decisions 103 

based on a perfect readout of past particle arrivals {𝑟}, but this process would still be noisy due to their 104 

inherent stochasticity. Then, E. coli encodes the signal in the activity of CheA kinases, {𝑎}, from which 105 

downstream behavioral decisions are made. The data-processing inequality implies that 𝐼�̇�→𝑟
∗ ≥ 𝐼�̇�→𝑎

∗ . 106 

Therefore, to compare E. coli to the physical limit, we must quantify the information about 𝑠(𝑡) encoded 107 

in {𝑎}, 𝐼�̇�→𝑎
∗  (i.e. with 𝑥 = 𝑎 in Eqn. 1). If 𝐼�̇�→𝑎

∗  is comparable to 𝐼�̇�→𝑟
∗ , then E. coli’s signaling pathway 108 

acquires most of the information that is available in molecule arrivals. This comparison would allow us to 109 

determine whether E. coli's chemotaxis performance is limited by the external physics of ligand diffusion 110 

or by other factors. 111 

Our task now is to obtain closed form expressions for 𝐼�̇�→𝑟
∗  and 𝐼�̇�→𝑎

∗ , and then quantify them with 112 

experimental measurements. In the SI (Eqn. 10), we show that this transfer entropy rate is equivalent to 113 

a predictive information rate (42–48),  114 

𝐼�̇�→𝑥
∗ = −[𝜕𝜏𝐼(𝑠(𝑡 + 𝜏); {𝑥})]𝜏=0. (2) 115 

On the right, 𝜏 is a time interval into the future at which the signal 𝑠(𝑡 + 𝜏) is predicted from past 116 

observations, {𝑥}, making this a predictive information. Thus, the information about current signal 𝑠(𝑡) 117 
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that is encoded in past 𝑥 is the same as the accuracy with which 𝑠(𝑡) can be estimated from past 𝑥. We 118 

used this form to derive expressions for 𝐼�̇�→𝑟
∗  and 𝐼�̇�→𝑎

∗  (SI). Fig. 1 illustrates this problem, showing 119 

simulated time traces of signal 𝑠, particle arrival rate 𝑟, and kinase activity 𝑎. The goal of a chemotaxing 120 

E. coli is to construct an optimal running estimate of 𝑠(𝑡). An ideal agent does this from observations {𝑟}, 121 

whereas the cell only has access to past kinase activity {𝑎}. 122 

 123 

 124 

Figure 1: E. coli need to infer rate of change of attractant concentration from stochastic molecule 125 

arrivals. Top: Bacteria do not measure signal 𝑠 =
𝑑

𝑑𝑡
log(𝑐) directly—instead, they can at best measure 126 

stochastic particle arrivals at rate 𝑟(𝑡) at their transmembrane receptors. Receptor-associated kinases 127 

respond to ligand arrivals with changes in activity, 𝑎(𝑡), and encode information about 𝑠(𝑡), but also 128 

introduce additional noise. Bottom: Simulated traces of 𝑠(𝑡) (red); 𝑟(𝑡) (blue); ⟨𝑟(𝑡)⟩ = 𝑘𝐷 𝑐(𝑡) (black); 129 

and kinase activity 𝑎(𝑡) (green) for a cell exhibiting run-and-tumble motion in a shallow chemical gradient. 130 

𝑟0 is the background particle arrival rate, 𝑟0 = 𝑘𝐷 𝑐0, and 𝑎0 is the baseline level of kinase activity. The 131 

cell’s task is to infer 𝑠(𝑡) from kinase activity 𝑎, and the fidelity of this inference is quantified by the 132 

transfer entropy rate, 𝐼�̇�→𝑎
∗ . An ideal agent would directly estimate 𝑠(𝑡) from the particle arrival rate 𝑟, 133 

without the noise in kinase activity, thus setting the physical limit, 𝐼�̇�→𝑟
∗ . The simulation above was 134 

performed in a background concentration 𝑐0 = 1 μM and gradient of steepness 𝑔 = 0.3 mm−1.  135 

 136 

 137 
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Physical limit on information due to stochastic particle arrivals   138 

We first derive an expression for the physical limit, 𝐼�̇�→𝑟
∗ , from a model for the dynamics of 𝑠(𝑡) and 𝑟(𝑡). 139 

In static gradients, the signals a cell experiences are determined by their own motion in the gradient. 140 

Accordingly, in a gradient of steepness 𝑔 = 𝑑 log(𝑐) /𝑑𝑥, the signal is 𝑠(𝑡) = 𝑔 𝑣𝑥(𝑡), where 𝑣𝑥 is the 141 

cell’s up-gradient velocity. As done previously (1,48), we consider a cell exhibiting run-and-tumble motion 142 

in a shallow gradient. In this regime, to leading order in 𝑔, the information rate only depends on the 143 

correlation function of up-gradient velocity in the absence of a gradient, 𝑉(𝑡), since 𝑠 is proportional to 144 

𝑔. Thus, we approximate the signal as Gaussian, and its dynamics are fully characterized by the following 145 

correlation function: 146 

⟨𝑠(𝑡) 𝑠(𝑡′)⟩ = 𝑔2 𝑉(𝑡 − 𝑡′) = 𝑔2 𝜎𝑣
2 exp (−

|𝑡 − 𝑡′|

𝜏𝑣
) . (3) 147 

Here, 𝑉(𝑡) is the correlation function of 𝑣𝑥, 𝜎𝑣
2 is the variance 𝑣𝑥, and 𝜏𝑣 is the signal correlation time, 148 

which depends on the cell’s mean run duration, the persistence of tumbles, and rotational diffusion (1,49).  149 

We take particle arrival events to follow a Poisson process with time-varying rate ⟨𝑟(𝑡)⟩ = 4 𝐷 𝑙 𝑐(𝑡) =150 

𝑘𝐷 𝑐(𝑡), where 𝐷 is the diffusivity of the ligand and 𝑙 is the diameter of a circular patch on the cell’s surface 151 

(2,28). If a sufficient number of particles arrive per run, 𝑟0 𝜏𝑣 ≫ 1, which is valid in our experimental 152 

conditions, we can approximate the number of particles that arrive per unit time as Gaussian: 153 

𝑟(𝑡) = 𝑘𝐷 𝑐(𝑡) + √𝑟0  𝜉(𝑡). (4) 154 

Here, 𝑟0 = 𝑘𝐷 𝑐0 is the background molecule arrival rate, where 𝑐0 is the background concentration, and 155 

the noise is ⟨𝜉(𝑡) 𝜉(𝑡′)⟩ = 𝛿(𝑡 − 𝑡′). 156 

Next, since 𝑠(𝑡) and {𝑟} are each approximately Gaussian, the mutual information between them in Eqn. 157 

2 has a known form (38) (SI Eqn. 13). In particular, it depends on 𝜎𝑠|𝑟
2 (𝜏), the variance of the optimal 158 

estimate of 𝑠(𝑡 + 𝜏) constructed from the past of 𝑟. Thus, the problem of deriving the physical limit 159 

reduces to solving 𝜎𝑠|𝑟
2 (𝜏), which can be done using causal Wiener filtering theory (50–52) (see also 160 

(44,48,53–55)) (SI). In the SI, we derive the physical limit on behaviorally-relevant information for 161 

chemotaxis, which in the limit of shallow gradients reduces to: 162 

𝐼�̇�→𝑟
∗ ≈

1

𝜏𝑣

1

4
𝛾𝑟 . (5) 163 

Above, we have defined the dimensionless signal-to-noise ratio of particle arrivals, 𝛾𝑟 = 2 𝑟0 𝑔2 𝜎𝑣
2 𝜏𝑣

3. 164 

Eqn. 5 is valid when 𝛾𝑟 ≪ 1, which defines the small-signal regime for 𝐼�̇�→𝑟
∗ . We also provide a full 165 

expression for 𝐼�̇�→𝑟
∗  in the SI (Eqn. 44). The signal strength is proportional to 𝑟0

