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Blood protein assessment of leading incident 
diseases and mortality in the UK Biobank

Danni A. Gadd1,2, Robert F. Hillary    1,2, Zhana Kuncheva    1,3, Tasos Mangelis1,3, 
Yipeng Cheng    2, Manju Dissanayake1,3, Romi Admanit4, Jake Gagnon4, 
Tinchi Lin    4, Kyle L. Ferber4, Heiko Runz5, Biogen Biobank Team*, 
Christopher N. Foley    1,3,7  , Riccardo E. Marioni    1,2,7   & 
Benjamin B. Sun    5,6,7 

The circulating proteome offers insights into the biological pathways that 
underlie disease. Here, we test relationships between 1,468 Olink protein 
levels and the incidence of 23 age-related diseases and mortality in the UK 
Biobank (n = 47,600). We report 3,209 associations between 963 protein 
levels and 21 incident outcomes. Next, protein-based scores (ProteinScores) 
are developed using penalized Cox regression. When applied to test sets, six 
ProteinScores improve the area under the curve estimates for the 10-year 
onset of incident outcomes beyond age, sex and a comprehensive set of 
24 lifestyle factors, clinically relevant biomarkers and physical measures. 
Furthermore, the ProteinScore for type 2 diabetes outperforms a polygenic 
risk score and HbA1c—a clinical marker used to monitor and diagnose type 
2 diabetes. The performance of scores using metabolomic and proteomic 
features is also compared. These data characterize early proteomic 
contributions to major age-related diseases, demonstrating the value of  
the plasma proteome for risk stratification.

Identifying individuals who are at a high risk of age-related morbidities 
may aid in personalized medicine. Circulating proteins can discriminate 
disease cases from controls and delineate the risk of incident diagno-
ses1–8. While singular protein markers offer insight into the mediators of 
disease5,9–11, simultaneously harnessing multiple proteins may improve 
clinical utility12. Clinically available non-omics scores such as QRISK 
typically profile the 10-year onset risk of a disease13. Proteomic scores 
have recently been trained on diabetes, cardiovascular and lifestyle 
traits as outcomes in 16,894 individuals14. Proteomic and metabolomic 
scores have also been developed for time-to-event outcomes, including 
all-cause mortality6,15–21.

Here, we demonstrate how large-scale proteomic sampling can 
identify candidate protein targets and facilitate the prediction of 

leading age-related incident outcomes in mid to later life (see the study 
design summary in Extended Data Fig. 1). We used 1,468 Olink plasma 
protein measurements in 47,600 individuals (aged 40–70 years) avail-
able as part of the UK Biobank Pharma Proteomics Project (UKB-PPP)22. 
Cox proportional hazards (PH) models were used to characterize asso-
ciations between each protein and 24 incident outcomes, ascertained 
through electronic health data linkage. Next, the dataset was ran-
domly split into training and testing subsets to train proteomic scores  
(ProteinScores) and assess their utility for modeling either the 5- or 
10-year onset of the 19 incident outcomes that had a minimum of 150 
cases available. We modeled ProteinScores alongside clinical biomark-
ers, polygenic risk scores (PRS) and metabolomics measures to inves-
tigate how these markers may be used to augment risk stratification.

Received: 15 March 2023

Accepted: 22 May 2024

Published online: 10 July 2024

 Check for updates

1Optima Partners, Edinburgh, UK. 2Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, 
UK. 3Bayes Centre, University of Edinburgh, Edinburgh, UK. 4Biostatistics, Research and Development, Biogen Inc., Cambridge, MA, USA. 5Translational 
Sciences, Research and Development, Biogen Inc., Cambridge, MA, USA. 6Cardiovascular Epidemiology Unit, Department of Public Health and Primary 
Care, University of Cambridge, Cambridge, UK. 7These authors contributed equally: Christopher N. Foley, Riccardo E. Marioni, Benjamin B. Sun.  
*A list of authors and their affiliations appears at the end of the paper.  e-mail: chris.foley@optimapartners.co.uk; riccardo.marioni@ed.ac.uk; 
bbsun92@outlook.com

http://www.nature.com/nataging
https://doi.org/10.1038/s43587-024-00655-7
http://orcid.org/0000-0002-2595-552X
http://orcid.org/0000-0003-4057-6525
http://orcid.org/0000-0003-0946-4525
http://orcid.org/0000-0001-5098-6902
http://orcid.org/0000-0002-0970-2610
http://orcid.org/0000-0003-4430-4260
http://orcid.org/0000-0001-6347-2281
http://crossmark.crossref.org/dialog/?doi=10.1038/s43587-024-00655-7&domain=pdf
mailto:chris.foley@optimapartners.co.uk
mailto:riccardo.marioni@ed.ac.uk
mailto:bbsun92@outlook.com


Nature Aging | Volume 4 | July 2024 | 939–948 940

Letter https://doi.org/10.1038/s43587-024-00655-7

time-to-onset distributions for cases (Extended Data Figs. 4 and 5) 
indicated that amyotrophic lateral sclerosis, endometriosis and cystitis 
were better suited to 5-year-onset assessments (80% of cases diagnosed 
by year 8 of follow-up). All remaining ProteinScores were evaluated 
for 10-year onset.

Selected ProteinScores were modeled alongside combinations 
of covariates (Extended Data Fig. 6). The differences in AUC resulting 
from the addition of the ProteinScores into the three models with 
increasingly complex sets of covariates are summarized in Fig. 2a. A 
tabular summary of the AUC statistics is available in Supplementary 
Table 14. Singular inclusion of the ProteinScores had either equal or 
higher performance than the maximal set of 26 covariates in eight 
instances. Tests for significant differences between receiver operat-
ing characteristic (ROC) curves for the sets of covariates with and 
without the ProteinScores were performed. Eleven ProteinScores had 
ROC P < 0.0026 (the Bonferroni-adjusted P value threshold) beyond 
minimally adjusted covariates. When ProteinScores were added to 
models that included both minimally adjusted and lifestyle covariates, 
nine ProteinScores had P < 0.0026 in ROC model comparison tests. 
When ProteinScores were added to models that further adjusted for 
an additional 18 clinically measurable covariates, six ProteinScores 
(type 2 diabetes, chronic obstructive pulmonary disease (COPD), 

Results
The UKB-PPP sample
In this study, data on 1,468 protein analytes (Supplementary Table 1) 
measured at baseline in 47,600 unrelated individuals ranging in age 
between 40 and 70 years (Supplementary Table 2) were used. Further 
details on the preparation pipeline are summarized in Extended Data 
Fig. 2 and the Supplementary Note. Principal component analyses 
indicated that the first 678 components explained a cumulative vari-
ance of 90% in the protein levels (Supplementary Table 3).

