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Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural 

activities in the brain and is widely used for brain disorder analysis. Previous studies focus 

on extracting fMRI representations using machine/deep learning methods, but these features 

typically lack biological interpretability. The human brain exhibits a remarkable modular 

structure in spontaneous brain functional networks, with each module comprised of functionally 

interconnected brain regions-of-interest (ROIs). However, existing learning-based methods cannot 

adequately utilize such brain modularity prior. In this paper, we propose a brain modularity-

constrained dynamic representation learning framework for interpretable fMRI analysis, consisting 
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of dynamic graph construction, dynamic graph learning via a novel modularity-constrained 

graph neural network (MGNN), and prediction and biomarker detection. The designed MGNN 

is constrained by three core neurocognitive modules (i.e., salience network, central executive 

network, and default mode network), encouraging ROIs within the same module to share similar 

representations. To further enhance discriminative ability of learned features, we encourage 

the MGNN to preserve network topology of input graphs via a graph topology reconstruction 

constraint. Experimental results on 534 subjects with rs-fMRI scans from two datasets validate 

the effectiveness of the proposed method. The identified discriminative brain ROIs and functional 

connectivities can be regarded as potential fMRI biomarkers to aid in clinical diagnosis.
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Functional MRI; brain modularity; brain disorder; biomarker

I. INTRODUCTION

Resting-state functional magnetic resonance imaging (rs-fMRI) provides a noninvasive 

solution to reveal brain spontaneous neural activities by measuring blood-oxygenation-level-

dependent (BOLD) signals [1]–[3]. It has been increasingly used to understand underlying 

neuropathological mechanisms of various brain disorders, such as autism spectrum disorder 

and cognitive impairment [4]–[7]. Many machine/deep learning-based methods have 

been proposed to map 4D fMRI data into low-dimensional representations and perform 

downstream brain disease detection [8]–[10]. However, due to the complexity of brain 

organization and the blackbox property of many learning-based methods, the generated 

fMRI representations usually lack biological interpretability, thereby limiting their clinical 

utility [11], [12].

From the perspective of graph theory, the human brain exhibits a significant modular 

structure in spontaneous brain functional networks (BFN), with each module executing 

specialized cognitive function [13]. A functional module can be defined as a subnetwork 

of densely interconnected brain regions-of-interest (ROIs) that are sparsely connected to 

ROIs in other modules [14], [15]. In particular, salience network (SN), central executive 

network (CEN), and default mode network (DMN) are three fundamental neurocognitive 

modules/subnetworks in the human brain, supporting effective cognitive activities [16]. 

Unfortunately, existing fMRI-based studies usually fail to adequately utilize such brain 

modularity prior during fMRI representation learning. On the other hand, the brain can be 

modeled as a spatiotemporally dynamic BFN (i.e., dynamic graph) based on BOLD signals, 

aiming to help simultaneously capture spatial and temporal information of brain neural 

activities [17], [18]. Intuitively, it is meaningful to incorporate brain modularity prior into a 

dynamic graph representation framework for interpretable fMRI analysis.

To this end, we propose a Brain Modularity-constrained dynamic Representation learning 

(BMR) framework for interpretable fMRI analysis. As shown in the top panel of Fig. 1, 

the proposed BMR consists of three major components: (1) dynamic graph construction 

using sliding windows, (2) dynamic graph representation learning via a novel brain 
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modularityconstrained graph neural network (MGNN), and (3) prediction and biomarker 

detection. Three core neurocognitive modules (i.e., SN, CEN, and DMN) are explicitly 

incorporated into the BMR through our proposed modularity constraint, encouraging learned 

features of ROIs within the same module to be similar. To enhance discriminative ability 

of learned features, we design a graph topology reconstruction constraint to encourage 

our BMR to preserve the network topology of input graphs during fMRI feature learning. 

Experimental results on 534 subjects with rs-fMRI from the public Autism Brain Imaging 

Data Exchange (ABIDE) dataset [19] and a private HIV-associated neurocognitive disorder 

(HAND) dataset demonstrate the superiority of the proposed BMR over several state-of-the-

art methods for brain disorder detection.

The contributions of this work are summarized as follows.

• We propose a brain modularity-constrained dynamic representation learning 

framework for interpretable fMRI analysis. It provides a novel scheme to 

incorporate topological prior such as fundamental functional modules in the 

brain into deep neural networks for fMRI analysis.

• A graph topology reconstruction constraint is introduced to reconstruct the 

original graph adjacency matrix during graph representation learning, thereby 

helping extract more discriminative fMRI features.

• The proposed BMR is a general framework for diagnosis of different brain 

disorders, as evidenced by its superior performance on two fMRI datasets with 

534 subjects, when compared with several state-of-the-art methods.

II. RELATED WORK

A. Functional MRI Representation Learning

Various machine learning methods have been used to learn latent representations of resting-

state fMRI for brain disorder analysis [20]. For example, Wee et al. [21] proposed a 

constrained sparse linear regression model to estimate brain functional network (BFN) for 

mild cognitive impairment classification with resting-state fMRI. Rosa et al. [22] designed 

a sparse network-based predictive model that first constructed sparse inverse covariance 

matrices and then used a sparse support vector machine (SVM) for major depressive 

disorder detection. Gan et al. [23] proposed a multi-graph fusion method that first integrated 

fully-connected BFNs and one nearest neighbor BFNs and then employed the L1SVM for 

brain disorder classification. However, these existing studies generally treat fMRI feature 

learning and downstream model training as two standalone steps, possibly leading to 

suboptimal performance due to heterogeneity between these steps.