2, while the noise is 166 

proportional to 𝑟0. Thus, increasing the molecular arrival rate 𝑟0, the gradient steepness 𝑔, or the variance 167 

of the up-gradient swimming speed 𝜎𝑣 increases the signal-to-noise ratio of particle arrivals. Furthermore, 168 

the longer the cell maintains its heading, 𝜏𝑣, the more time it has to average out the noise of particle 169 

arrivals. Past work has shown that the relative error of estimating a constant time derivative scales as 170 

1/𝑇3, where 𝑇 is the integration time (35). In chemotaxis, the longest reasonable integration time is the 171 

time scale on which the signal doesn’t change significantly, 𝜏𝑣. Therefore, a factor of 𝜏𝑣
3 appears in 𝛾𝑟. The 172 

derivation of 𝐼�̇�→𝑟
∗  also provides the optimal kernel for constructing a running estimate of 𝑠(𝑡) given past 173 

particle arrivals {𝑟}, which we discuss in the SI (Fig. S4).  174 
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Above, we have modeled an ideal sensor that “absorbs” every molecule it senses (2). If the sensor cannot 175 

distinguish between new ligand arrival events and rebinding events, the bound is lower by an order-1 176 

prefactor (28,37).  177 

 178 

Information encoded in E. coli’s CheA kinase activity 179 

How do E. coli compare to the fundamental limit? To answer this, we need to derive and experimentally 180 

quantify the information, 𝐼�̇�→𝑎
∗ , encoded in the activity 𝑎(𝑡) of E. coli’s CheA kinases. This in turn requires 181 

models for both noise and responses of kinase activity. 182 

As done before (1), in shallow gradients or for small signals, kinase activity can be described using linear 183 

response theory. In background particle arrival rate 𝑟0 and with steady-state kinase activity 𝑎0, then 184 

activity becomes: 185 

𝑎(𝑡) = 𝑎0 − ∫ 𝐾𝑟(𝑡 − 𝑡′) (𝑟(𝑡′) − 𝑟0) 𝑑𝑡′
𝑡

−∞

+ 𝜂𝑛(𝑡). (6) 186 

E. coli respond to a step increase in attractant concentration with a fast initial drop in kinase activity, 187 

followed by slow adaptation back to pre-stimulus levels (56). This response is captured by a 188 

phenomenological form for the response function: 189 

𝐾𝑟(𝑡) = 𝐺𝑟 ((
1

𝜏1
+

1

𝜏2
) exp (− (

1

𝜏1
+

1

𝜏2
)  𝑡) −

1

𝜏2
exp (−

𝑡

𝜏2
))  Θ(𝑡), (7) 190 

where 𝐺𝑟 is the gain of the response to particle arrival rate 𝑟, 𝜏1 is the fast initial response time, 𝜏2 is the 191 

slow adaptation time, and Θ(𝑡) is the Heaviside step function. This response function can equivalently be 192 

expressed in terms of responses to past signals 𝑠, with a related kernel 𝐾(𝑡) that we used previously (1) 193 

(𝐾𝑟(𝑡) =
1

𝑟0

𝑑

𝑑𝑡
𝐾(𝑡); Methods, Eqn. 15 below). 194 

Noise in kinase activity is driven by a combination of stochastic particle arrivals and internally-driven 195 

fluctuations. Single-cell experiments have observed large, slow fluctuations in kinase activity on a time 196 

scale of 10 s (1,57–59). These are well-described as Gaussian, 𝜂𝑛(𝑡) in Eqn. 6, with correlation function: 197 

⟨𝜂𝑛(𝑡) 𝜂𝑛(𝑡′)⟩ = 𝐷𝑛 𝜏𝑛  exp (−
|𝑡 − 𝑡′|

𝜏𝑛
) . (8) 198 

Here, 𝐷𝑛 is the diffusivity of slow noise in kinase activity, and 𝜏𝑛 is its correlation time. So far, it has not 199 

been possible to measure noise in kinase activity at time scales near or below 𝜏1, but the noise cannot go 200 

below the level set by kinase responses to particle arrival noise. Thus, we construct a phenomenological 201 

noise model that agrees with experiments at low frequencies while obeying known physics at high 202 

frequencies. This consists of adding kinase responses to particle shot noise in Eqn. 4 to the slow 203 

fluctuations in Eqn. 8. Due to the adaptive nature of the signaling pathway, all the parameters that appear 204 

in the above Eqns. 7 and 8 can depend on the background particle arrival rate, 𝑟0. 205 

With this model, we can derive an expression for the information about signal encoded in kinase activity, 206 

𝐼�̇�→𝑎
∗ . As above, this reduces to deriving 𝜎𝑠|𝑎

2 (𝜏), the variance of the signal 𝑠(𝑡 + 𝜏) reconstructed from 207 

the past of kinase activity {𝑎}, which can again be solved using Wiener filtering theory (SI). Furthermore, 208 
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previous measurements (and measurements below) have shown that 𝜏1 ≪ 𝜏𝑣 (1,60,61) and 𝜏2 ≈ 𝜏𝑛 (1). 209 

Thus, in shallow gradients, we find that the information rate to kinase activity is:  210 

𝐼�̇�→𝑎
∗ ≈

1

𝜏𝑣

1

4
 𝛾𝑎

𝛾𝑟/𝛾𝑎

(1 + √𝛾𝑟/𝛾𝑎)
2 . (9) 211 

Here, we have defined the dimensionless kinase signal-to-noise ratio 𝛾𝑎 =
𝐺𝑟

2

𝐷𝑛
 𝑟0

2 𝑔2 𝜎𝑣
2 𝜏𝑣 and used 𝛾𝑟 =212 

2 𝑟0 𝑔2 𝜎𝑣
2 𝜏𝑣

3 from above. Eqn. 9 is valid when 𝛾𝑎 ≪ 1, which defines the small-signal regime for 𝐼�̇�→𝑎
∗ . We 213 

also provide a full expression for 𝐼�̇�→𝑎
∗  in the SI (Eqn. 89). An ideal cell with no internal noise sources would 214 

operate at the physical limit, Eqn. 5, corresponding to infinite signal-to-noise in kinase activity, 𝛾𝑎 → ∞. 215 

Taking this limit in Eqn. 9 results in the expression for 𝐼�̇�→𝑟
∗  above (Eqn.  5). Conversely, a cell with internal 216 

noise would degrade information about the signal, and in the limit of large noise would have an 217 

information rate given by 𝐼�̇�→𝑎
∗ ≈

1

𝜏𝑣

1

4
 𝛾𝑎. The derivation of 𝐼�̇�→𝑎

∗  also provides the optimal kernel for 218 

constructing a running estimate of 𝑠(𝑡) from past kinase activity {𝑎}, which we discuss in the SI. 219 

To compare the information E. coli get during chemotaxis to the physical limit, we must quantify 𝐼�̇�→𝑎
∗  and 220 

𝐼�̇�→𝑟
∗  by measuring the parameters above from live cells. 221 

 222 

Single-cell measurements constrain signal and kinase properties 223 

Next, we use single-cell tracking and FRET experiments to measure the parameters that characterize the 224 

signal statistics, kinase response function, and kinase noise statistics in multiple background 225 

concentrations of attractant. As the attractant, we used aspartate (Asp), to which the E. coli chemotaxis 226 

signaling pathway responds with the highest sensitivity among known attractants (62).  227 

To quantify the parameters describing cell swimming statistics (Eqn. 3), and thus the signal statistics, 𝜎𝑣
2 228 

and 𝜏𝑣, we recorded trajectories of cells swimming in multiple uniform background concentrations of Asp: 229 

𝑐0 =  0.1, 1, and 10 μM (Fig. 2A). Single cells in the clonal population exhibited a range of swimming 230 

behaviors (57,63–69); thus, as before (1), we focus on cells with median values of the phenotypic 231 

parameters. We binned cells by the fraction of time they spent in the “run” state, 𝑃𝑟𝑢𝑛, and computed the 232 

velocity correlation function, 𝑉(𝑡), among cells with the median 𝑃𝑟𝑢𝑛. The parameters 𝜎𝑣
2 and 𝜏𝑣 in each 233 

background 𝑐0 were then inferred by fitting the correlation functions with the decaying exponential in 234 