Protein associations with incident outcomes
We identified differential plasma protein levels that were associ-
ated with the onset of 23 diseases (including leading causes of  
disability and reductions in healthy life expectancy)23–25 and all-cause  
mortality (Table 1). The maximal follow-up period was 15 years across the  
24 outcomes.

In minimally adjusted (age- or age- and sex-adjusted) models, 
there were 5,273 significant associations between 1,211 unique proteins 
and 23 outcomes (Bonferroni-adjusted P value threshold = 3.1 × 10−6) 
(Supplementary Table 4). Upon further adjustment for health and 
lifestyle risk factors (body mass index (BMI), alcohol consumption, 
social deprivation, education status, smoking status and physical 
activity), there were 3,209 associations with P < 3.1 × 10−6 (Fig. 1a and 
Supplementary Table 5).

These 3,209 associations involved 963 unique protein analytes 
and 21 outcomes, ranging from 1 association for amyotrophic lateral 
sclerosis, cystitis and multiple sclerosis to 652 and 663 associations 
for mortality and liver disease, respectively (Supplementary Table 6).

Fifty-four proteins had significant associations with eight or more 
incident morbidities (Fig. 1b); in all instances, higher levels of the  
proteins at baseline were associated with a higher risk of disease or 
death (that is, hazard ratio (HR) > 1). Of the 54 proteins, growth dif-
ferentiation factor 15 (GDF15) had the largest number of associations  
(11 incident outcomes), followed by interleukin-6 (IL-6) and plasmi-
nogen activator urokinase receptor (PLAUR) (10 incident outcomes). 
These markers of multiple morbidities were also identified in logistic 
regression models run between the protein levels and multimorbidity 
status (Supplementary Table 7 and Supplementary Note).

A sensitivity analysis modeled each of the 35,232 Cox PH associa-
tions tested over increasing yearly case follow-up intervals. Of the 3,209 
associations, 2,915 and 1,957 had P < 3.1 × 10−6 (the Bonferroni-adjusted 
threshold) when restricting cases up to 10- and 5-year onset, respec-
tively (Supplementary Tables 8 and 9 and Supplementary Note). 
These results can be examined in a Shiny app available at https://
protein-disease-ukb.optima-health.technology. The app also includes 
an interactive network of the 3,209 associations.

A second sensitivity analysis explored the potential impact of 
medication use in a subset of the population that had this information 
available (35,073 individuals). Ischemic heart disease was chosen given 
that a range of blood pressure-lowering medications are commonly 
used to delay or prevent this disease. Of the 371 protein–ischemic heart 
disease associations that had P < 3.1 × 10−6 in the fully adjusted models 
in this subset, 336 remained statistically significant at the same P value 
threshold after adjusting for the use of blood pressure-lowering medi-
cations at baseline (Supplementary Table 10 and Supplementary Note).

ProteinScore development
We developed ProteinScores by Cox PH elastic net regression for 19 
diseases that had a minimum of 150 incident cases. Of 50 randomized 
iterations (Methods), ProteinScores with the median difference in the 
area under the curve (AUC) beyond a minimally adjusted model were 
selected for each outcome (Supplementary Table 11). Summaries of 
protein features for the 19 ProteinScores are available in Supplementary  
Tables 12 and 13, ranging from 5 features for endometriosis to 201 
features for all-cause mortality (Extended Data Fig. 3). Cumulative 

Table 1 | The 24 incident outcomes profiled over a maximum 
of 15 years of follow-up in the UK Biobank (n = 47,600)

Incident diagnosis Incident 
cases (n)

Controls 
(n)

Mean years to 
incident case 
diagnosis (s.d.)

Schizophrenia 54 47,449 6.5 (3.4)

Brain/CNS cancer 82 47,507 5.5 (2.8)

Multiple sclerosis 96 47,165 5.6 (3.2)

Major depression 111 47,229 4.2 (3.1)

Systemic lupus 
erythematosus

134 47,096 5.1 (2.6)

Endometriosisa 157 24,768 4.8 (3.3)

Vascular dementiab 195 33,907 8.1 (3)

Gynecological cancera 256 25,185 5 (3)

Amyotrophic lateral sclerosis 264 47,269 5.4 (2.7)

Inflammatory bowel disease 275 46,727 5.9 (3.3)

Lung cancer 403 47,158 5.9 (3.2)

Liver disease 432 47,104 7 (3.3)

Alzheimer’s dementiab 446 33,642 7.8 (2.8)

Colorectal cancer 508 46,890 5.8 (3.1)

Cystitisa 531 24,160 4.1 (3)

Rheumatoid arthritis 593 46,310 6.8 (3.2)

Parkinson’s disease 659 46,802 5.4 (3.2)

Ischemic stroke 765 46,657 6.8 (3.4)

Breast cancera 772 24,086 5.2 (3.1)

Prostate cancera 1,001 20,628 5.7 (3.1)

COPD 1,998 44,948 6.3 (3.4)

Type 2 diabetes 2,822 43,370 6 (3.3)

Ischemic heart disease 3,338 41,341 6.3 (3.4)

Death 4,445 43,155 7.9 (3.5)

Counts for incident cases and controls are provided, with mean years to diagnosis for 
incident cases. These data were used in individual Cox PH models to identify protein levels 
that were associated with incident outcomes. CNS, central nervous system. aSex-stratified 
traits. bAlzheimer’s and vascular dementias were restricted to individuals aged 65 years or 
older at the time of diagnosis for cases or at the time of censoring for controls.
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death, Alzheimer’s dementia, ischemic heart disease and Parkinson’s 
disease) had P < 0.0026 in model comparisons with and without the 
ProteinScore (Fig. 2b).