Deep learning methods have been widely used for computer-aided brain disorder diagnosis 

with fMRI [24], by jointly conducting fMRI representation learning and downstream model 

training in an end-to-end manner. In particular, due to the graph structure nature of BFN, 

graph neural networks (GNNs) have shown significant superiority in fMRI representation 

learning. Ktena et al. [25] proposed a siamese graph convolutional network (GCN) to 

estimate BFN for automated autism analysis. Jiang et al. [26] designed a hierarchical 
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GCN framework for BFN embedding learning by efficiently integrating correlations among 

subjects in a population. Hu et al. [27] designed a complementary graph representation 

learning method to capture local and global patterns for fMRI-based brain disease analysis. 

Although these GNN-based methods can model spatial interactions among brain ROIs, 

they often neglect dynamic variations over time of fMRI data. Considering that temporal 

dynamics conveyed in fMRI can provide discriminative information for brain disease 

diagnosis, some GNN-based studies have paid more attention to spatiotemporal dynamic 

brain network analysis with fMRI data. Gadgil et al. [18] introduced a novel spatiotemporal 

GCN, which captured temporal dynamics within fMRI series via 1D convolutional kernels, 

to learn dynamic graph representation for age and gender prediction. Even achieving 

promising results, most existing GNN models cannot explicitly preserve network topology 

of BFNs during dynamic graph learning.

B. Brain Functional Modularity Analysis

From a graph-theoretic perspective, the BFN during the resting state exhibits a significant 

modular structure to facilitate efficient information communication and cognitive function 

[14], [15]. To better understand brain connectivity patterns, researchers have devoted 

considerable attention to analyzing brain modularity. For example, Meunier et al. [28] 

explored age-related changes in brain modular organization and demonstrated significantly 

non-random modularity in young and older brain networks. Arnemann et al. [29] tested the 

value of modularity metric to predict response to cognitive training after brain injury. Gallen 

et al. [30] demonstrated that brain modularity could be regarded as a unifying biomarker of 

intervention-related plasticity by multiple independent studies.

Notably, previous neuroscience studies have demonstrated that there are three fundamental 

cognitive modules, i.e., salience network (SN), central executive network (CEN), and default 

mode network (DMN) in human brains. Specifically, SN mainly detects external stimuli 

and coordinates brain neural resources, CEN performs high-level cognitive tasks (e.g., 
decision-making and rule-based problem-solving), while DMN is responsible for self-related 

cognitive functions (e.g., mind-wandering and introspection) [16], [31]. These three modules 

have been consistently observed across different individuals and experimental paradigms 

[31], [32]. For example, Menon et al. [31] proposed a unifying triple network model 

comprised of CEN, DMN, and SN, providing a common framework for understanding 

behavioral and cognitive dysfunction across multiple brain disorders. Krishnadas et al. [32] 

investigated disrupted resting-state functional connectivities within the triple network in 

patients with paranoid schizophrenia. Intuitively, such brain modularity structures can be 

employed as important prior knowledge to promote informative fMRI feature learning. 

However, existing studies typically fail to incorporate such important modularity prior into 

deep graph learning models for fMRI-based brain disorder analysis.

III. MATERIALS

A. Data Acquisition

A total of 534 subjects with rs-fMRI scans from the public Autism Brain Imaging Data 

Exchange (ABIDE) dataset [19] and a private HIV-associated neurocognitive disorder 
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(HAND) dataset are used in this work. On ABIDE, we identify patients with autism 

spectrum disorder (ASD) from healthy control (HC) subjects on the two largest sites (i.e., 
NYU and UM). Specifically, the NYU site includes 79 ASDs and 105 HCs, and the UM 

site includes 68 ASDs and 77 HCs. On HAND, we perform two types of classification 

tasks, including (1) asymptomatic neurocognitive impairment with HIV (ANI) vs. HC 

classification, and (2) intact cognition with HIV (ICH) vs. HC classification. Here, rs-fMRI 

data in the HAND are collected from Beijing Youan Hospital, including 68 ANIs, 68 ICHs 

and 69 HCs. The demographic information of the studied subjects from two datasets is 

reported in Table I.

B. Data Preprocessing

All rs-fMRI data from two datasets were preprocessed using the Data Processing Assistant 

for Resting-State fMRI (DPARSF) pipeline [33]. Specifically, for each fMRI, we first 

discarded the first 10 time points for magnetization equilibrium. Then, we performed 

slice timing correction, head motion correction, and regression of nuisance covariates (e.g., 
white matter signals, ventricle, and head motion parameters). Afterward, the fMRI data 

were normalized into montreal neurological institute (MNI) space, followed by spatial 

smoothing with a 4mm full-width half maximum Gaussian kernel and band-pass filtering 

(0.01 − 0.1 Hz). Finally, we extracted the mean rs-fMRI time series of 116 ROIs defined by 

the automated anatomical labeling (AAL) atlas for each subject.

IV. PROPOSED METHODOLOGY

From the view of graph theory, the brain exhibits a remarkable modular structure in 

spontaneous brain functional networks [13], [14]. Three fundamental functional modules, 

including SN, CEN, and DMN, have been consistently observed across different individuals 

and experimental paradigms [16]. Intuitively, it is meaningful to incorporate such brain 

modularity prior into a dynamic graph representation framework for interpretable fMRI 

analysis. Therefore, we propose a cosine similarity-based modularity constraint to encourage 

brain ROIs within the same functional module to share similar representations. On the 

other hand, previous fMRI studies have demonstrated that abnormal brain functional 

networks (BFNs) help reveal underlying pathophysiology of brain disorders [34]. Especially, 

altered topological structure of BFNs, such as increased global efficiency and decreased 

local efficiency, can provide potential biomarkers for brain disorder analysis [35], [36]. 