Eqn. 3. These parameters depended weakly on 𝑐0, and their values in 𝑐0 = 1 μM Asp were 𝜎𝑣
2 = 146 ±235 

5 (μm/𝑠)2 and 𝜏𝑣 = 1.19 ± 0.01 𝑠 (see Fig. S1AB for their values in all backgrounds). 236 

We measured kinase response functions as before (1), using a microfluidic device in which we can deliver 237 

controlled chemical stimuli with high time resolution (~100 ms) (70). Cells immobilized in the device were 238 

delivered ten small positive and negative step changes of Asp concentration around multiple backgrounds 239 

𝑐0 (Fig. 2B; Methods). Kinase responses were measured in single cells through FRET (58,59,70–74) 240 

between CheZ-mYFP and CheY-mRFP. Then we fit each cell’s average response with the phenomenological 241 

response function 𝐾𝑟(𝑡) in Eqn. 7, and computed the population-median parameter values. However, 𝜏1 242 

estimated this way includes the dynamics of CheY-CheZ interactions, which are slower than the fast time 243 

scale of the kinases. We used 𝜏1 = 0 for calculations below, which slightly overestimates the information 244 

rate 𝐼�̇�→𝑎
∗ , making this a conservative choice in estimating where cells are relative to the bound. The 245 
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adaptation time 𝜏2 depended weakly on 𝑐0 (in 𝑐0 = 1 μM, 𝜏2 = 7.4 ± 0.3 𝑠) (Fig. S1D), but 𝐺𝑟 varied 246 

significantly with 𝑐0: for 𝑐0 = {0.1, 1, 10} μM we measured 𝐺𝑟 =
1

𝑘𝐷
{3.2 ± 0.1, 2.28 ± 0.05,0.251 ±247 

0.009} (Fig. S1EF). 248 

The dependence of 𝐺𝑟 on 𝑐0 was consistent with the phenomenological Monod-Wyman-Changeux (MWC) 249 

model for kinase activity (23,75–77), which captures numerous experimental measurements (70,72–250 

74,78). First, in the methods we note that 𝐺𝑟 =
1

𝑟0
𝐺(𝑐0), where 𝐺(𝑐0) is the MWC model gain (Eqn. 16 in 251 

the Methods below). The MWC model in turn predicts that 𝐺(𝑐0) ≈ 𝐺∞
𝑐0

𝑐0+𝐾𝑖
, where 𝐾𝑖 is the dissociation 252 

constant of two-state receptors for ligand when in their inactive state and 𝐺∞ is a constant (Methods). 253 

Thus, in low backgrounds where 𝑐0 ≪ 𝐾𝑖  the cell is in the “linear-sensing” regime and 𝐺𝑟 = 𝐺∞
1

𝑘𝐷 𝐾𝑖
 is 254 

constant; in high backgrounds where 𝑐0 ≫ 𝐾𝑖, cells transition to the “log-sensing” regime (79–81), with 255 

gain 𝐺𝑟 ≈ 𝐺∞/𝑟0. Fitting 𝐺(𝑐0) to the MWC model, we estimated that 𝐺∞ = 3.5 ± 0.1 and 𝐾𝑖 = 0.81 ±256 

0.04 μM. 257 

Finally, we estimated the noise parameters of slow kinase fluctuations by measuring kinase activity in 258 

single cells experiencing constant Asp concentrations 𝑐0 (Fig. 2C). The diffusivity 𝐷𝑛 and time scale 𝜏𝑛 of 259 

slow fluctuations in Eqn. 8 were extracted from these time series using Bayesian filtering (1,82) (Methods). 260 

We then computed the population-median parameter values. Both of these parameters depended weakly 261 

on 𝑐0, and their values in 𝑐0 = 1 μM were 𝐷𝑛 = 8.1 ± 0.9 × 10−4 𝑠−1 and 𝜏𝑛 = 8.7 ± 0.9 𝑠 (see Fig. S1CD 262 

for their values in all backgrounds). 263 

 264 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2024. ; https://doi.org/10.1101/2024.07.09.602750doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.09.602750
http://creativecommons.org/licenses/by/4.0/


9 
 

 265 

Figure 2: Measured signal statistics and kinase responses and fluctuations in different background 266 

ligand concentrations. A) Signal statistics. Left: Representative time series of up-gradient velocity 𝑣𝑥 from 267 

three individual cells are shown, one in each background concentration 𝑐0. Scale bar is 20 µm/s. Cells were 268 

binned by the fraction of time they spend running, 𝑃𝑟𝑢𝑛, and the velocity autocorrelation function was 269 

computed by averaging over cells in the median bin (𝑃𝑟𝑢𝑛 ≈ 0.89). The parameters of the velocity 270 

autocorrelation function were then fit with a decaying exponential 𝑉(𝑡) = 𝜎𝑣
2 exp (−

𝑡

𝜏𝑣
) to extract the 271 

velocity variance 𝜎𝑣
2 and correlation time 𝜏𝑣. Right: Model fits for velocity autocorrelation functions are 272 

shown for each 𝑐0. The curves are on top of each other. Units on the y-axis are (µm/s)2. Throughout, line 273 

colors indicate 𝑐0: Red: 0.1 µM Asp; Green: 1 µM Asp; Blue: 10 µM Asp, and shading is standard error of 274 

the mean (SEM). B) Linear responses. Left: Immobilized cells were continuously exposed with a constant 275 

background concentration 𝑐0 of aspartate (Asp). The fraction of active kinases (kinase activity) was 276 

measured by FRET in blocks of 25 seconds, separated by 65 seconds without illumination. In each block, 277 

after 5 s, concentration was stepped up (light gray shading) or down (dark gray shading) around 𝑐0, then 278 

maintained for 20 s, and then returned to 𝑐0. Concentration step sizes Δ𝑐 were different for each 𝑐0 279 

(shown above the panel). Shown are three representative cells, one from each 𝑐0. Scale bar is 0.3. Middle: 280 
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Average responses of the cells in the left panel to a step up (light gray) and step down (dark gray) of 281 

concentration. Single-cell responses were fit to the model in Eqn. 15 to extract single-cell parameters of 282 

the response function 𝐾𝑟(𝑡). Right: Using the median parameter values of the population, shown are 283 

model fits for kinase responses to a step increase in concentration of size Δ𝑐, for each background 𝑐0. The 284 

gain of the response 𝐺𝑟 decreases with 𝑐0. C) Noise statistics. Left: Fluctuations in kinase activity were 285 

measured in constant background concentrations. Representative time series from three cells are shown, 286 

one in each background concentration. Scale bar height is 0.3. Parameters of the slow noise 287 

autocorrelation function (Eqn. 8), were fit to single-cell traces using Bayesian filtering (SI). Right: Estimated 288 

noise autocorrelation functions for the median cell are shown, for each background concentration 𝑐0. 289 

Units on the y-axis are kinase activity squared. 290 

 291 

 292 

Comparing E. coli to the physical limit 293 

We can now answer our central question: does the stochastic arrival of particles prevent E. coli from 294 

getting more information during chemotaxis? The remaining unknown needed to answer this is the 295 

diffusion-limited particle arrival rate constant, 𝑘𝐷 = 4 𝐷 𝑙. We take 𝑙 = 60 nm (82) as a conservative 296 

lower estimate of the diameter of the receptor array and 𝐷 = 800 μm2/s (83,84) as the ligand diffusivity. 297 

With these, we estimate that 𝑘𝐷 ≈ 1.2 × 105 s−1 μM−1, indicating that about 105 independent 298 

molecules strike the cell’s receptor array per second in a background of 𝑐0 = 1 μM, which is comparable 299 

to previous estimates (2,8).  300 

Both E. coli’s information rate, 𝐼�̇�→𝑎
∗ , and the physical limit, 𝐼�̇�→𝑟

∗ , are approximately proportional to the 301 

gradient steepness squared, 𝑔2 in the limit of a shallow gradient (black lines in Fig. 3AB). Therefore, we 302 

quantify the information rates per 𝑔2, using the parameters measured in the previous section. In 303 

particular, we plot the full expressions for the information rates, which are given in the SI. In Fig. 3A, we 304 

plot these quantities as functions of background concentration 𝑐0, for varying values of the gradient 305 

steepness 𝑔 ∈ [0, 0.4] mm−1, within which we observed linear dependence of chemotaxis drift speed on 306 