Exploration of the type 2 diabetes ProteinScore
Type 2 diabetes was chosen as a case study for exploration. Glycated 
hemoglobin (HbA1c) averages long-term glucose levels over 2–3 months 
and is used to monitor preclinical diabetes risk (42–47 mmol mol−1) 
and to diagnose the disease (with two repeated measurements 
>48 mmol mol−1)26,27. As the ProteinScore for type 2 diabetes added value 
beyond the extended set of covariates that included HbA1c, we directly 
compared the performance of HbA1c and the ProteinScore in the test 
sample alongside a PRS for type 2 diabetes. In the test set, 1,105 cases 
(mean time-to-onset 5.4 years (s.d. 3.0 years)) and 3,264 controls had all 
measures available. The rank-based inverse normal transformed levels 
of the ProteinScore and HbA1c discriminated incident case and control 
distributions similarly (Fig. 3a), and HbA1c levels tended to be higher 
across ProteinScore risk deciles (Fig. 3b). In incremental Cox PH models 
for the 10-year onset of type 2 diabetes (Fig. 3c), the singular use of the 
ProteinScore (AUC = 0.89) outperformed both HbA1c (AUC = 0.85) and 

the PRS (AUC = 0.68). In ROC model comparisons between HbA1c alone 
and HbA1c with the ProteinScore, a significant improvement due to 
the ProteinScore was identified (ROC P < 0.0026). When the PRS was 
added to this model (including HbA1c and the ProteinScore), the AUC 
remained unchanged (0.91) (Supplementary Table 15).

Metabolomic score comparison
In a sensitivity analysis, we considered metabolomic and proteomic 
features for score generation. Type 2 diabetes and all-cause mortality 
were chosen for the following reasons: (1) they had a large number of 
cases; (2) ProteinScores for these traits were among the top-performing 
ProteinScores; and (3) there is evidence that both traits may be stratified 
by metabolomic features15,21. A total of 12,050 of the 47,600 individu-
als with protein data had metabolomics data (Supplementary Note). 
Test sets used for ProteinScores were subset to those with metabo-
lomics data, for type 2 diabetes (n casestrain = 377, n controlstrain = 1,002,  
n casestest = 309, n controlstest = 898) and mortality (n casestrain = 616, 
n controlstrain = 1,680, n casestest = 410, n controlstest = 1,048).  
The performance of a MetaboScore (considering metabolite features), 
ProteinScore (considering protein features) and MetaboProteinScore 

b

a

Liver disease
Death

Type 2 diabetes
Ischemic heart disease

COPD
Ischemic stroke

Systemic lupus erythematosus
Rheumatoid arthritis

Inflammatory bowel disease
Lung cancer

Parkinson’s disease
Alzheimer’s dementia

Vascular dementia
Breast cancer
Endometriosis

Colorectal cancer
Gynecological cancer

Prostate cancer
Amyotrophic lateral sclerosis

Cystitis
Multiple sclerosis

0 200 400 600

Number of associations with protein levels

Death

COPD

Ischemic heart disease

Liver disease

Ischemic stroke

Type 2 diabetes

Systemic lupus erythematosus

Inflammatory bowel disease

Rheumatoid arthritis

Lung cancer

Vascular dementia

Alzheimer’s dementia

Parkinson’s disease

Amyotrophic lateral sclerosis

Multiple sclerosis

Cystitis

G
D

F1
5

IL
-6

_1
IL

-6
_2

PL
AU

R
N

EF
L

AS
G

R1
C

H
I3

L1
IL

-6
_3

IL
-6

_4
TN

FR
SF

1A
TN

FR
SF

1B
C

SF
1

LG
AL

S9
C

D
74

H
AV

C
R2

C
D

30
0E

TN
FR

SF
4

C
D

27
4

C
D

27
TN

F_
2

TN
F_

1
TN

F_
3

TN
F_

4
C

C
L7

ST
6G

AL
1

W
FD

C
2

PR
SS

8
IG

FB
P4

BS
T2

H
G

F
TN

FR
SF

10
A

TI
M

P1
VS

IG
4

M
M

P1
2

M
SR

1
C

D
C

P1
PG

F
IL

-2
Rα

IL
-1

8B
P

LA
IR

1
LA

M
P3

C
ST

3
C

XC
L9

TN
FR

SF
9

C
C

L3
C

XC
L1

3
LI

LR
B4

M
D

K
M

ZB
1

TN
FS

F1
3

TN
FR

SF
14

ZB
TB

17
IT

G
AV

IT
G

A1
1

1

2

3

HR

Fig. 1 | Individual protein associations with incident outcomes in the UK 
Biobank (n = 47,600). a, Number of associations between protein analytes 
and time to onset for 21 outcomes that had P < 3.1 × 10−6 (Bonferroni-adjusted 
threshold) in both basic and fully adjusted Cox PH models. There were 3,209 
associations in total involving 963 protein analytes. Two-sided tests were used 
in all cases. b, HR per 1 s.d. higher level of the transformed protein analytes 
(compared within individuals at baseline). Fifty-four protein analytes that were 
associated with eight or more outcomes in the individual Cox PH models are 

shown. Each association is represented by a rectangle. Cox PH models were 
adjusted for age, sex and six lifestyle factors (BMI, alcohol consumption, social 
deprivation, educational attainment, smoking status and physical activity). 
Every association identified for these proteins had HR > 1 (red), and associations 
are shaded based on the HR effect size (darkest coloration indicating a larger 
magnitude of effect). The largest HR shown is for the association between GDF15 
levels and liver disease (HR = 3.7).
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(considering combined metabolomic and proteomic features) is sum-
marized for both traits in Extended Data Fig. 7 and Supplementary 
Table 16. The selected features are available in Supplementary Table 17. 
For all-cause mortality, the ProteinScore (AUC = 0.82) outperformed 
the MetaboScore (AUC = 0.69), with an AUC of 0.83 when both indi-
vidual scores were modeled concurrently. For type 2 diabetes, the 
ProteinScore (AUC = 0.87) and MetaboScore (AUC = 0.85) were more 
comparable in performance, with an additive AUC of 0.89 when both 
individual scores were modeled concurrently.

Discussion
This study quantified circulating proteome signatures that are reflec-
tive of multiple incident diseases in mid to later life. These data suggest 
that augmenting traditional risk factors with proteomic, metabolomic 
and genetic data types may further hone risk stratification.

We demonstrated that relatively few circulating proteins 
can add value to risk stratification up to a decade before formal 

diagnoses. ProteinScores for incident type 2 diabetes, COPD, 
ischemic heart disease, Alzheimer’s dementia, Parkinson’s disease 
and death demonstrated value beyond a comprehensive set of  
26 covariates; equal or higher AUCs were observed for models 
including all covariates compared to those with only the Protein-
Score. This suggests that ProteinScores can absorb a large propor-
tion, if not all, of the typical covariate signal. The scores minimize 
the need for the extensive recording of lifestyle, physical and  
biomarker measures, offering a streamlined set of metrics to proxy 
for an individual’s health status.