It is meaningful to ensure that the learned embeddings can capture essential topological 

information of the original graph during fMRI feature learning. To further enhance 

discriminative ability of learned fMRI features, a graph topology reconstruction constraint is 

introduced to preserve the underlying topology of brain FC networks via reconstructing the 

original graph adjacency matrix during graph representation learning. As illustrated in Fig. 

1, the BMR consists of (1) dynamic graph construction using sliding windows, (2) dynamic 

graph learning via a novel brain modularity-constrained graph neural network (MGNN), and 

(3) prediction and biomarker detection for interpretable brain disorder analysis. The BMR is 

an end-to-end trainable model for fMRI-based brain disorder prediction, by jointly learning 

fMRI features and a predictor.
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A. Dynamic Graph Construction

Brain functional network (BFN) derived from fMRI data can capture abnormal connectivity 

patterns caused by brain disorders by modeling complex dependencies among brain ROIs. 

Given the fact that brain functional connectivity exhibits dynamic variability over a short 

period of time [18], we construct a dynamic BFN using sliding windows for each subject. 

Denote BOLD signals obtained from rs-fMRI as S ∈ ℝN × M, where N is the number 

of ROIs and M is the number of time points. We first partition the fMRI time series 

into T  segments along the temporal dimension via overlapped sliding windows, with the 

window size of Γ and the step size of τ. With each ROI treated as a specific node, 

we construct a fully-connected BFN by calculating Pearson correlation coefficients [37] 

between segmented fMRI time series of pairwise brain ROIs for each of T  segments, 

obtaining a set of symmetric matrices Xt t = 1
T ∈ ℝN × N. Here, the original node feature for 

the j-th node is represented by the j-th row of Xt for segment t (Xt is also called node feature 

matrix). Considering that a fully-connected BFN may contain some noisy or redundant 

information, following [38], we empirically retain the top 30% (i.e., sparsity ratio) strongest 

edges in each FC network to generate an adjacency matrix At = aij ∈ 0, 1 N × N for the 

segment t, where aij = 1 means there exists an edge between two nodes/ROIs and otherwise 

aij = 0. Finally, the obtained dynamic graph sequence of each subject can be described as 

Gt = At, Xt (t = 1, ⋯, T ).

B. Dynamic Graph Representation Learning via MGNN

As illustrated in the bottom of Fig. 1, with the constructed dynamic graph sequence 

Gt t = 1
T  as input, we design a brain modularity-constrained graph neural network (MGNN) 

for dynamic fMRI representation learning, including (1) spatial feature learning and (2) 

temporal feature learning, which can simultaneously model spatial dependencies among 

brain ROIs and temporal dynamics over time. Notably, a novel brain modularity constraint 
and a graph topology reconstruction constraint are incorporated into MGNN to learn more 

interpretable and discriminative graph representations.

1) Spatial Feature Learning: Considering the graphstructured property of BFNs, we 

employ a graph attention network (GAT) as the spatial feature encoder to model spatial 

dynamic representation of BFNs in this work. Taking the segment t as an example, the 

spatial encoder takes the node feature matrix Xt = X1
t, X2

t, ⋯, XN
t ⊤ Xi

t ∈ ℝ1 × N  and the graph 

adjacency/topology matrix At as input. Denote Ni
t as the neighboring node set of the i-th 

node and ⊕ as the concatenation operation. The to-be-learned connection weight (also 

called spatial attention coefficient) between the i-th ROI and its neighborhood ROI j can be 

formulated as:

αij
t =

exp ψ Xi
tW t ⊕ Xj

tW t ηt

∑v ∈ Ni
t exp ψ Xi

tW t ⊕ Xv
tW t ηt ,

(1)
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where ψ is a nonlinear activation function (i.e., LeakyRelu), W t ∈ ℝN × N′ is a shared 

transformation matrix that maps the original N-dimensional node feature vector to an 

N′-dimensional vector, and ηt ∈ ℝ2N′ is a to-be-learned weight vector. Then, the updated 

node representation is expressed as:

F i
t = ∑

j ∈ Ni
t
αij

t Xj
tW t,

(2)

where F i
t ∈ ℝ1 × N′ is the new embedding of the node i after aggregating neighboring 

node representations. To model different types of spatial dependencies/relationships 

among ROIs/nodes, we employ a multi-head attention mechanism, which first calculates 

node representation using multiple attention heads in parallel and then averages them. 

Mathematically, the output feature Hi
t ∈ ℝ1 × N′ of the node i generated by the multi-head 

attention mechanism can be written as follows:

Hi
t = σ 1

K ∑
k = 1

K
F i

t, k ,

(3)

where σ is a nonlinear function and K is the number of attention heads. Given N nodes, the 

new node-level embedding of BFN can be expressed as Ht = H1
t, ⋯, HN

t ⊤ at segment t.

(1) Brain Modularity Constraint.: As an important property of BFN [30], modularity 

provides valuable insights into the organization and integration of brain networks. In 

general, each module is comprised of densely interconnected brain ROIs that are sparsely 

connected to ROIs in other modules [14]. Due to the high clustering of connections between 

ROIs within the module, the brain can locally process specialized cognitive function (e.g., 
episodic memory processing) with low wiring cost [15]. Previous studies have demonstrated 

that SN, CEN, and DMN are three fundamental neurocognitive modules in the human brain. 

Based on such prior knowledge, we reasonably assume that representations of nodes within 
the same neurocognitive module tend to be similar to each other.