𝑔 (1). Doing so reveals that E. coli are surprisingly far from the physical limit: in shallow gradients, 𝐼�̇�→𝑎
∗  is 307 

at least two orders of magnitude below 𝐼�̇�→𝑟
∗  across all background concentrations.  308 

To quantify the fidelity of E. coli’s chemical sensing relative to the physical limit, we computed the ratio 309 

of E. coli’s information rate relative to the physical limit, 𝜂 ≡
𝐼�̇�→𝑎

∗

𝐼�̇�→𝑟
∗ . We first focus on the limit of vanishingly 310 

small gradients, where 𝜂 is independent of 𝑔, and we plot it in Fig. 3B (black) as a function of background 311 

concentration, 𝑐0. In low backgrounds, 𝑐0 ≪ 𝐾𝑖, the kinase signal-to-noise ratio, 𝛾𝑎, scales as 𝑐0
2 since E. 312 

coli’s gain 𝐺𝑟 and noise in kinase activity are constant. Thus, E. coli’s information rate scales as 𝐼�̇�→𝑎
∗ ∝ 𝑐0

2. 313 

Since the physical limit scales as 𝐼�̇�→𝑟
∗ ∝ 𝑐0, we get 𝜂 ∝ 𝑐0, which goes to zero with decreasing background 314 

concentration. In high backgrounds, 𝑐0 ≫ 𝐾𝑖, the kinase signal-to-noise ratio 𝛾𝑎 is approximately constant 315 

because the gain depends on background concentration as 𝐺𝑟 ∝ 1/𝑐0, which cancels the concentration-316 

dependence of the molecular arrival rate, 𝑟0 ∝ 𝑐0, and so 𝐼�̇�→𝑎
∗  is constant. As a result, we get 𝜂 ∝ 1/𝑐0, 317 

which again goes to zero with increasing concentration. These two regimes are separated by a peak at 318 

𝑐0 = 𝐾𝑖, where 𝜂 ≈ 0.014 ± 0.002 at our closest measured data point (black in Fig. 3B). In this 319 
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background, the variance of filtered particle arrival noise is largest, but it is still much smaller than the 320 

variance of other kinase noise sources (see Figs. S1, S3).  321 

For small but finite gradients, we find that 𝜂 increases as the gradient 𝑔 gets steeper, increasing to 𝜂 ≈322 

0.1 when 𝑔 = 0.4 mm−1. This smaller value of 𝜂 does not imply that E. coli count every particle in steeper 323 

gradients. Instead, 𝜂 increases with 𝑔 because the information rate, 𝐼�̇�→𝑟
∗ , saturates in steeper gradients 324 

(solid color lines decreasing with 𝑔 in Fig. 3A). In a steep gradient, even a poor sensor can accurately infer 325 

the signal, 𝑠(𝑡), and increasing particle counts only provides marginal gains on the information rate.   326 

Mathematically, this can be seen through the weak dependence of 𝐼�̇�→𝑟
∗  on 𝑔 outside of the small-signal 327 

regime (Fig. 3A). 𝐼�̇�→𝑎
∗ , on the other hand, remains roughly proportional to 𝑔2 to much steeper gradients. 328 

Thus, kinase activity is still in the small-signal regime in conditions where particle arrivals are not. In 329 

steeper gradients where signal can be reconstructed accurately, E. coli are able to get closer to the 330 

information bound even with a sensor that is far from counting every particle. 331 

We support this further in Figs. 3CD. In Fig. 3C, we show the power spectrum of total noise in kinase 332 

activity (green line) compared to the power spectrum of filtered particle arrival noise (blue line). If E. coli 333 

were close to the particle-counting limit, nearly all noise in kinase activity would come from filtering 334 

particle arrivals; instead, kinase fluctuations are much larger over the range of frequencies observable in 335 

experiment (Fig. 3C, outside the pink region). We extrapolate to higher frequencies by conservatively 336 

assuming that the lines approach each other (black line), but it is possible that there are additional high 337 

frequency noise sources (putting the black line higher in shaded region of Fig 3C) or that the response 338 

function has a slower 𝜏1 than in our model (putting the blue line lower in pink shaded region of Fig 3C).  339 

The information rate is relatively insensitive to these choices (see SI Fig S3 for discussion). In Fig. 3D, we 340 

show the optimal reconstructions of 𝑠(𝑡) in Fig. 1, both from past particle arrivals {𝑟} and from past kinase 341 

activity {𝑎} using the parameter values determined from the experiments. The fidelity of the 342 

reconstruction from kinase activity is visibly worse than that from particle arrivals, consistent with the 343 

much lower information about the signal encoded in the kinase activity. Thus, E. coli’s information about 344 

signals during chemotaxis is not limited by the physical limit set by counting single particle arrivals.  345 

 346 
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 347 

Figure 3: Comparing E. coli’s information rates to the particle counting limit. A) Information rates per 348 

gradient steepness squared, 𝑔2, in particle arrivals, 𝐼�̇�→𝑟
∗  (SI Eqn. 44; solid lines), and in kinase activity, 𝐼�̇�→𝑎

∗  349 

(SI Eqn. 89; dashed lines use Eqn. 16 and parameters measured in 𝑐0 = 1 μM) for gradients of varying 350 

steepness, 𝑔 ∈ {0+, 0.1, 0.2, 0.3, 0.4} mm−1 in black, blue, green, red, yellow, where black is the small 351 

gradient limit, 𝑔 → 0. Dots are experimental measurements. Error bars and shading throughout are SEM. 352 

We find that E. coli far from the physical limit set by particle arrivals when signals are weak and sensor 353 

quality matters. In particular, the fundamental limit 𝐼�̇�→𝑟
∗  scales slower than 𝑔2, even for moderate 𝑔, 354 

indicating that it is out of the small-signal regime. Information in kinase activity 𝐼�̇�→𝑎
∗ , on the other hand, 355 

is roughly proportional to 𝑔2 (the lines are on top of each other), indicating that E. coli are still in the small-356 

signal regime. B) 𝜂 = 𝐼�̇�→𝑎
∗ /𝐼�̇�→𝑟

∗  versus 𝑐0. Colors and markers are same as in (A). In steeper gradients, the 357 

quality of E. coli’s chemosensory apparatus matters less for getting close to the limit. C) Fit models for the 358 

noise power spectra in background concentration 𝑐0 = 1 μM. Green: fit to measured slow noise in kinase 359 

activity. Blue: particle arrival noise filtered through kinase response kernel. Black: Sum of green and blue, 360 

used as a conservative estimate of information in kinase activity. Red shading: experimentally-inaccessible 361 

region using CheY-CheZ FRET. See also SI Fig. S3 and the SI section “Modeling kinase activity” for discussion 362 

about noise in the red region. If E. coli were close to the physical limit, the black line would be close to the 363 

blue line at all frequencies. Instead, excess slow noise in kinase activity dominates over the entire range 364 

of observable frequencies. D) E. coli’s low information rates relative to the physical limit correspond to 365 

poor estimates of the signal 𝑠(𝑡). Red: true signal from Fig. 1 with 𝑐0 = 1 μM and 𝑔 = 0.3 mm−1. Top, 366 

blue: reconstructed signal from particle arrival rate 𝑟 in Fig. 1, using the optimal causal kernel (SI Eqn. 57). 367 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2024. ; https://doi.org/10.1101/2024.07.09.602750doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.09.602750
http://creativecommons.org/licenses/by/4.0/


13 
 

Bottom, green: reconstructed signal from kinase activity 𝑎 in Fig. 1, using the optimal causal kernel (SI 368 

Eqn. 95). 369 

 370 

 371 

Discussion 372 

Here, we studied how  the physics of chemosensing (2) limits E. coli’s ability to encode information about 373 

signals relevant for chemotaxis. We derived a physical limit on information about the current time 374 

derivative of concentation, which we previously showed cells need for chemotaxis (1), by considering an 375 

ideal sensor able to register the arrival of every particle at its surface. We then measured the rate at which 376 