While much interest is currently devoted to using PRS for disease 
prediction, these scores neglect environmental components of disease 
risk and may, therefore, be limited in the context of complex age-related 
diseases28,29. Our ProteinScore for type 2 diabetes outperformed the 
PRS, likely due to proteins representing an interface that captures 
genetic, environmental and lifestyle contributions to disease risk. The 
improvement in AUC resulting from concurrent modeling of HbA1c 
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Fig. 2 | Value offered by ProteinScores for incident outcomes in the 
UK Biobank. a, Differences in AUC resulting from the addition of the 19 
ProteinScores to models with increasingly extensive sets of covariates: minimally 
adjusted (age and sex in which traits were not sex-stratified) in green, minimally 
adjusted with the addition of a core set of six lifestyle covariates in blue, and 
further adjustment for an extended set of 18 covariates that are measured in 
clinical settings (physical and biochemical measures) in orange. AUC plots are 
ordered by increasing AUC differences in the minimally adjusted models. All 
ProteinScore performance statistics shown correspond to 10-year onset, except 
those for amyotrophic lateral sclerosis, endometriosis and cystitis, which were 
assessed for 5-year onset. Darker-shaded points indicate the base covariate 

model used, whereas lighter-shaded points connected by gray shading  
indicate the difference added by the addition of the ProteinScore into the 
model. b, A breakdown of the AUC values achieved by different combinations 
of risk factors with and without the ProteinScores is shown for the six incident 
outcomes whereby the ProteinScore contributed statistically significantly 
beyond a Cox PH model including all 24 minimal, lifestyle and extended set 
variables (ROC P < 0.0026, the Bonferroni-adjusted threshold). All six of the 
best-performing ProteinScores shown were assessed for the 10-year onset of 
the disease. Results that include the ProteinScore are shaded in orange, whereas 
results that do not are shaded in purple. Two-sided tests were used in all cases.
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and the type 2 diabetes ProteinScore suggests that the latter provides 
additional value.

Our results suggest that jointly considering ProteinScores with 
scores generated using metabolomic features may further augment 
risk stratification. An additive improvement resulting from the addi-
tion of the MetaboScore to the ProteinScore model was observed for 
all-cause mortality and type 2 diabetes. However, the ProteinScores 
tended to outperform the MetaboScores, particularly with respect to 
the results for all-cause mortality. For type 2 diabetes, the comparable 
performance of the MetaboScore to the ProteinScore (AUCs of 0.85 
and 0.87, respectively) was impressive given the limited number of 
input features available from the metabolomic assay (249 potential 

features, of which 81 were ratios between metabolites). These exam-
ples highlight the need for scoring assessments on a disease-by-disease 
basis, as it is likely that some omics types will be more suited to certain 
diseases. Joint consideration of protein and metabolite measures 
in the full UK Biobank cohort would hold promise to resolve these 
signatures further. Similarly, integration of additional omics types 
such as DNA methylation—known to track lifestyle traits, biological 
aging states and disease risk30–32—would also be recommended if 
these data were available. For metabolomic stratification of incident 
mortality, we emphasize that the MetaboHealth score is the current 
best-performing and preferred metric, trained on a larger sample than 
ours (5,512 versus 616 deaths)15.
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Fig. 3 | Exploration of the type 2 diabetes ProteinScore. a, Case (red) and 
control (blue) discrimination for HbA1c and the type 2 diabetes ProteinScore 
in the test set (1,105 cases and 3,264 controls, mean time to case onset 5.4 years 
(s.d. 3.0 years)). Both markers were rank-based inverse normalized and scaled 
to have a mean of 0 and s.d. of 1. b, HbA1c (mmol mol−1) per decile of the type 2 
diabetes ProteinScore in the test set (1,105 cases and 3,264 controls, mean time 
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A subset of the individual protein–disease associations we report 
likely represents direct mediators of disease. We encourage exploring 
this further through techniques such as Mendelian randomization and 
colocalization. Modeling that considers multimorbidity trajectories 
over the life course would aid in understanding the role of prevalent 
diseases and medication use in future disease risk. The largest number 
of associations and the strongest effect sizes (by the magnitude of the 
absolute log of the HR) were observed for liver disease. For neurological 
diseases and cancers, where fewer associations were identified, it is pos-
sible that bulk blood is less able to capture the full spectrum of disease 
pathogenesis, which may be localized to distal or more refined tissues. 
Similarly, the panel of proteins available may reflect certain diseases 
better than others. Despite having relatively few individual protein 
associations, the Alzheimer’s dementia ProteinScore was one of the 
best-performing ProteinScores and was largely unchanged upon the 
addition of covariates. As therapeutic interventions for neurodegen-
erative diseases have greater efficacy when implemented earlier in the 
disease pathogenesis33–35, ProteinScores such as this may help with trial 
recruitment. Correlations between the covariates and ProteinScores 
(Supplementary Table 18) suggest that the former reflect a range of 
lifestyle, physiological and health measures, indicating that they may 
be useful measures to proxy for health status.

Of the 720 proteins that were identified as indicators of multi-
morbidity status, 716 were associated with age (Bonferroni-adjusted 
P < 1.7 × 10−5, with 648 having positive effect sizes) in a previous analysis 
of the same dataset (Supplementary Table 5 in ref. 22). Future stud-
ies could explore their possible causal contributions to disease and 
whether they have differential effects across the life course. Examples 
of such proteins include GDF15, IL-6 and PLAUR—three proteins that had 
the largest number of associations with individual incident diseases in 
our study. GDF15 was previously identified as the top marker of future 
multimorbidity from 1,301 plasma proteins tested36,37. IL-6 mediates 
chronic, low-grade inflammation and is a key biomarker of aging38, with 
anti-IL-6 antibodies developed for a range of inflammation-associated 
diseases39,40. PLAUR has previously been associated with incident can-
cer, cardiovascular disease and diabetes41.

This study has several limitations. First, the assessment of scores by 
regression within a test sample, followed by the calculation of an AUC, is 
not a direct prediction and cannot translate easily to new populations. 
Second, nonrandom selection of disease cases through the UKB-PPP 
consortium may have introduced biases. The UK Biobank study may 
also be prone to selection bias, as the individuals recruited may repre-
sent those who have better health than the general population. Third, 
it was not possible to source an external test set for the ProteinScores 
with sufficient incident case counts to enable a meaningful replication 
assessment. Fourth, variation in protein analyte levels across measure-
ment technologies has been reported42. Fifth, the proteins measured 
were recorded on a relative scale, which limits the translation of scores 
to new populations. Sixth, death was treated as a censoring event; 
competing risks and multistate modeling approaches may provide a 
more nuanced analytical strategy. Finally, the UK Biobank population is 
largely composed of individuals with European, white British ancestry 
and a restricted age range (40–71 years, with a mean of 57 years), which 
may limit the generalizability of the findings. Future studies in equally 
well-characterized cohorts will be needed to assess translation to other 
populations, age ranges and ethnicities.