Accordingly, we design a unique brain modularity constraint during spatial fMRI feature 

learning in BMR. As illustrated in Fig. 2, the modularity constraint explicitly encourages the 

nodes belonging to the same module to share similar features. Based on the cosine distance 

metric, this constraint can be mathematically formulated as follows:

LM = − ∑
t = 1

T
∑

c = 1

C
∑

i, j = 1

Nc Hi
t, c ⋅ Hj

t, c

Hi
t, c ⋅ Hj

t, c ,

(4)
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where Hi
t, c and Hi

t, c are representations of node i and node j within the distance metric, this 

constraint can be mathematically c-th module (with distance metric, this constraint can be 

mathematically Nc ROIs) at segment t, and C is the number of modules distance metric, this 

constraint can be mathematically (C = 3 in this work). With Eq. (4), we encourage the BMR 

to focus on brain intrinsic modular organization during fMRI representation learning, thus 

enhancing discriminative power of learned fMRI features.

(2) Graph Topology Reconstruction Constraint.: To further improve discriminative 

ability of learned representations, we propose to preserve original topology information 

of input BFNs by reconstructing the adjacency matrix At at segment t(t = 1, ⋯, T ). Motivated 

by previous studies that use variational graph auto-encoders for topology-preserving feature 

learning [39]–[42], we design a graph decoder in the BMR to predict edge weights between 

pairwise nodes based on the inner-product of two latent node representations, yielding 

a reconstructed adjacency matrix At = σ Ht ⋅ Ht
⊤  for segment t, where σ is a nonlinear 

mapping function. By calculating the inner product of latent node-level representations, it 

is observed that the reconstructed adjacency matrix At is capable of mirroring the cosine 

similarity among nodes/ROIs based on the learned representation. That is, one can use 

this reconstructed adjacency matrix to represent the node-level topology. We then propose 

a graph topology reconstruction constraint to help preserve the topology of input BFNs, 

defined as:

LR = ∑
t = 1

T
ξ At, At ,

(5)

where ξ is a cross-entropy loss function. With Eq. 5, we encourage the reconstructed graph 

to be as similar as possible to the original graph, so the learned node embeddings can 

capture BFN structure and relationships among ROIs.

To generate graph-level representations, we further apply a squeeze-excitation readout 

operation [43] based on learned node-level representations. For segment t, the graph-level 

spatial representation is calculated as:

yt = HtΦ P2σ P1Htϕmean ,

(6)

where Φ is a sigmoid function, P1 and P2 are learnable weight matrices, and ϕmean denotes the 

average operation.

2) Temporal Feature Learning: As shown in the bottom right of Fig. 1, to further 

capture temporal dynamics within fMRI series, a single-head transformer encoder is 

employed to effectively model long-range dependencies across different segments. Here, 

temporal attention can be measured by a self-attention mechanism in the transformer. 
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Especially, with spatial graph representation Y = y1, ⋯, yT  as input, the temporal attention 

matrix can be described as:

Z = Softmax QK⊤
d ,

(7)

where Q = ϕ1(Y ), K = ϕ2(Y ), ϕ1 and ϕ2 are two linear transformations, d is a scaling factor to 

stabilize attention mechanism. Then, the graph representation with spatiotemporal attention 

can be expressed as Y ′ = Ψ Zϕ3(Y ) , where Y ′ = y1
′ , ⋯, yT

′ . ϕ3 is a linear transformation, and 

Ψ represents the feed-forward network for further feature abstraction. After that, we sum the 

updated graph representation sequence yi
′

i = 1
T  to obtain the final whole-graph embedding for 

subsequent brain disorder analysis.

C. Prediction and Interpretable Biomarker Detection

The whole-graph embedding is finally fed into two fully connected layers and a Softmax 

layer for brain disease prediction. The objective function of BMR can be formulated as:

L = LC + λ1LR + λ2LM,

(8)

where LC is a cross-entropy loss, LR and LM denote the graph topology reconstruction 

constraint and brain modularity constraint, respectively, while λ1 and λ2 are hyperparameters.

For a better interpretation of the graph representations we have learned through BMR, we 

further delve into the analysis of spatial attention among brain ROIs, aiming at identifying 

potential biomarkers for supporting brain disorder diagnosis. Specifically, based on spatial 

attention coefficients described in Eq. (1), we first obtain spatial attention matrices of T
segments and average them to generate a spatial attention matrix for each subject. Then, we 

take the upper triangle elements of each attention matrix, resulting in a 6,670-dimensional 

vector. Finally, we employ the t-test to select discriminative features by calculating group 

differences between patients and healthy controls, and map these features to original brain 

space to detect the most discriminative functional connectivities. The specific biomarker 

analysis isintroduced in Section VI–B.

D. Implementation Details

The proposed BMR is implemented in PyTorch using a single GPU (NVIDIA TITAN Xp 

with 12GB memory). The Adam optimizer is used for optimization, with the learning rate of 

0.0001, training epochs of 40, batch size of 8, window size of Γ = 40, and step size of τ = 20. 

Within the c-th module (with Nc ROIs), we randomly select m = 50% of all Nc Nc − 1
2  paired 

ROIs to constrain the BMR. The hyperparameters (i.e., λ1 and λ2) in Eq. (8) are determined 

via a cross-validation (see Section V–A and Section V–E).
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V. EXPERIMENTS

A. Experimental Settings

A 5-fold cross-validation (CV) strategy is employed in the experiments. Within each fold, 

we randomly select 20% of training samples as the validation set to determine the optimal 

parameters. We repeat the above 5-fold CV process five times to avoid bias caused by data 

partition and record the mean and standard deviation results. Six metrics are used to evaluate 

classification performance, including the area under the receiver operating characteristic 

curve (AUC), classification accuracy (ACC), F1 score (F1), sensitivity (SEN), specificity 

(SPE), and balanced accuracy (BAC). A paired sample t-test is used to perform statistical 

significance analysis between the BMR and each of the competing methods.