E. coli encode this information into the activity of their receptor-associated kinases through a series of 377 

single-cell measurements in multiple background concentrations of attractant. We found that E. coli are 378 

far from the physical limit of an idealized sensor, getting only a few percent of the information available 379 

in ligand particle arrivals in shallow gradients. Thus, the fidelity of E. coli’s chemosensing, and hence their 380 

chemotaxis performance, is not limited by the physics of molecule counting. 381 

Previous work anticipated that E. coli would be much closer to the particle counting limit. Berg and Purcell 382 

argued that, in E. coli and Salmonella typhimurium chemotaxis, the change in concentration over a single 383 

run in a typical gradient could be estimated by an ideal agent with uncertainty smaller than the mean (2). 384 

From this, they concluded that the bacterial chemotaxis machinery is nearly optimal. However, their 385 

calculation does not imply that bacteria actually achieve that level of accuracy. Ref. (8) fit agent-based 386 

simulations to experimental measurements of Vibrio ordalii climbing dynamic chemical gradients and 387 

argued that this bacterium is within a factor of ~6 of the particle counting limit. However, this analysis 388 

assumed that cells infer 𝑠(𝑡) in short, independent time windows of duration 𝑇 = 0.1 𝑠. Instead, real cells 389 

continuously monitor new particle arrivals and forget old ones, allowing them to average out molecule 390 

counting noise for integration times up to the signal correlation time 𝜏𝑣. This increases the theoretical 391 

maximum precision in the analysis of Ref. (8), and thus V. ordalii’s distance from the limit, by a factor of 392 

(𝜏𝑣/𝑇)3 = (
0.45 𝑠

0.1 𝑠
)

3
~ 90, due to the 𝑇3 in the uncertainty about signal (35). We believe this explains the 393 

discrepancy between our findings. It also suggests that similar constraints might limit the sensing fidelity 394 

of E. coli and other bacterial species. 395 

We discovered a new relationship between two previously-disconnected information quantities: the 396 

transfer entropy rate (40) and the predictive information (42).  While past work has argued that signaling 397 

networks should carry predictive information (12,13,42,44,45), here we identify a specific behavior where 398 

performance depends quantitatively on a predictive information rate. This new predictive information 399 

rate allows us to distinguish two possible sources of inefficiency that we could not separate in our previous 400 

study (1). First, kinases could encode information about past signals 𝑠, which do not contribute to gradient 401 

climbing; and second, relevant information could be lost in communication with the motors. Using 𝐼�̇�→𝑎
∗  402 

derived here, which isolates information about the present signal, we estimate that about 90% or more 403 

of the cell’s information rate to kinase activity is relevant to chemotaxis, depending on 𝑐0 (see SI), implying 404 

that the remaining losses are in communication with the motor.  405 

Our analysis has implications for how we think about intermediary variables in signal transduction 406 

pathways. While behavioral decisions often require information about a current (or possibly future) 407 
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external signal, intermediate variables do not need to represent these in their current value.  For 408 

example,the entire past trajectory of kinase activity, {𝑎}, contains more information than its current value, 409 

𝑎, about the current signal, 𝑠. This information can be extracted by downstream processing, all the way 410 

down to the motors (see SI section “Optimal kernel for estimating signal from kinase activity”). The 411 

information available to downstream processing is quantified by the predictive information rate, and 412 

critically, this quantity is agnostic to that processing. Here we took advantage of this property to measure 413 

the fidelity of the kinases without assuming their activity is an instantaneous, noisy readout of signal.   414 

Why are E. coli so far from the particle counting limit? It may be that design constraints prevent them 415 

from reaching this limit. E. coli must be able to perform chemotaxis over many orders of magnitude in 416 

background concentration, which might impose trade-offs that prevent the system from achieving 417 

optimality. Fold-change detection enables this (79–81), but also causes E. coli’s gain, 𝐺𝑟, to decrease with 418 

increasing concentration (Methods). Thus, just to keep 𝜂 from decreasing with 𝑐0, E. coli would need to 419 

have kinase noise variance that decreases with concentration like 1/𝑐0. Instead, we find that it is roughly 420 

constant. Suppressing fluctuations or amplifiying signals generally requires spending energy or resources 421 

(10–16,86,87), and those costs might not be worth the fitness benefit in this case. The mechanism of 422 

amplification is not well understood, but recent work has argued that it consumes energy (87–89). Thus, 423 

energetic and mechanical constraints might provide currently-unknown bounds on E. coli's sensory 424 

fidelity.  425 

Surely, E. coli have evolved under selection pressures other than climbing shallow gradients of aspartate. 426 

E. coli need to sense multiple ligands, such as amino acids, sugars, and peptides (62,90), some of which 427 

require different receptor types. But the presence of multiple receptor types in the receptor array reduces 428 

the cooperativity to any one ligand (74), while likely still contributing to signaling noise. E. coli may be 429 

under selection pressure not only to climb gradients but also to stay close to concentration peaks 430 

(18,19,92,93). Furthermore, we do not know the typical gradient steepness they have been selected to 431 

climb effectively. In an infinitely shallow gradient, we showed that an ideal sensor would allow a bacteria 432 

to climb gradients at least 10 times faster than typical E. coli (due to 𝐼𝑠→𝑎
∗ /𝐼𝑠→𝑟

∗ ≈ 0.01 and 𝑣𝑑 ∝ (𝐼𝑠→𝑎
∗ )1/2 433 

(1)). However, in steeper gradients, where even a poor sensor can adequately measure direction, these 434 

gains would be far smaller. For example, in a relatively steep 500-micron gradient and background of 1 μM 435 

of attractant, we estimate that a typical cell would get ~37% of the relevant information available to an 436 

ideal sensor, and could climb ~60% as fast. It may be that the typical gradients that have driven the 437 

evolution of E. coli’s sensory apparatus are sufficiently steep as to obviate the need for an ideal single-438 

molecule sensor. In the laboratory, the amino acid gradients E. coli perceive when migrating collectively 439 

are typically of order ~1 mm (93), and theory predicts that they can be steeper in semisolid agar (94,95) 440 

in which our laboratory strain of E. coli was selected for chemotaxis (96–98).  441 

Existing findings give qualitative support for the idea that E. coli are not at the fundamental limit. Berg 442 

and Purcell’s original paper argued that by evenly-distributing small, sparse receptors on its surface, a cell 443 

can make its ligand sensor nearly as effective as if its entire surface were covered with receptors (2). Thus, 444 

a chemosensor limited primarily by the noise of single particle arrivals would want to spread a limited 445 

receptor budget evenly over the cell surface to maximize the rate at which unique particles are counted. 446 

Instead, bacterial chemoreceptors are clustered in densely-packed arrays. This dense packing, which 447 

appears to be universal across species (99),  might be necessary for bacteria to integrate and amplify signal 448 

that must be communicated to the motor to make all-or-none behavioral decisions.  449 
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Future experiments could probe whether hard constraints prevent E. coli from being close to the physical 450 

limit, or if tradeoffs would allow a cell to do better, perhaps at the cost of increased energy expenditure. 451 

This could be done by measuring information rates in single cells, where cell-to-cell variability (63,66–452 

68,70,72,78,101,102) might enable some cells to be closer to the physical limit by chance. 453 

While E. coli do not achieve the particle counting bound, their sensory capabilities are impressive. In the 454 

log-sensing regime they aquire and communicate information to the motor at a rate equivalent to an ideal 455 

sensor able to count several thousand particles every second. While current modeling efforts in 456 

chemosensing have mostly focused on quantitatively describing experimental observations, this work 457 

opens up new possibilities for a reverse engineering perspective. Our work highlights the need to 458 

understand how these systems achieve the signal processing, bandwidth, and fidelity needed for 459 

behavior, and how physical, geometric, and energetic constraints have shaped their evolution.  460 

 461 

Methods 462 

Modeling of average kinase responses to past signal versus past particle arrival rate 463 

In our previous work (1), we modeled responses of kinase activity to past signals 𝑠 instead of past particle 464 

arrival rate 𝑟. These two descriptions are equivalent in the regime of shallow gradients. We show this 465 

below by starting from average responses of kinase activity to particle arrival rate: 466 