Methods
The UK Biobank sample population
The UK Biobank is a population-based cohort of approximately 
500,000 individuals aged between 40 and 69 years who were recruited 
between 2006 and 2010. Data from genome-wide genotyping, exome 
sequencing, electronic health record linkage, whole-body magnetic 
resonance imaging, blood and urine biomarker assays, and physical 
and anthropometric measurements are available. More information 

regarding the full measurements can be found at https://biobank.ndph.
ox.ac.uk/showcase/. The UKB-PPP is a precompetitive consortium of 13 
biopharmaceutical companies funding the generation of blood-based 
proteomic data from UK Biobank volunteer samples. This research 
has been conducted using the UK Biobank resource under approved 
application numbers 65851, 20361, 26041, 44257, 53639 and 69804. All 
participants provided informed consent.

Proteomics in the UK Biobank
The UKB-PPP sample includes 54,219 UK Biobank participants and 1,474 
protein analytes measured across four Olink panels (cardiometabolic, 
inflammation, neurology and oncology; annotation information is 
provided in Supplementary Table 1)22. A randomized subset of 46,595 
individuals was selected from the baseline UK Biobank cohort, with 
6,376 individuals selected by members of the UKB-PPP consortium and 
1,268 individuals included who participated in a COVID-19 study. The 
randomized samples have been shown to be highly representative of 
the wider UK Biobank population, whereas the consortium-selected 
individuals were enriched for 122 diseases22. Details on sample selection 
for the UKB-PPP are provided in the Supplementary Note. Of 54,219 
individuals who had protein data, 52,744 were available after quality 
control exclusions (as per ref. 22), with 1,474 Olink protein analytes 
measured (annotations in Supplementary Table 1)22. The maximum 
sample size possible was therefore taken forward for the study. The 
sample is predominantly white/European (93%) but also includes indi-
viduals with Black/Black British, Asian/Asian British, Chinese, mixed, 
other and missing ethnic backgrounds (7%). The study by Sun et al.22 
includes associations between the protein levels studied here and age, 
sex, lifestyle and health factors. Data collection and analysis were not 
performed blind to the conditions of the experiments.

Extended Data Fig. 2 summarizes the processing steps applied to 
this dataset to derive a complete set of measurements for use. Briefly, 
of 107,161 related pairs of individuals (calculated through kinship 
coefficients >0 across the full UK Biobank cohort), 1,276 pairs were 
present in the 52,744 individuals. After the exclusion of 104 individuals 
in multiple related pairs, in addition to 1 individual randomly selected 
from each of the remaining pairs, there were 51,562 individuals. A fur-
ther 3,962 individuals were excluded because of having >10% missing 
protein measurements. Four proteins that had >10% missing meas-
urements (CTSS.P25774.OID21056.v1 and NPM1.P06748.OID20961.
v1 from the neurology panel, PCOLCE.Q15113.OID20384.v1 from the 
cardiometabolic panel and TACSTD2.P09758.OID21447.v1 from the 
oncology panel) were then excluded. The remaining 1% of missing 
protein measurements were imputed by k-nearest-neighbor (k = 10) 
imputation using the impute R package (version 1.60.0)43. The final 
dataset consisted of 47,600 individuals and 1,468 protein analytes. 
Assessments of the protein batch, study center and genetic principal 
components suggested that these factors had minimal effects on pro-
tein levels (lowest correlation between protein levels and residuals 
of 0.94) (Supplementary Note). Therefore, protein levels were not 
adjusted for these factors.

Phenotypes in the UK Biobank
Demographic and phenotypic information for the 47,600 individuals 
with complete protein data for 1,468 analytes is available in Supple-
mentary Table 2. Lifestyle covariates included BMI (weight in kilograms 
divided by height in meters squared), alcohol intake frequency (1 = daily 
or almost daily, 2 = three to four times a week, 3 = once or twice a week, 
4 = one to three times a month, 5 = special occasions only, 6 = never), 
the Townsend index of deprivation (higher score representing greater 
levels of deprivation) and smoking status (0 = never, 1 = previous, 
2 = current), physical activity (0 = between 0 and 2 days per week of 
moderate physical activity, 1 = between 3 and 4 days per week of mod-
erate physical activity, 2 = between 5 and 7 days per week of moderate 
physical activity) and education status (1 = college/university educated, 
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0 = all other education). Of the 47,600 individuals with complete  
protein data, there were 52, 52, 236, 56 and 59 missing entries for  
alcohol, smoking, BMI, physical activity and deprivation, respectively. 
No imputation of missing data was performed for the inclusion of these 
variables in individual Cox PH analyses. There were an additional 2,556, 
188 and 59 individuals who responded with ‘prefer not to answer’ and 
were excluded from physical activity, smoking and alcohol variables, 
respectively.

Electronic health data linkage in the UK Biobank
Electronic health linkage to National Health Service records was used 
to collate incident diagnoses. Death information was sourced from the 
death registry data available through the UK Biobank. Cancer outcomes 
were sourced from the cancer registry (International Classification of 
Diseases (ICD) codes), whereas noncancer diseases were sourced from 
first-occurrence traits available in the UK Biobank. The first-occurrence 
traits integrate general practice (Read2/3) ICD (version 9/10) data with 
self-report and ICD codes present on the death registry to identify the 
earliest date of diagnosis. These data sources are linked to three-digit 
ICD trait codes. The following 23 diseases were included: liver disease, 
systemic lupus erythematosus, type 2 diabetes, amyotrophic lateral 
sclerosis, Alzheimer’s dementia, endometriosis, COPD, inflammatory 
bowel disease, rheumatoid arthritis, ischemic stroke, Parkinson’s 
disease, vascular dementia, ischemic heart disease, major depressive 
disorder, schizophrenia, multiple sclerosis, cystitis, and lung, prostate, 
breast, gynecological, brain/central nervous system and colorectal 
cancers. These represent a selection of leading age-related causes of 
morbidity, mortality and disability. In all analyses involving sex-specific 
diseases, the population was stratified into male and female groups, 
and sex was not included as a covariate in incremental Cox PH assess-
ments. Traits that were stratified included gynecological cancer, breast 
cancer, endometriosis and cystitis (all female-stratified) and prostate 
cancer (male-stratified).