B. Competing Methods

We compare the proposed BMR with three machine learning methods: SVM [44], XGBoost 

[45], and Random Forest [46]; as well as seven deep learning methods: multilayer 

perceptron (MLP) [47], graph convolutional network (GCN) [48], graph isomorphism 

network (GIN) [49], graph attention network (GAT) [50], BrainGNN [4], spatio-temporal 

graph convolutional network (STGCN) [18], and blood-oxygen-level-dependent transformer 

(BolT) model [51].

1. SVM: In this method, we first construct a BFN based on rs-fMRI for each 

subject by measuring Pearson correlation (PC) coefficients between pairwise 

brain ROIs. Then, we extract multiple node statistics (i.e., degree centrality, 

clustering coefficient, betweenness centrality, and eigenvector centrality) of each 

BFN and concatenate them into a 464-dimensional vector. Finally, the vectorized 

feature is fed into a linear SVM (with default parameter C = 1) for classification.

2. XGBoost: Similar to SVM, we first construct a BFN based on PC for 

each subject and then concatenate the same node statistics into a vectorized 

representation, followed by XGBoost (with default parameters) for classification.

3. Random Forest: This method uses the same fMRI features as SVM and 

XGBoost, followed by a random forest classifier (with default parameters).

4. MLP: This method first extracts node features to represent each subject, and 

then uses two fully connected layers for feature abstraction and a Softmax layer 

for brain prediction.

5. GCN: In this method, we first construct a BFN using PC for each subject. 

Two graph convolutional layers are used to update and aggregate node-level 

representations. Graph-level representations are generated via readout operation, 

followed by two fully connected layers for classification.

6. GIN: This method first constructs a BFN for each subject and then uses two 

GIN layers with Weisfeiler-Lehman graph isomorphism test for feature learning. 

We finally obtain graph representations via a readout operation, followed by two 

fully connected layers and a Softmax layer for classification.
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7. GAT: Different from GCN and GIN, the GAT uses a graph attention mechanism 

to learn adaptive edge weights between brain ROIs. In this method, we use 

two graph attention layers to learn spatial features, a readout operation to 

generate graph-level vectors, two fully connected layers, and a Softmax layer 

for classification. Similar to our BMR, the number of attention heads is 4 for 

each graph attention layer.

8. BrainGNN: BrainGNN is specially designed for fMRI analysis, containing an 

ROI-selection layer for highlighting salient ROIs. With constructed BFNs as 

input, BrainGNN uses two ROI-aware graph convolutional layers to learn node 

embeddings, followed by ROI pooling layers. Then, a readout operation is used 

to convert node-level features into graphlevel representations, followed by two 

fully connected layers and a Softmax layer for classification.

9. STGCN: The STGCN can jointly capture spatial and temporal information of 

BFNs via spatiotemporal graph convolution (ST-GC) units. It uses two ST-GC 

units for learning spatiotemporal features with BOLD signals as input. Then, 

dynamic graph representations are generated via readout operation, followed by 

two fully connected layers for prediction.

10. BolT: The BolT employs a cascade of transformer encoders equipped with 

a novel fused window attention mechanism for fMRI time series analysis. 

Specifically, we first extract ROI-level BOLD responses from fMRI data, and 

feed them to a learnable linear layer, yielding BOLD tokens. After that, we 

split the time series into temporally-overlapping windows and use a cascade of 

transformer blocks to process BOLD tokens. For each time window, a separate 

learnable classification (CLS) token is used within the transformer blocks, where 

the CLS tokens input to the first block are initialized as tied vectors across 

windows and eventually become window-specific encoding through transformer 

blocks. Finally, the learned CLS tokens are averaged across windows, followed 

by a linear layer for classification.

For a fair comparison, we use the same number of hidden layers (i.e., 2) and the same 

number of neurons in each hidden layer (i.e., 64) for five GNN-based methods (i.e., GCN, 

GIN, GAT, BrainGNN, and STGCN). Additionally, we use the same input BFN data for four 

GNN-based methods (i.e., GCN, GIN, GAT, and BrainGNN), while the STGCN and BolT 

employ the processed fMRI time series as input.

C. Classification Results

The quantitative results of the proposed BMR and ten competing methods on ABIDE and 

HAND are reported in Table II and Table III, respectively, where ‘*’ denotes that the 

proposed BMR is statistically significantly different from a specific competing method via 

paired sample t-test. From Tables II–III, we have the following interesting observations.

First, our BMR is superior to traditional machine learning methods (i.e., SVM, XGBoost, 

and Random Forest) by a significant margin on two datasets (i.e., ABIDE and HAND). For 

example, in terms of AUC values, the BMR yields the improvement of 16.60%, 11.29%, and 
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12.03% compared with SVM, XGBoost, and Random Forest on the NYU site of ABIDE, 

respectively. The possible reason is that our BMR can learn informative fMRI representation 

in an end-to-end manner as needed for downstream tasks compared with these traditional 

methods that rely on handcrafted node features. Second, compared with seven deep models 

(i.e., MLP, GCN, GIN, GAT, BrainGNN, STGCN, and BolT), our BMR achieves better 

performance in terms of most metrics on two datasets. For instance, in the task of ANI 

vs. HC classification on HAND, the BMR improves the AUC value by 4.87%, compared 

with BrainGNN (a GNN-based model specially designed for brain network analysis). 

This is probably because our BMR not only focuses more on three inherent functional 

modules in the brain but also preserves the original topology structure during graph learning, 

resulting in more discriminative fMRI representation for classification. Furthermore, it can 

be seen that the BMR consistently outperforms STGCN which models short-range temporal 

dynamics within fMRI via a convolution operation. The possible reason is that BMR can 

not only capture long-range temporal dependencies within fMRI series via a transformer 

encoder, but also incorporate crucial modularity prior to the process of dynamic graph 

representation learning. Besides, compared with BolT (a state-of-the-art method for fMRI 

analysis), BMR achieves better performance and lower standard deviation in most metrics, 

which further demonstrates the superiority and stability of BMR.