⟨𝑎(𝑡)⟩ = 𝑎0 − ∫ 𝐾𝑟(𝑡 − 𝑡′) (⟨𝑟(𝑡′)⟩ − 𝑟0) 𝑑𝑡′
𝑡

−∞

, (10) 467 

where angled brackets indicate averaging over repeated presentation of the same signal trajectory {𝑠}, 468 

and thus they average out particle noise and kinase noise. From here, we will derive a response kernel to 469 

past signals that gives identical kinase responses.  470 

First, we note that: 471 

⟨𝑟(𝑡)⟩ − 𝑟0 = 𝑘𝐷 (𝑐(𝑡) − 𝑐0) = 𝑟0  ∫ 𝑠(𝑡′) 𝑑𝑡′
𝑡

−∞

, (11) 472 

where we used 𝑠(𝑡) ≈
1

𝑐0

𝑑𝑐

𝑑𝑡
 in shallow gradients. 473 

It is convenient to transform the expressions above to Fourier space, where 𝛿𝑎(𝜔) = 𝐹[⟨𝑎(𝑡)⟩ − 𝑎0], 474 

𝛿𝑟(𝜔) = 𝐹[⟨𝑟(𝑡)⟩ − 𝑟0], 𝐾𝑟(𝜔) = 𝐹[𝐾𝑟(𝑡)], and 𝐹[𝑓(𝑡)] = ∫ 𝑓(𝑡) 𝑒𝑖 𝜔 𝑡  𝑑𝑡
∞

−∞
 is the Fourier transform. 475 

Then we have 476 

𝛿𝑎(𝜔) = −𝐾𝑟(𝜔) 𝛿𝑟(𝜔), (12) 477 

𝛿𝑟(𝜔) = 𝑟0

𝑠(𝜔)

−𝑖 𝜔
. (13) 478 

With this, we get: 479 

𝛿𝑎(𝜔) = −𝐾𝑟(𝜔) 𝑟0

𝑠(𝜔)

−𝑖 𝜔
= −𝐾(𝜔) 𝑠(𝜔) (14) 480 
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where 𝐾(𝜔) = 𝑟0
𝐾𝑟(𝜔)

−𝑖 𝜔
 is the Fourier transform of the linear response function to signals. Thus, we can 481 

either write down average kinase responses to particle arrival rate 𝑟(𝑡), with linear response function 482 

𝐾𝑟(𝑡), or responses to signals 𝑠(𝑡), with linear response function 𝐾(𝑡) (1): 483 

𝐾(𝑡) = 𝑟0 ∫ 𝐾𝑟(𝑡′) 𝑑𝑡′
𝑡

0

= 𝐺 exp (−
𝑡

𝜏2
) (1 − exp (−

𝑡

𝜏1
)) . (15) 484 

where we have defined the MWC model gain 𝐺 = 𝑟0 𝐺𝑟 (23,76). Thus: 485 

𝐺𝑟 =
1

𝑟0
𝐺 ≈

1

𝑘𝐷

𝐺∞

𝑐0 + 𝐾𝑖
. (16) 486 

We can use the response function to particle arrivals, 𝐾𝑟(𝑡), to compute the power spectrum of particle 487 

counting noise filtered through the kinase response kernel, 𝐾𝑟(𝑡), but expressed it in terms of the 488 

response kernel 𝐾(𝑡) to signals 𝑠. Since we model particle arrival noise as shot noise, its power spectrum 489 

is constant and equal to 𝑟0. Filtering this noise through the response kernel 𝐾𝑟(𝜔) gives:  490 

𝑁𝑟(𝜔) = 𝑟0 |𝐾𝑟(𝜔)|2 = 𝑟0  |
− 𝑖 𝜔

𝑟0
 𝐾(𝜔)|

2

=
1

𝑟0
 𝜔2 |𝐾(𝜔)|2. (17) 491 

 492 

Simulation details in Figure 1 493 

Simulation time step was 𝑑𝑡 = 3 × 10−3 𝜏𝑣. Signal 𝑠(𝑡) was simulated in 2D by randomly sampling the 494 

times of instantaneous tumbles, plus rotational diffusion during runs, which was implemented using the 495 

Euler-Maruyama method. Average particle arrival rate ⟨𝑟(𝑡)⟩ was computed from the signal, and then 496 

Gaussian noise of variance √𝑟0 𝑑𝑡 was added to mimic shot noise. Kinase activity 𝑎(𝑡) was simulated using 497 

the model in the main text (Eqn. 6), with biologically reasonable parameters (see Fig. 2). 498 

 499 

Strains and plasmids 500 

All strains and plasmids used are the same as in our recent work (1). The strain used for the FRET 501 

experiments is a derivative of E. coli K-12 strain RP437 (HCB33), a gift of T. Shimizu, and described in detail 502 

elsewhere (59,70). The FRET acceptor-donor pair (CheY-mRFP and CheZ-mYFP) is expressed in tandem 503 

from plasmid pSJAB106 (59) under an isopropyl β-D-thiogalactopyranoside (IPTG)-inducible promoter. 504 

The glass-adhesive mutant of FliC (FliC*) was expressed from a sodium salicylate (NaSal)-inducible pZR1 505 

plasmid (59). The plasmids are transformed in VS115, a cheY cheZ fliC mutant of RP437 (59) (gift of V. 506 

Sourjik). RP437, the direct parent of the FRET strain and also a gift from T. Shimizu, was used to measure 507 

swimming statistics parameters. All strains are available from the authors upon request.  508 

 509 

Cell preparation 510 

Single-cell FRET microscopy and cell culture was carried out essentially as described previously 511 

(1,59,70,72). Cells were picked from a frozen stock at -80°C and inoculated in 2 mL of Tryptone Broth (TB; 512 

1% bacto tryptone, 0.5 % NaCl) and grown overnight to saturation at 30°C and shaken at 250 RPM. Cells 513 
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from a saturated overnight culture were diluted 100X in 10 mL TB and grown to OD600 0.45-0.47 in the 514 

presence of 100 μg/ml ampicillin, 34 μg/ml chloramphenicol, 50 μM IPTG and 3 μM NaSal, at 33.5°C and 515 

250 RPM shaking. Cells were collected by centrifugation (5 min at 5000 rpm, or 4080 RCF) and washed 516 

twice with motility buffer (10 mM KPO4, 0.1 mM EDTA, 1 μM methionine, 10 mM lactic acid, pH 7), and 517 

then were resuspended in 2 mL motility buffer, plus the final concentration of Asp. Cells were left at 22°C 518 

for 90 minutes before loading into the microfluidic device. All experiments, FRET and swimming, were 519 

performed at 22-23°C. 520 

For swimming experiments, cells were prepared similarly. Saturated overnight cultures were diluted 100X 521 

in 5 mL of TB. After growing to OD600 0.45-0.47, 1 mL of cell suspension was washed twice in motility 522 

buffer with 0.05% w/v of polyvinylpyrrolidone (MW 40 kDa) (PVP-40). Washes were done by centrifuging 523 

the suspension in an Eppendorf tube at 1700 RCF (4000 RPM in this centrifuge) for 3 minutes. After the 524 

last wash, cells were resuspended with varying background concentrations of Asp. 525 

 526 

Microfluidic device fabrication and loading for FRET measurements 527 

Microfluidic devices for the FRET experiments (70–72) were constructed from polydimethylsiloxane 528 

(PDMS) on 24 x 60 mm cover glasses (#1.5) following standard soft lithography protocols (102), exactly as 529 

done before (1).  530 

Sample preparation in the microfluidic device was conducted as follows. Five inlets of the device were 531 

connected to reservoirs (Liquid chromatography columns, C3669; Sigma Aldrich) filled with motility buffer 532 

containing various concentrations of Asp through polyethylene tubing (Polythene Tubing, 0.58 mm id, 533 