The date of diagnosis for each disease was ascertained through 
electronic health linkage. Based on the date of baseline appointment, 
the time to first onset for each diagnosis was calculated in years. For 
controls, time to onset was defined as the time from baseline to the 
censoring date. Death was treated as a censoring event. Time to censor 
date was calculated for the controls who remained alive. In contrast, 
if a control individual had died during the follow-up, time to death 
was taken forward for Cox PH models. Any cases that were prevalent 
at baseline were excluded. Alzheimer’s and vascular dementias were 
restricted to an age at onset (or censoring) of 65 years or older in all 
analyses. Sex-specific traits were stratified across all analyses.

Statistics and reproducibility
Cox PH models were run between each protein and each incident 
disease using the ‘survival’ package (version 3.4-0)44 in R (version 
4.2.0)45. Protein levels were rank-based inverse normalized and scaled 
to have a mean of 0 and s.d. of 1 before analyses. Minimally adjusted 
Cox PH models for sex-stratified traits included age at baseline as a 
covariate, whereas the remaining models adjusted for age and sex. 
Lifestyle-adjusted models further controlled for education status, BMI, 
smoking status, social deprivation rank, physical activity and alcohol 
intake frequency. A Bonferroni-adjusted P value threshold for multi-
ple testing based on the 678 components that explained 90% of the 
cumulative variance in the 1,468 protein analyte levels (Supplementary 
Table 3) and 24 outcomes tested was applied across all Cox PH models 
(P < 0.05/(678 × 24) = 3.1 × 10−6 was used as the Bonferroni-adjusted 
P value threshold). PH assumptions were checked by examining 
protein-level Schoenfeld residuals.

A sensitivity analysis was performed for each of the 35,232 fully 
adjusted associations tested, restricting cases to successive years of 
follow-up. These sensitivity analyses were visualized using the Shiny 
package (version 1.7.3)46 in R. The magnitude of the change in HR for 

individual associations can be examined by the year of case follow-up 
to assess the consistency of effect sizes. A network visualization was 
also created within the Shiny interface to highlight the fully adjusted 
associations that had P < 3.1 × 10−6 using the networkD3 (version 3.0.4)47 
and igraph (version 1.3.5)48 R packages. To verify further the markers 
of multiple morbidities identified in individual Cox PH analyses, we 
also run logistic regression models between each of the 1,468 protein 
analyte levels and multimorbidity status (defined as 1,454 individuals 
who received three or more of the 23 disease diagnoses over the 15-year 
follow-up period). A sensitivity analysis was also done for ischemic 
heart disease associations with and without adjustment for blood 
pressure-lowering medications reported at baseline in a subset of 
individuals (35,073 of 47,600) who had medication information avail-
able. The Supplementary Note provides details on the classification of 
medications as per the anatomical therapeutic chemical classification 
categories. A total of 14,074 individuals (of the 35,073) indicated that 
they were taking one or more blood pressure-lowering medications at 
baseline. This was treated as a binary variable, and the comparison with 
and without adjustment for this variable was performed for ischemic 
heart disease Cox PH associations in the subset of 35,073 individuals. 
Adjustments for age, sex and six lifestyle factors were included in both 
sets of analyses, with 2,456 cases and 27,468 controls.

MethylPipeR32 is an R package with an accompanying user interface 
that we have previously developed for the systematic and reproducible 
development of incident disease predictors. Using MethylPipeR, we 
trained ProteinScores that considered 1,468 Olink protein levels by 
Cox PH elastic net regression through the R package ‘glmnet’ (version 
4.1-4)49. Penalized regression minimizes overfitting by using a regu-
larization penalty, and the best shrinkage parameter (λ) was chosen by 
cross-fold validation with α fixed to 0.5. Of the 24 outcomes featured 
in the individual Cox PH analyses, 19 that had a minimum case count 
of 150 were selected for ProteinScore development. The chosen strat-
egy for ProteinScore development included training ProteinScores 
for each trait across 50 randomized iterations (with each iteration 
including a different combination of cases and controls in the train 
and test sets). Random assignment was determined through random 
sampling across a list of sample identifier numbers pertaining to study 
individuals in R (version 4.2.0)45. This strategy quantifies the stability 
of the ProteinScore performance, which is critical given that unob-
served confounders may be enriched during the random selection 
of individuals from the wider population. The ProteinScore training 
strategy is summarized in Extended Data Fig. 8. Briefly, 50 iterations of 
each ProteinScore were performed that randomized sample selection 
by 50 randomly sampled seeds (values between 1 and 5,000). For each 
iteration, cases and controls were randomly split into 50% groups for 
training and testing. From the 50% training control population, a subset 
of controls was then randomly sampled to give a case-to-control ratio 
of 1:3 to balance the datasets. For traits with >1,000 cases in training 
samples, ten folds were used. For traits with between 500 and 1,000 
cases in training, five folds were used. Three folds were used when there 
were <500 cases in the training sample. Protein levels were rank-based 
inverse normalized and scaled to have a mean of 0 and s.d. of 1 in  
the training set.

Cumulative time-to-onset distributions for cases (Extended Data 
Figs. 4 and 5) indicated that amyotrophic lateral sclerosis, endometrio-
sis and cystitis were better suited to 5-year-onset assessments in the 
test sample (80% of cases were diagnosed at 8 years after baseline). All 
remaining ProteinScores were tested in the context of 10-year onset 
(80% of cases were not diagnosed 8 years after baseline). Across the 50 
ProteinScore iterations for each trait, 50% of cases and controls that 
were not randomly selected for training were reserved for testing. For 
a visualization of the test set sampling and assessment strategy, see 
Extended Data Fig. 8. In the test set, cases that had time to event up 
to or including the 5- or 10-year threshold used for onset prediction 
were selected, whereas cases beyond the threshold were placed with 
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the control population, which was then randomly sampled in a 1:3 
ratio. Weighting coefficients for features selected during ProteinScore 
training were used to project scores into the test sample. Incremental 
Cox PH models were run in the test sample to obtain cumulative base-
line hazard and onset probabilities, which were used to derive AUC 
estimates. The test set sampling strategy ensured that, while most 
cases occurred up to the onset threshold, a small proportion (~3%) of 
cases were included in Cox PH models with onset times after the 10- or 
5-year threshold to simulate a real-world scenario for risk stratification. 
If cases fell beyond the 5- or 10-year threshold for onset, they were 
recoded as controls in the AUC calculation. Cumulative baseline hazard 
probabilities were calculated using the Breslow estimator available 
in the ‘gbm’ R package (version 2.1.8.1)50. Survival probabilities were 
then generated by taking the exponential of the negative cumulative 
baseline hazard at 5 or 10 years to the power of the Cox PH predic-
tion probabilities. ProteinScore onset probabilities were calculated 
as 1 minus these survival probabilities. AUC and ROC statistics were 
extracted for the survival probabilities using the calibration function 
from the ‘caret’ R package (version 6.0-94)51 and the evalmod function 
from the ‘MLmetrics’ R package (version 1.1.1)52.