D. Ablation Study

From the theoretical rationale perspective, the brain modularity constraint and the graph 

topology reconstruction constraint are two complementary constraints in our BMR. 

Specifically, the design of brain modularity constraint is inspired by the fact that the 

brain exhibits inherent modular organization in spontaneous brain functional networks. By 

incorporating brain modularity constraint into graph learning model, we can help the model 

learn embeddings that are consistent with common neurocognitive subsystems in the brain. 

On the other hand, given that changes in the topological structure of BFNs are crucial 

for detecting brain disorders [35], [36], we propose a novel graph topology reconstruction 

constraint. This constraint is designed to preserve the original graph topology during fMRI 

feature learning process. In essence, it promotes the reconstruction of the input graph 

that mirrors the original as closely as possible. This ensures that the node embeddings 

derived from the learning process effectively reflect the inherent network structure and the 

interconnections among ROIs.

To quantitatively analyze the necessity of jointly applying these two constraints in Eq. (8), 

we compare the BMR with its variants: (1) BMRw/oM without modularity constraint, (2) 

BMRw/oR without graph topology reconstruction constraint, and (3) BMRw/oMR that 

only uses GAT and Transformer layers for spatiotemporal representation learning, without 

these two constraints. The experimental results yielded by these methods in ASD vs. HC 

classification on NYU from ABIDE are reported in Fig. 3. From Fig. 3, we can see that 

BMR outperforms BMRw/oM without considering the inherent modular structure in the 

brain. This implies that incorporating brain modularity prior to fMRI representation can 

help promote performance by learning more discriminative features. Besides, the BMR 

is superior to BMRw/oR without performing graph topology reconstruction during fMRI 

representation learning. The underlying reason is that our graph topology reconstruction 
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constraint helps capture intrinsic spatial information among brain ROIs. In addition, the 

BMRw/oMR without the proposed two constraints achieves the worst performance in most 

cases compared with its three counterparts (i.e., BMRw/oM, BMRw/oR, and BMR). The 

possible reason is that the joint application of these two constraints can help the model focus 

on modular structures while preserving important connectivity information during graph 

representation learning.

E. Influence of Hyperparameters

We have two hyperparameters (i.e., λ1 and λ2) in the proposed BMR (see Eq. (8)) to 

control contributions of brain modularity constraint and graph topology reconstruction 

constraint, respectively. To study their influences on the performance of BMR, we tune 

λ1 and λ2 within the range of {10−4,10−3, ···, 101} based on training and validation 

sets for ASD vs. HC classification on NYU from ABIDE, and report the results of 

BMR in Fig. 4. It can be observed from Fig. 4 that the BMR with a large λ1 (e.g., 

λ1 = 10) achieves worse performance. The underlying reason may be that using a strong 

graph reconstruction constraint will make the model difficult to converge, thus degrading 

its learning performance. On the other hand, the BMR with a very weak modularity 

constraint (e.g., λ2 = 10−4) is generally inferior to that with relatively stronger modularity 

constraint (e.g., λ2 = 10−2). These results suggest that the BMR can not achieve satisfactory 

performance when the BMR pays less attention to the brain’s inherent modular structure, 

which further validates the effectiveness of the designed brain modularity constraint. In 

particular, the BMR achieves the best AUC values with λ1 = 10−2 and λ2 = 10−2 in this task.

F. Influence of Spatial Feature Encoder

In the main experiments, our BMR uses GAT as spatial feature encoder to capture 

dependencies among brain ROIs. To investigate the influence of the spatial feature encoder, 

we replace GAT with the graph isomorphism network (GIN) to extract spatial fMRI features 

in BMR, and call this variant as BMR-GIN. The results of BMR and BMR-GIN for ASD 

vs. HC classification on NYU are reported in Fig. 5. It can be found from Fig. 5 that 

BMR achieves better performance than BMR-GIN in most cases. The main reason could 

be that, compared with BMR-GIN that treats neighboring nodes equally during the process 

of aggregating node features, the BMR can adaptively assign different attention weights to 

different neighboring nodes so that the model can focus on important nodes, thus improving 

learning performance.

G. Influence of Modularity Ratio

In the proposed modularity constraint, we randomly select m = 50% of all Nc Nc − 1
2  paired 

ROIs in the c-th module (with Nc ROIs) to constrain the BMR. To explore the influence of 

modularity ratio, we vary its values within the range of {0%,25%, ···, 100%}, and report the 

results on NYU site of ABIDE in Fig. 6. As shown in Fig. 6, with m < 75%, the ACC and 

AUC values of BMR generally improve as the increase of m. With a very large modularity 

ratio (e.g., m = 100%), BMR cannot achieve satisfactory performance. The possible reason 
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is that using a too strong modularity constraint in BMR may lead to an over-smoothing 

problem, thus weakening the discriminative power of learned representations.

H. Influence of Sliding Window Size

In the main experiments, we use the sliding window strategy to generate dynamic BFNs with 

the window size of Γ = 40. To further explore the influence of sliding window size, we vary 

sliding window size within {30,40, ···, 80} and record the results of BMR on NYU site of 

ABIDE in Fig. 7. As shown in Fig. 7, the BMR consistently yields promising performance 

(i.e., AUC > 72%) when the window size is within the range (i.e., 30 ≤ Γ ≤ 60). But with 

large size of sliding windows (e.g., Γ = 80), BMR cannot achieve good performance. The 

reason could be that a larger window size provides lower temporal resolution, so the BMR 

can not effectively capture temporal fluctuations within fMRI series.

