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Abstract
Purpose  The receptor activator of nuclear factor kappa B (RANK) and its ligand (RANKL) have been shown to promote 
proliferation of the breast and breast carcinogenesis. The objective of this analysis was to investigate whether tumor-specific 
RANK and RANKL expression in patients with primary breast cancer is associated with high percentage mammographic 
density (PMD), which is a known breast cancer risk factor.
Methods  Immunohistochemical staining of RANK and RANKL was performed in tissue microarrays (TMAs) from primary 
breast cancer samples of the Bavarian Breast Cancer Cases and Controls (BBCC) study. For RANK and RANKL expression, 
histochemical scores (H scores) with a cut-off value of > 0 vs 0 were established. PMD was measured in the contralateral, 
non-diseased breast. Linear regression models with PMD as outcome were calculated using common predictors of PMD (age 
at breast cancer diagnosis, body mass index (BMI) and parity) and RANK and RANKL H scores. Additionally, Spearman 
rank correlations (ρ) between PMD and RANK and RANKL H score were performed.
Results  In the final cohort of 412 patients, breast cancer-specific RANK and RANKL expression was not associated with 
PMD (P = 0.68). There was no correlation between PMD and RANK H score (Spearman’s ρ = 0.01, P = 0.87) or RANKL H 
score (Spearman’s ρ = 0.04, P = 0.41). RANK expression was highest in triple-negative tumors, followed by HER2-positive, 
luminal B-like and luminal A-like tumors, while no subtype-specific expression of RANKL was found.
Conclusion  Results do not provide evidence for an association of RANK and RANKL expression in primary breast cancer 
with PMD.
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Abbreviations
BMI	� Body mass index
ER	� Estrogen receptor
FFPE	� Formalin-fixed and paraffin-embedded
HER2	� Human epidermal growth factor receptor 2
HR	� Hormone receptor
IQR	� Interquartile range
MD	� Mammographic density
OPG	� Osteoprotegerin
PMD	� Percent mammographic density
PR	� Progesterone receptor
RANK	� Receptor activator of nuclear factor kappa B
RANKL	� Receptor activator of nuclear factor kappa B 

ligand
TMA	� Tissue microarray
TNBC	� Triple-negative breast cancer

What does this study add to the clinical work? 

The inhibition of the receptor activator of nuclear 
factor kappa B ligand (RANKL) pathway with den-
osumab is currently being tested in clinical trials for 
the primary prevention of breast cancer in women 
with high breast cancer risk. This study investigated 
whether the expression of RANK and RANKL in 
the tumor tissue of patients with primary breast 
cancer correlates with the well-known breast cancer 
risk factor mammographic density, and did not find 
an association.

Introduction

High mammographic density (MD) has been confirmed to 
modify breast cancer risk depending on the percentage of 
MD (PMD) with a two–sixfold increased risk [1, 2]. Besides 
from familial and genetic factors [3, 4], higher PMD has 
been linked with the cumulative exposure to growth fac-
tors and hormones. This includes a great lifetime number 
of menstrual cycles by early menarche and late menopause, 
which is an indicator for cumulative exposure to luteal phase 
progesterone levels, a low number of parities and life births, 
adipose body mass index (BMI), combined estrogen-plus-
progestin hormone replacement therapy, elevated levels of 
prolactin, and other factors [1, 3, 5, 6].

PMD reflects the proportion of dense breast tissue com-
prising epithelial cells, fibroblasts, and connective tissue on 
a mammogram, whereas adipose tissue is the main compo-
nent of non-dense breast tissue. Although it has been pro-
posed that stromal architecture and composition of the breast 

influence epithelial biology and play an initial role in breast 
carcinogenesis, the molecular mechanisms between PMD 
and increased breast cancer risk are still not well understood 
[2, 3].

The receptor activator of nuclear factor kappa B (RANK) 
and its ligand (RANKL) as well as osteoprotegerin (OPG), 
functioning as an antagonistic, soluble decoy receptor for 
RANKL, are expressed by various tissues and cell lines. 
Besides its role in bone metabolism and osseous metastasis, 
RANK/RANKL/OPG signaling is also involved in physi-
ological and pathological processes of immune response 
and proliferation of different tissues including the mammary 
gland [7–9].

It has been demonstrated that progesterone and prolactin 
increase the expression of RANKL in the breast and inter-
act with the RANK pathway, inducing lobulo-alveolar dif-
ferentiation, proliferation, and expansion of mammary epi-
thelial cells. Inhibition of progesterone, RANK or RANKL 
resulted in less mammary cell proliferation, carcinogenesis, 
and metastasis in mouse models [7, 9–11]. This has been 
shown especially in models of BRCA1 mutated breast cancer 
[7, 9, 12, 13].

The monoclonal antibody against RANKL denosumab 
has proven efficacy in the prevention and treatment of osteo-
porosis and bone metastases in breast cancer as well as in 
other types of cancer [14, 15]. In addition, trials with female 
BRCA​ mutation carriers are investigating the effect of deno-
sumab on proliferation of the breast epithelium (BRCA-D, 
ACTRN12614000694617 [16]) and as a chemopreventive 
drug against breast cancer (BRCA-P, NCT04711109 [17]).