ProteinScores that yielded the median incremental difference to 
the AUC of a minimally adjusted model (adjusting for age or age and 
sex) were selected from the 50 possible ProteinScores for each trait. 
If no features were selected during training, models were weighted as 
a performance of 0 in the median model selection. In some instances, 
features were selected during training and incremental Cox PH mod-
els were run successfully, but the random sampling of the test set 
did not include a case with time to event at or after the 5- or 10-year 
onset threshold. Therefore, these models were excluded as cumula-
tive baseline hazard distributions did not reach the onset threshold 
and could not be extracted for AUC calculations. The number of 
models with minimum and maximum performance was documented 
(Supplementary Table 11). This approach mitigated the presence of 
extreme case–control profiles driving ProteinScore performance 
and minimized the possibility of bias being introduced by selecting 
train and test samples based on matching for specific population 
characteristics.

Selected ProteinScores for each trait were then evaluated to quan-
tify the additional value (in terms of increases in AUC) that resulted from 
the addition of ProteinScores. Minimally adjusted models included age 
and sex (if traits were not sex-stratified). Lifestyle-adjusted models then 
further accounted for common lifestyle covariates (education status, 
BMI, smoking status, social deprivation rank, physical activity and 
alcohol intake frequency). Finally, models including covariates from the 
minimally adjusted, lifestyle-adjusted and an extended set of clinically 
measured variables were then assessed (Extended Data Fig. 6). In each 
case, the difference in AUC resulting from the addition of the Protein-
Score was reported. ROC P value tests were used to ascertain whether 
the improvements offered by selected ProteinScores for each outcome 
were statistically significant, beyond each set of increasingly saturated 
covariates. A Bonferroni-adjusted P value threshold for ROC P tests was 
used based on the 19 ProteinScore traits (P < 0.05/19 = 0.0026). The 
‘precrec’ R package (version 0.12.9)53 was used to generate ROC and 
precision–recall curves for each ProteinScore.

A set of 26 possible covariates used across the minimally adjusted, 
lifestyle-adjusted and extended set analyses were assessed for missing-
ness, imputed (where missingness was <10%) and used in the Protein-
Score evaluation as a maximal, extended set of covariates. Further 
details on variable selection and preparation are supplied in the Supple-
mentary Note. Additional covariates (considered in addition to age, sex 
and the six lifestyle traits used in individual Cox PH analyses) included 
leukocyte counts (109 cells per liter), erythrocyte counts (1012 cells per 
liter), hemoglobin concentration (g dl−1), mean corpuscular volume 
(fl), platelet count (109 cells per liter), cystatin C (mg l−1), cholesterol 
(mmol l−1), alanine aminotransferase (U l−1), creatinine (μmol l−1), urea 

(mmol l−1), triglycerides (mmol l−1), low-density lipoprotein (mmol l−1), 
C-reactive protein (mg l−1), aspartate aminotransferase (U l−1), HbA1c 
(mmol mol−1), albumin (g l−1), glucose (mmol l−1) and systolic blood 
pressure (mm Hg). After the covariate processing steps were complete, 
a population of 43,437 individuals was available with complete informa-
tion for ProteinScore testing. Phenotypic summaries of the additional 
covariates for this population are provided in Supplementary Table 2.

Further assessment of the type 2 diabetes ProteinScore
HbA1c is a blood-based measure of chronic glycemia that is highly 
predictive of type 2 diabetes events and is recommended as a test of 
choice for the monitoring and diagnosis of type 2 diabetes26,27. HbA1c 
(mmol mol−1) measurements (field ID 30750) and the type 2 diabetes 
PRS available in the UK Biobank (field ID 26285) were extracted. A 
contour plot showing both variables grouped by those who went on to 
be diagnosed with type 2 diabetes over a 10-year period was created. 
HbA1c levels were also plotted against ProteinScore risk deciles. HbA1c 
and the ProteinScore levels were rank-based inverse normalized and 
assessed individually and concurrently in incremental models for the 
10-year onset of type 2 diabetes in the ProteinScore test set. The 10-year 
incremental Cox PH models were used to derive onset probabilities 
for the calculation of AUCs after adding the ProteinScore to models 
adjusting for HbA1c and the type 2 diabetes PRS. Model comparisons 
were used (test of the difference in ROC curves) to quantify the value 
added by the ProteinScore beyond the PRS and HbA1c.

Preliminary metabolomics assessment
Metabolomics measures were available for 12,050 of the 47,600 indi-
viduals with proteomic data included in the study (see the Supple-
mentary Note for details on data preparation). Type 2 diabetes and 
death were chosen as case studies for further exploration. The train 
and test sets used to develop the main ProteinScores were subset to 
those with metabolomics data available for type 2 diabetes (n cases-
train = 377, n controlstrain = 1,002, n casestest = 309, n controlstest = 898) 
and death (n casestrain = 616, n controlstrain = 1,680, n casestest = 410, n 
controlstest = 1,048). Scores that considered only metabolomic features 
(MetaboScore), only proteomic features (ProteinScore) and joint 
omics features (MetaboProteinScore) were trained and tested in these 
populations. There were 249 metabolite measures (comprising 168 
metabolites and 81 ratios between combinations of metabolites) and 
1,468 protein levels considered as potentially informative features. 
Performance was evaluated for the 10-year onset of type 2 diabetes 
and death in the test sample, modeling scores individually and concur-
rently and benchmarking them against the maximal set of 26 possible 
covariates (Extended Data Fig. 6).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Datasets generated in this study are made available in the supplemen-
tary tables. Proteomics data are available as part of the UK Biobank. The 
data can be accessed through the UK Biobank Research Analysis Portal 
(https://www.ukbiobank.ac.uk/enable-your-research). In the portal, 
the UK Biobank has cataloged the proteomics data under ‘field 30900’ 
within category 1838 (https://biobank.ndph.ox.ac.uk/showcase/label.
cgi?id=1838). Source data are provided with this paper. All other data 
supporting the findings of this study are available from the correspond-
ing authors upon reasonable request.