0.96 mm od; BD Intermedic) (see SI of (1)). The tubing was connected to the PMDS device through stainless 534 

steel pins that were directly plugged into the inlets or outlet of the device (New England Tubing). Cells 535 

washed and suspended in motility buffer were loaded into the device from the outlet and allowed to 536 

attached to the cover glass surface via their sticky flagella by reducing the flow speed inside the chamber. 537 

The pressure applied to the inlet solution reservoirs was controlled by computer-controlled solenoid 538 

valves (MH1; Festo), which rapidly switched between atmospheric pressure and higher pressure (1.0 kPa) 539 

using a source of pressurized air. Only one experiment was conducted per device. E. coli consume Asp, so 540 

all experiments below were performed with a low dilution of cells to minimize this effect. The continuous 541 

flow of fresh media also helped ensured that consumption of Asp minimally affected the signal cells 542 

experienced. 543 

 544 

Single-cell FRET imaging system 545 

FRET imaging in the microfluidic device was performed using the setup as before (1), on an inverted 546 

microscope (Eclipse Ti-E; Nikon) equipped with an oil-immersion objective lens (CFI Apo TIRF 60X Oil; 547 

Nikon). YFP was illuminated by an LED illumination system (SOLA SE, Lumencor) through an excitation 548 

bandpass filter (FF01-500/24-25; Semrock) and a dichroic mirror (FF520-Di02-25x36; Semrock). The 549 

fluorescence emission was led into an emission image splitter (OptoSplit II; Cairn) and further split into 550 

donor and acceptor channels by a second dichroic mirror (FF580-FDi01-25x36; Semrock). The emission 551 

was then collected through emission bandpass filters (F01-542/27-25F and FF02-641/75; Semrock; 552 

Semrock) by a sCMOS camera (ORCA-Flash4.0 V2; Hamamatsu). RFP was illuminated in the same way as 553 
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YFP except that an excitation bandpass filter (FF01-575/05-25; Semrock) and a dichroic mirror (FF593-554 

Di03-25x36; Semorock) were used. An additional excitation filter (59026x; Chroma) was used in front of 555 

the excitation filters. To synchronize image acquisition and the delivery of stimulus solutions, a custom-556 

made MATLAB program controlled both the imaging system (through the API provided by Micro-Manager 557 

(103)) and the states of the solenoid valves. 558 

 559 

Computing FRET signal and kinase activity 560 

FRET signals were extracted from raw images using the E-FRET method (104), which corrects for different 561 

rates of photobleaching between donor and acceptor molecules. In this method, YFP (the donor) is 562 

illuminated and YFP emission images (𝐼𝐷𝐷) and RFP (the acceptor) emission images (𝐼𝐷𝐴) are captured. 563 

Periodically, RFP is illuminated and RFP emission images are captured (𝐼𝐴𝐴). From these, photobleach-564 

corrected FRET signal is computed as before (1), which is related to kinase activity 𝑎(𝑡) by an affine 565 

transform when CheY and CheZ are overexpressed (1,73). All parameters associated with the imaging 566 

system were measured previously (1). 567 

In each experiment, we first delivered a short saturating stimulus (1 mM MeAsp plus 100 µM serine (74)) 568 

to determine the FRET signal at minimum kinase activity, followed by motility buffer with Asp at 569 

background concentration 𝑐0. Before the saturating stimulus was delivered, the donor was excited every 570 

0.5 seconds to measure 𝐼𝐷𝐷 and 𝐼𝐷𝐴 (see SI of (1)) for 5 seconds. Then the stimulus was delivered for 10 571 

seconds, and the donor was excited every 0.5 seconds during this time. Before and after the donor 572 

excitations, the acceptor was excited three times in 0.5-second intervals to measure 𝐼𝐴𝐴 (see SI of (1)). 573 

After the stimulus was removed, the acceptor was excited three more times at 0.5-second intervals. 574 

Imaging was then stopped and cells were allowed to adapt to the background for 120 seconds. 575 

Stimulus protocols for measuring kinase linear response functions and fluctuations are described below. 576 

At the end of each experiment, we delivered a long saturating stimulus (1 mM MeAsp plus 100 µM serine) 577 

for 180 seconds to allow the cells to adapt. Then we removed the stimulus back to the background 578 

concentration, eliciting a strong response from the cells, from which we determined the FRET signal at 579 

maximum kinase activity. The donor was excited for 5 seconds before the saturating stimulus and 10 580 

seconds after it, every 0.5 seconds. Before and after these donor excitations, the acceptor was excited 581 

three times in 0.5-second intervals. The cells were exposed to the saturating stimulus for 180 seconds. 582 

The donor was excited every 0.5 seconds for 5 seconds before cells were exposed to motility buffer with 583 

Asp at background concentration 𝑐0, followed by 10 seconds of additional donor excitations. Before and 584 

after the donor excitations, the acceptor was again excited three times in 0.5-second intervals. 585 

FRET signals were extracted as before (1). The FRET signal at minimum kinase activity, 𝐹𝑅𝐸𝑇𝑚𝑖𝑛, was 586 

computed from the average FRET signal during the first saturating stimulus. The FRET signal at maximum 587 

kinase activity, 𝐹𝑅𝐸𝑇𝑚𝑎𝑥, was computed from the average FRET signal during the first quarter (2.5 588 

seconds) of the removal stimulus at the end of the experiment. Kinase activity was then computed from 589 

corrected FRET signal: 𝑎(𝑡) =
𝐹𝑅𝐸𝑇(𝑡)−𝐹𝑅𝐸𝑇𝑚𝑖𝑛

𝐹𝑅𝐸𝑇𝑚𝑎𝑥−𝐹𝑅𝐸𝑇𝑚𝑖𝑛
. 590 

 591 

Kinase linear response functions 592 
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Experiments were performed in Asp background concentrations 𝑐0 of 0.1, 1, and 10 µM. Measurements 593 

were made in single cells, and at least three replicates were performed per background. FRET level at 594 

minimum kinase activity was measured at the beginning of each experiment, as described above. After 595 

this, a series of stimuli were delivered to the cells in the microfluidic device. Cells were only illuminated 596 

and imaged when stimulated in order to limit photobleaching. Before each stimulus, cells were imaged 597 

for 7.5 seconds in the background concentration 𝑐0. Then, the concentration of Asp was shifted up to 598 

𝑐+ > 𝑐0 for 30 seconds and imaging continued. Donor excitation interval was 0.75 seconds and acceptor 599 

excitations were done before and after the set of donor excitations. After this, imaging was stopped and 600 

the Asp concentration returned to 𝑐0 for 65 seconds to allow cells to adapt. Then, the same process was 601 

repeated, but this time shifting Asp concentration down to 𝑐− < 𝑐0. Alternating up and down stimuli were 602 

repeated 10 times each. 𝑐+ and 𝑐− varied with each experiment and each background 𝑐0. Finally, FRET 603 

level at maximum kinase activity was measured at the end of each experiment, as described above. The 604 

whole imaging protocol lasted <2200 seconds. In total, cells spent <60 minutes in the device, from loading 605 

to the end of imaging.  606 

These data were analyzed as before (1) to extract linear response parameters for each cell. In brief, the 607 

responses of a cell to all steps up or steps down in concentration were averaged and the standard error 608 

of the response at each time point computed. Model parameters were extracted by maximizing the 609 

posterior probability of parameters given data, assuming a Gaussian likelihood function and log-uniform 610 

priors for the parameters. The uncertainties of single-cell parameter estimates were generated by MCMC 611 

sampling the posterior distribution. Finally, the population-median parameters were computed from all 612 

cells in experiments in a given background 𝑐0. Uncertainty 𝜎𝜃𝑖

2  of the population-median value of 613 

parameter 𝜃𝑖, with 𝜃 = (𝐺, 𝜏1, 𝜏2), was computed using: 614 

𝜎𝜃𝑖

2 =
1

𝑁
(1.4826 mad({𝜃𝑖

𝑀𝐴𝑃}))
2

+
1

𝑁2
∑(𝜎𝜃𝑖

2 )
𝑘

𝑘

. (18) 615 

This expression accounts both for cell-to-cell variations (first term) and uncertainties in the single-cell 616 

estimates (second term). 𝑁 is the number of cells. 1.4826 mad(  ) is an outlier-robust uncertainty 617 

estimate that coincides with the standard deviation when the samples are Gaussian-distributed, and 618 

mad(  ) is the median absolute deviation, used previously (1). {𝜃𝑖
𝑀𝐴𝑃} are the single-cell maximum a-619 

posteriori (MAP) estimates of parameter 𝜃𝑖. (𝜎𝜃𝑖

2 )
𝑘

 is the uncertainty of 𝜃𝑖
𝑀𝐴𝑃 in cell 𝑘, which was 620 

computed using  621 

(𝜎𝜃𝑖
)

