Skip to main content
. 2024 Jul 5;11:1398290. doi: 10.3389/fcvm.2024.1398290

Table 2.

Summary of the best performance of different coronary vessels segmentation methods.

Study Method Dataset size Dice Sensitivity Specificity Precision Accuracy
Felfelian et al. (17) Thresholding 50 (Test) 72.79 74.92 98.32 97.09
Tsai et al. (24) Tracking 20 (Test) 96.70 96.30 96.30
Mabrouk et al. (39) Graph-cut 91 (Test) 75.60 76.60 77.60
Lv et al. (46) Deformable model 4 (Test) 76.24 72.33 80.59
Jin et al. (52) PCA 223 (Test) 76.97 71.25 83.95
Zhu et al. (58) CNN 73 (Train), 36 (Test) 88.40 87.30 90.10
Iyer et al. (59) Encoder-decoder 370 (Train), 92 (Test) 86.40 91.80 98.70 98.30
Yang et al. (64) U-Net 2,642 (Train), 660 (Test) 89.60 89.30 90.60
Hamdi et al. (67) GAN 100 (Train), 50 (Test) 81.18 81.09 98.11 81.26 96.55
Tao et al. (70) Attention mechanism 104 (Train), 30 (Test) 87.70 97.89 97.29
Gao et al. (74) Ensemble method 104 (Train), 26 (Test) 87.40 90.20 99.20 85.70