I. Influence of Distance Metric

We employ the cosine distance in BMR to quantify the similarity between latent node-level 

representations within each module, as shown in Eq. 4. To study the effect of this metric, we 

compare BMR with its three variants: (1) BMR-ED with Euclidean distance, (2) BMR-HD 
with Hamming distance, and (3) BMR-JD with Jaccard similarity, with results reported in 

Table IV. As shown in Table IV, BMR using four different distance metrics in the modularity 

constraint achieves comparable results. This implies that our BMR is not sensitive to the 

distance metrics used in the modularity constraint.

J. Influence of BFN Sparsity Ratio

Following [38], we empirically retain the top 30% strongest edges (i.e., sparsity ratio) in 

each BFN in the experiments. To study the impact of sparsity ratio, we vary its value within 

{10%, ···, 100%} and report AUC and ACC values in ASD vs. HC classification on NYU 

in Fig. 8. As shown in Fig. 8, our BMR achieves stable results when the sparsity ratio is 

< 60%. For example, BMR obtains the AUC values of 73.69% and 73.32% when sparsity 

ratios are set as 10% and 50%, respectively. The reason could be that BMR retains the most 

reliable and informative connections in BFNs by prioritizing the strongest edges, reducing 

the impact of noisy or redundant connections. But when the sparsity rate is large (e.g., > 

90%), the BMR cannot produce good results. The possible reason is that the BFN with such 

large sparsity can not effectively reflect topology information due to the loss of too many 

connections.

VI. DISCUSSION

A. Comparison with Previous Studies

In this paper, we develop a novel BMR framework for brain disorder analysis with fMRI 

data. Compared with previous studies for fMRI analysis [8], [52], [53], our method 

simultaneously considers brain inherent modular structure and original graph topology 

information during dynamic graph representation. Extensive experiments on different 

datasets validate the superiority of our BMR in brain disorder diagnosis.
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In previous studies, researchers have demonstrated that there are three fundamental 

functional modules (i.e., SN, CEN, andDMN) in our brain to support efficient cognition 

[16]. On the other hand, graph neural networks (GNNs) have been widely used for fMRI-

based brain disorder analysis thanks to powerful graph representation ability [25]–[27]. 

For example, Azevedo [8] proposed a deep neural network architecture that combined 

both GNNs and temporal convolutional networks to learn both the spatial and temporal 

features of rs-fMRI data. However, previous works neglect to integrate important modularity 

prior into GNN-based graph learning models for fMRI-based brain disorder diagnosis, 

limiting model performance. To this end, we propose the BMR method, where a brain 

modularity constraint and a graph topology reconstruction constraint are designed to 

enhance discriminative ability of learned fMRI features. As shown in Table II–III, our BMR 

achieves better classification results than competing methods on different datasets, which 

further validates its effectiveness.

B. Discriminative Brain ROI and Functional Connectivity

We also visualize the top 10 discriminative functional connectivities (FCs) identified by 

the BMR on different datasets (i.e., ABIDE and HAND) in Fig. 9. The thickness of 

each line represents discriminative ability of the corresponding FC (inversely proportional 

to the p-value obtained by t-test). For ASD identification (see Fig. 9 (a)), the most 

discriminative FCs involve anterior cingulate and paracingulate gyri, parahippocampal 
gyrus, and hippocampus, which complies with previous ASD-related findings [54]–[56]. 

As shown in Fig. 9 (b), the discriminative brain ROIs in ANI identification include 

insula, right temporal pole: superior temporal gyrus, supplementary motor area, and caudate 
nucleus. These regions have also been reported in previous studies on HIV-related cognitive 

impairment [57]–[60]. These results further demonstrate the effectiveness of the BMR in 

detecting interpretable disease-associated biomarkers. Furthermore, we provide the top 10 

most discriminative FCs, related ROIs, and corresponding p-values in Table V. It can be 

found from Table V that the corresponding p-values are < 0.05 for the top ten FCs, which 

suggests the strong discriminative ability of identified FCs.

C. Limitations and Future Work

Several limitations need to be considered in future work. First, we only characterize pairwise 

relationships of ROIs within three prominent neurocognitive modules (i.e., SN, CEN, and 

DMN) as prior knowledge to design the modularity constraint in BMR. It is meaningful to 

design disease-specific modularity constraints based on neurocognitive research and clinical 

experience in the future. Second, the BMR incorporates known brain modular organization 

into fMRI representation learning. Future work will seek to design new algorithms that 

can automatically detect unknown brain modular structures during graph/BFN learning 

to characterize disease-induced brain changes. Besides, the BMR needs to be trained on 

labeled fMRI data in a supervised manner. In future work, we will employ unsupervised 

contrastive learning strategies [61] to pre-train the feature encoder on large-scale unlabeled 

data to learn more discriminative fMRI features.
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VII. CONCLUSION

In this paper, we propose a Brain Modularity-constrained dynamic Representation learning 

(BMR) framework for interpretable fMRI analysis. Specifically, we first construct a dynamic 

graph/BFN for each subject, and then design a brain modularity-constrained GNN model 

for dynamic graph representation learning, where a novel modularity constraint is developed 

to encourage nodes within the same module to share similar embeddings. We also propose 

a graph topology reconstruction constraint to preserve original topology information of 

input BFNs during representation learning. Finally, we perform brain disorder prediction 

and biomarker detection by analyzing disease-related functional connectivities and brain 

regions, aiming to provide biological evidence for clinical practice. Extensive experiments 

demonstrate the effectiveness of BMR in fMRI-based brain disorder detection.
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Fig. 1. 
Illustration of the proposed Brain Modularity-constrained dynamic Representation learning 