Code availability
Code is available with open access at the following GitHub  
repository: https://github.com/DanniGadd/Blood_protein_levels_and_ 
incident_disease_UK_Biobank.
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Extended Data Fig. 1 | Study design summary for protein assessment of 
leading incident diseases in the UK Biobank (N=47,600). Individual Cox 
proportional hazards (PH) models were used to profile relationships between 
baseline protein analytes and incident diseases or death, over a maximum of 
15 years of electronic health linkage pertaining to cases. Associations that had 
P < 3.1x10−6 (Bonferroni-adjusted threshold) in minimally-adjusted (age and 
sex) and lifestyle-adjusted models were retained. Proteins associated with 
multiple morbidities were identified and associations were explored by year of 
case follow-up. Next, proteomic predictors (ProteinScores) were trained using 
Cox PH elastic net regression for 19 of the incident outcomes with a minimum 
of 150 cases. All ProteinScores were developed for 10-year onset of disease, 

except endometriosis, cystitis and amyotrophic lateral sclerosis that had 
case distributions that were better-suited to 5-year assessment (80% of cases 
diagnosed by year 8 of follow-up). Of fifty ProteinScore iterations with randomly 
sampled train and test populations, the ProteinScore with median improvement 
in AUC beyond a minimally-adjusted model was selected. Improvements in AUC 
due to adding the ProteinScores into models with increasingly complex covariate 
structures were quantified. The type 2 diabetes trait was taken forward as a case 
study to explore the potential value ProteinScores may offer, in the context of 
HbA1c (a clinically used biomarker) and a polygenic risk score (PRS). Integration 
of metabolomics features for scoring was investigated for death and type 2 
diabetes outcomes as case studies. Created with BioRender.com.
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Extended Data Fig. 2 | Summary of processing steps applied to the protein 
measurement data in UKB-PPP. Related individuals were excluded, leaving a 
dataset containing 51,562 individuals with 1,474 Olink protein analytes measured. 
Next, 3,962 individuals that had >10% missing data were excluded, followed 
by four proteins that had >10% missing data. The remaining missing protein 
measurements (1% of total measurements) were imputed through K-nearest 
neighbours (Knn; k=10) imputation. The final dataset was comprised of 47,600 

individuals and 1,468 Olink protein analytes. Protein levels were rank-based 
inverse normalised and scaled to have a mean of 0 and standard deviation of  
1 prior to individual Cox PH analyses. Untransformed protein levels were fed into 
the model pipeline for ProteinScore development and were rank-based inverse 
normalised and scaled to have a mean of 0 and standard deviation of 1 in train 
and test sets separately once these were sampled for each outcome. Created with 
BioRender.com.
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Extended Data Fig. 3 | ProteinScore feature selection. The total number of contributing protein analyte features selected for each ProteinScore. Incident outcomes 
that were assessed for 5-year onset (light blue) and 10-year onset (dark blue) are delineated.
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Extended Data Fig. 4 | Cumulative time-to-onset for cases by outcome in the UK Biobank PPP sample. Case counts are shown for each trait, with the number of 
cases by year of follow-up plotted cumulatively and the year that the proportion of cases diagnosed reached 80% (orange) and 90% (grey) demarcated. COPD: chronic 
obstructive pulmonary disease.
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Extended Data Fig. 5 | Cumulative time-to-onset for cases by outcome in the UK Biobank PPP sample. Case counts are shown for each trait, with the number of 
cases by year of follow-up plotted cumulatively and the year that the proportion of cases diagnosed reached 80% (orange) and 90% (grey) demarcated.
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Extended Data Fig. 6 | Comprehensive covariates that were modelled to 
evaluate the value added by the ProteinScores beyond these covariates. 
Three increasingly complex sets of covariates were considered: 1) age and sex 
(where traits had not been sex-stratified), 2) further adjustment for a core set of 
six lifestyle and health covariates (BMI, alcohol consumption, social deprivation, 
educational attainment, smoking status and physical activity) and 3) further 

adjustment for an extended set of 18 biochemistry and physical attributes 
that are measurable in clinical settings. Performance when using only the 
ProteinScores was also considered. When modelled alongside age and sex, 26 
possible covariates were therefore used in maximally-adjusted models. Created 
with BioRender.com.
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Extended Data Fig. 7 | Comparison of metabolomic and proteomic feature 
performance for type 2 diabetes and all-cause mortality traits. ROC curves for 
10-year onset scores developed in the subsets of the training and test populations 
that had metabolomics and proteomics available. A Metabolomic score 
(MetaboScore), ProteinScore and a joint omics score (MetaboProteinScore) are 

modelled individually and concurrently and benchmarked against either age and 
sex, six lifestyle factors, or an ‘extended set’ including these variables in addition 
to a further 18 clinically relevant covariates. a, ROC curve comparison for type 
2 diabetes. b, ROC curve comparison for all-cause mortality. Full summary 
statistics are available in Supplementary Table 16.
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Extended Data Fig. 8 | Summary of the ProteinScore development pipeline. 
ProteinScores were developed across fifty randomised iterations. For each 
iteration, 50% of available cases were randomly allocated to the training set and 
50% of controls were randomly sampled to obtain a 1:3 case:control ratio. Cox 
PH elastic net regression with cross-fold validation across folds of the training 
sample was used to derive weighting coefficients. The 50% of cases that were 
not included in the training set were allocated to the test set. If cases in the test 
set occurred after the threshold for onset evaluation (that is 5-year or 10-year), 
they were relabelled as controls and randomly sampled with the 50% of controls 

not considered during training, to obtain a 1:3 case:control ratio. Of the fifty 
ProteinScore iterations tested, the ProteinScore that yielded the median 
incremental difference to the Area Under the Curve (AUC) beyond a minimally-
adjusted model was identified. If no features were selected for an iteration, it 
was weighted with a performance of 0 in median AUC selection. If features were 
selected for an iteration but the randomly sampled test set included no cases 
at or beyond the onset threshold (precluding extraction of baseline hazard at 
this point for AUC calculation) these models were excluded from the median 
ProteinScore selection. Created with BioRender.com.
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