𝑘
= 1.4826 mad ({𝜃𝑖}

𝑘
) (19) 622 

where {�̂�𝑖}
𝑘

 are the samples from the 𝑘th cell’s posterior via Markov Chain Monte Carlo (MCMC). 623 

 624 

MWC kinase gain 625 

The estimated gain parameter 𝐺 depended strongly on 𝑐0, consistent with expectations from previous 626 

work modeling kinase activity using the MWC model (e.g. (76)). In the MWC model, kinase-receptor 627 

complexes can be in active or inactive states. The dissociation constants for the attractant in each state, 628 

𝐾𝑖 and 𝐾𝑎, are different, with 𝐾𝑖 ≪ 𝐾𝑎, which causes attractant concentration to influence the fraction of 629 
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kinases in the active state. When the background concentration 𝑐0 ≪ 𝐾𝑎, the gain of the kinase response 630 

to changes in log-concentration of attractant can be written: 631 

𝐺(𝑐0) = 𝐺∞

𝑐0

𝑐0 + 𝐾𝑖
, 632 

where 𝐺∞ is the “log-sensing” gain (when 𝑐0 ≫ 𝐾𝑖). Parameters 𝐺∞ and 𝐾𝑖 were estimated by fitting the 633 

estimates of 𝐺 versus 𝑐0. The fit was done by minimizing the sum of squared errors between the 634 

logarithms of 𝐺 and 𝐺𝑀𝑊𝐶. The estimated values of 𝐺 vary by about an order of magnitude, and taking 635 

the logarithms ensured that the smallest value of 𝐺 had similar weight as largest value in the objective 636 

function. 637 

 638 

Statistics of noise in kinase activity 639 

Fluctuations in kinase activity were measured in the same Asp background concentrations 𝑐0 as above, as 640 

well as 𝑐0 = 0 μM. At least three replicate experiments were performed per background. FRET level at 641 

minimum kinase activity was measured at the beginning of each experiment, as described above. After 642 

these measurements, imaging was then stopped and cells were allowed to adapt to the background for 643 

120 seconds. After this, cells were imaged for about 1200 seconds. Throughout, donor excitations were 644 

done every 1.0 second, except when it was interrupted by acceptor excitations, which were conducted 645 

every 100 donor excitations (see SI of (1)). Finally the FRET level at maximum kinase activity was measured 646 

at the end of each experiment, as described above. The whole imaging protocol lasted <1400 seconds. In 647 

total, cells spent about < 60 minutes in the device, from loading to the end of imaging.  648 

These data were analyzed as before (1). Bayesian filtering methods (82) were used to compute the 649 

likelihood of the parameters given the data, and the prior distribution was taken to be uniform in log. 650 

Single-cell estimates and uncertainties of the noise parameters were extracted from the posterior 651 

distribution as described above. In each background 𝑐0, the population median parameter values were 652 

computed, and their uncertainties were computed as described above, with 𝜃 = (𝐷𝑛, 𝜏𝑛). 653 

 654 

Swimming velocity statistics 655 

Cells were prepared and imaged as before (1). After the second wash step of the Cell preparation section 656 

above, cells were centrifuged again and resuspended in motility buffer containing a background 657 

concentration of Asp 𝑐0. The values of 𝑐0 used here were the same as in the FRET experiments, including 658 

𝑐0 = 0 μM. Then, the cell suspension was diluted to an OD600 of 0.00025. This low dilution of cells both 659 

enables tracking and minimizes the effect of cells consuming Asp. The cell suspension was then loaded 660 

into µ-Slide Chemotaxis devices (ibidi; Martinsried, Germany). Swimming cells were tracked in one of the 661 

large reservoirs. 1000-s movies of swimming cells were recorded on a Nikon Ti-E Inverted Microscope 662 

using a CFI Plan Fluor 4X objective (NA 0.13). Images were captured using a sCMOS camera (ORCA-Flash4.0 663 

V2; Hamamatsu). Four biological replicates were performed for each background 𝑐0. 664 

Cell detection and tracking were carried out using the same custom MATLAB as we used previously (1), 665 

with the same analysis parameters (see SI of that paper for details). Tumble detection was also carried 666 

out identically as before (1). There was no minimum trajectory duration, but cells were kept only if at least 667 
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two tumbles were detected in their trajectory. For each cell, we computed the fraction of time spent in 668 

the “run” state 𝑃𝑟𝑢𝑛. Then we constructed the distribution of 𝑃𝑟𝑢𝑛, correcting for biases caused by the 669 

different diffusivities of cells with different 𝑃𝑟𝑢𝑛 (1). As before (1), we then computed the correlation 670 

function of velocity along one spatial dimension for each cell, 𝑉𝑖(𝑡) = ⟨𝑣𝑥(𝑡′)𝑣𝑥(𝑡′ + 𝑡)⟩𝑡′  among cells 671 

with 𝑃𝑟𝑢𝑛 within ±0.01 of the population-median value,. Finally, we computed a weighted average of the 672 

correlation functions over all cells in the population-median bin of 𝑃𝑟𝑢𝑛, where trajectories were weighted 673 

by their duration , giving 𝑉(𝑡). In each background 𝑐0, for the median bin of 𝑃𝑟𝑢𝑛, the average trajectory 674 

duration was ~7.6 seconds, and the total trajectory time was ≥ 2.7 × 104 seconds.  675 

These correlation functions 𝑉(𝑡) in each background 𝑐0 and each experiment were fit to decaying 676 

exponentials 𝜎𝑣
2 exp(−|𝑡|/𝜏𝑣), and the parameters and their uncertainties were extracted in two steps. 677 

First, we determined the MAP estimates of the parameters. An initial estimate of the parameters were 678 

esimated using the MATLAB fit function to fit exponentials to the 𝑉(𝑡) in the time rang 𝑡 ∈ [2 Δ𝑡, 10 s], 679 

with Δ𝑡 = 50 ms. The estimated 𝜏𝑣 was used to get the uncertainty of 𝑉(𝑡) in each experiment, as done 680 

before (1). Assuming a Gaussian likelihood function and parameters distributed uniformly in logarithm, 681 

the posterior distribution of parameter was constructed. In each experiment, MAP estimates of the 682 

parameters were extracted as done for the kinase parameters, and parameter uncertainties were 683 

computed from MCMC samples of the posterior distribution as above. Finally, we computed the average 684 

parameters 𝜎𝑣
2 and 𝜏𝑣 over experimental replicates, as well as their standard errors over replicates. 685 

 686 

Additional error analysis 687 

Once the variance of the population-median value of parameter 𝑖 was computed, 𝜎𝜃𝑖

2 , we propagated the 688 

uncertainty to functions of those parameters. For some function of the parameters, 𝑓(𝜃), we computed 689 

the variance of 𝑓(𝜃), 𝜎𝑓
2, as: 690 

𝜎𝑓
2 = ∑ (

𝜕𝑓

𝜕𝜃𝑖
)

2

𝑖

𝜎𝜃𝑖

2  691 

= 𝑓2 ∑ (
𝜕 log 𝑓

𝜕𝜃𝑖
)

2

𝑖

𝜎𝜃𝑖

2 . (20) 692 

The equations above neglect correlations in the uncertainties between pairs of parameters. This was used 693 

to compute the uncertainties of  𝐼�̇�→𝑟
∗ , 𝐼�̇�→𝑎

∗ , and 𝜂. The same formula was used to compute uncertainties 694 

of functions of time by applying the formula above pointwise at each time delay 𝑡 and neglecting 695 

correlations in uncertainties between time points. 696 

 697 
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