(BMR) framework, including (1) dynamic graph construction using sliding windows, (2) 

dynamic graph representation learning via a novel modularity-constrained graph neural 

network (MGNN), and (3) prediction and biomarker detection for brain disorder analysis.
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Fig. 2. 
Illustration of the proposed modularity constraint with three fundamental cognitive 

modules, i.e., salience network (SN), central executive network (CEN), and default mode 

network (DMN), where nodes within the same module are encouraged to share similar 

representation.
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Fig. 3. 
Performance of the BMR and its three variants in ASD vs. HC classification on NYU site of 

ABIDE dataset.
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Fig. 4. 
AUC values (%) of the BMR under different hyperparameters (i.e., λ1 and λ2) in ASD vs. HC 

classification on NYU of ABIDE.
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Fig. 5. 
Results of our BMR and its variant BMR-GIN (with GIN as spatial encoder) in ASD vs. HC 

classification on NYU.
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Fig. 6. 
Results of the proposed BMR with different modularity ratios in ASD vs. HC classification 

on NYU.
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Fig. 7. 
Results of our BMR using different sizes of sliding windows in ASD vs. HC classification 

on NYU.
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Fig. 8. 
Results of the proposed BMR with different sparsity ratios of BFN in ASD vs. HC 

classification on NYU.
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Fig. 9. 
Top ten discriminative functional connectivities identified by our BMR in (a) ASD vs. HC 

classification on NYU from the ABIDE dataset and (b) ANI vs. HC classification on the 

HAND dataset.
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TABLE I

DEMOGRAPHIC INFORMATION OF SUBJECTS FROM TWO LARGEST SITES (i.e., NYU AND UM) of ABIDE DATASET AND A 

PRIVATE HAND DATASET. ASD: AUTISM SPECTRUM DISORDER; HC: HEALTHY CONTROL; ANI: ASYMPTOMATIC 

NEUROCOGNITIVE IMPAIRMENT WITH HIV; ICH: INTACT COGNITION WITH HIV; M: MALE; F: FEMALE; STD: STANDARD 

DEVIATION.

Dataset Site Category Subject # Gender (M/F) Age (Mean±Std)

ABIDE

NYU
ASD 79 68/11 14.52 ± 6.97

HC 105 79/26 15.81 ± 6.25

UM
ASD 68 58/10 13.13 ± 2.41

HC 77 59/18 14.79 ± 3.57

HAND -

ANI 68 68/0 33.07 ± 6.18

ICH 68 68/0 33.40 ± 5.58

HC 69 69/0 33.33 ± 5.37
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TABLE IV

PERFORMANCE OF THE PROPOSED BMR AND ITS THREE VARIANTS THAT USE DIFFERENT SIMILARITY METRICS IN THE PROPOSED 

MODULARITY CONSTRAINT IN ASD VS. HC CLASSIFICATION ON NYU.

Method AUC (%) ACC (%) FI (%) SEN (%) SPE (%) BAC (%)

BMR-ED 73.00(1.69) 65.88(2.86) 60.62(3.33) 64.37(3.80) 68.19(2.51) 66.28(2.40)

BMR-HD 72.03(2.69) 64.75(2.57) 59.04(3.21) 60.88(4.21) 68.25(4.20) 64.57(2.52)

BMR-JS 73.12(3.01) 66.92(4.54) 61.48(4.85) 63.13(4.80) 70.53(6.20) 66.83(4.61)

BMR 73.24(4.48) 67.10(4.29) 62.16(4.53) 64.74(5.08) 69.39(6.22) 67.06(4.38)
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TABLE V

THE TOP 10 MOST DISCRIMINATIVE FCS, RELATED REGIONS-OF-INTEREST (ROIS), AND CORRESPONDING p-VALUES IN ASD 

VS. HC CLASSIFICATION ON NYU FROM ABIDE AND ANI VS. HC CLASSIFICATION ON HAND. NOTE THAT BRAIN ROIS 

ARE DIVIDED BASED ON AUTOMATED ANATOMICAL LABELING (AAL) ATLAS.

ASD vs. HC classification on NYU AM vs. HC classification on HAND

FC Related ROIs p-value | FC ROI name p-value

(32, 63) (ACG.R, SMG.L) 5.35×10−5 (19, 30) (SMA.R, INS.R) 3.31×lO−5

(9, 65) (ORBmid.L, ANG.L) 6.85×10−5 (12, 72) (IFGoperc.R, CAU.R) 3.04×10−4

(38, 90) (HIRR, ITG.R) 7.77×10−5 (21, 69) (OLF.L, PCL.L) 3.37×10−4

(107, 109) (CRBL10.L, Vermis 12) 9.55×10−4 (32, 101) (ACG.R, CRBL7b.L) 3.73×10−4

(40, 111) (PHG.R, Vermis45) 1.26×10−4 (28, 66) (REC.R, ANG.R) 7.40×10−4

(48, 112) (LING.R, Vermis6) 2.04×10−4 (95, 108) (CRBL3.L, CRBL10.R) 8.19×10−4

(18, 75) (ROL.R, PAL.L) 2.82×10−4 (53, 81) (IOG.L, STG.L) 9.39×10−4

(28, 31) (REC.R, ACG.L) 2.93×10−4 (27, 83) (REC.L, REC.L) 1.24×10−4

(27, 31) (REC.L, ACG.L) 2.99×10−4 (70, 98) (PCL.R, CRBL45.R) 1.25×10−4

(28, 32) (REC.R, ACG.R) 3.18×10−4 (29, 55) (INS.L, FFG.L) 1.57×10−4
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