Because of its association with breast proliferation and 
mammary tumor development, it has been hypothesized 
that RANK, RANKL, and OPG expression is linked with 
PMD. This has been investigated by few studies for serum or 
plasma expression [18–20], or expression in healthy breast 
tissue [21], but not for breast cancer-specific expression 
so far. The aim of the present study was thus to assess the 
correlation of RANK and RANKL expression in primary 
breast cancer samples with PMD of the contralateral, healthy 
breast.

Patients and methods

Patients

The Bavarian Breast Cancer Cases and Controls (BBCC) 
study is a case–control study investigating molecular and 
epidemiological breast cancer risk factors as well as prog-
nostic and predictive factors including PMD. Between 
2000 and 2007, 1538 patients were included who were at 
least 18 years old and had a diagnosis of invasive breast 
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cancer. Tissue microarrays (TMAs) were constructed from 
894 patients. After exclusion of datasets with ineligible char-
acteristics or missing information, the final study popula-
tion comprised 412 female patients with unilateral invasive 
breast cancer. The detailed selection process is provided in 
Fig. 1.

Histopathological, epidemiological and follow‑up 
data

Comprehensive data on tumor and patient characteristics as 
well as follow-up data for a minimum of 10 years after initial 
diagnosis were documented conforming to the requirements 
of the German Cancer Society (Deutsche Krebsgesellschaft) 
and the German Society for Breast Diseases (Deutsche 
Gesellschaft für Senologie) as part of the certification pro-
cess [22]. Breast cancer subtypes were defined as previously 
described [23]. Shortly, HER2 receptor-negative tumors 
which showed either estrogen receptor (ER) or progesterone 
receptor (PR) expression (≥ 10%) were classified as luminal 
A-like for Ki-67 < 15% and grading of 1 or 2 or luminal 
B-like for Ki-67 ≥ 15% and grading of 2 or 3. HER2 recep-
tor-positive breast cancer was stated in patients with HER2 
staining of 3 + as assessed by immunohistochemistry or 
HER2 gene amplification. Patients with HER2-negative and 
hormone receptor (HR)-negative or weakly positive (< 10%) 
breast cancer were considered as triple-negative (TNBC) 
[23].

Assessment of PMD

For the assessment of PMD, mammograms were eligible if 
they were taken 1 year before or 3 months after breast cancer 
diagnosis. PMD was measured on the contralateral breast, 
which was not affected by breast cancer in cranio-caudal 
(CC) projection. In this work, full-field digital mammo-
grams and film-based mammograms were examined. Analog 
film-based mammograms were digitized by a CadPro 
Advantage® film digitizer (VIDAR Systems Corporation, 
Herndon, Virginia, USA). Breast area measurements and 
quantitative computer-based threshold density assessments 
were performed by two individual, experienced readers with 
special training in the applied method. Mammograms were 
analyzed in an independent and arbitrary order, and the read-
ers were unaware of any previous findings. Finally, the mean 
PMD of the two readers was used for analysis. The MD pro-
portion was evaluated using the Madena software program, 
version 3.26 (Eye Physics, LLC, Los Alamitos, California, 
USA). This method has been validated and described before 
[24], and we used it in several previous works [1, 6, 25–28].

Assessment of RANK and RANKL expression

Tumor specimens were formalin-fixed and paraffin-embed-
ded (FFPE). In a first step, an experienced pathologist 
marked the tumor areas of interest on a hematoxylin–eosin-
stained slide. For the construction of TMAs, cylindric tis-
sue core biopsies (0.8 mm per dot) from multiple sample 
donor blocks were re-embedded in a second step into a sin-
gle microarray block at predefined coordinates. Staining of 
the TMA was performed with anti-human RANK (N-1H8; 
Amgen, Thousand Oaks, California, USA) or RANKL 
(M366; Amgen, Thousand Oaks, California, USA) mouse 
monoclonal antibodies or isotype-matched control mouse 
IgG, as previously described [29, 30]. For each primary 
tumor, RANK and RANKL expression was scored according 
to the semiquantitative histochemical score (H score) [31]. 
Experienced pathologists conducted the immunohistochemi-
cal interpretation blinded to any sample identification. The 
percentage of RANK and RANKL-positive tumor cells was 
multiplied by staining intensity, respectively: 0, negative; 
1 + , weak; 2 + , moderate; and 3 + , strong. The sum of all 
calculated tumor cell percentage/intensity product for every 
TMA dot was defined as H score, ranging from 0–300. As 
a result, 300 represents 100% of tumor cells having a strong 
staining intensity.

Statistical analysis

The primary objective of this analysis was to investigate the 
association between RANK and RANKL tumor expression, 
quantified as H score, and PMD. For that purpose, we 

Fig. 1   Flowchart of patient selection
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calculated linear regression models with PMD as outcome. 
The square root of PMD was used to gain normally 
distributed residuals of the models. First, a basic model 
with the following predictors was set up: age at diagnosis 
(continuous), BMI (continuous), and parity (number of 
children born, categorical: 0, 1, 2, and ≥ 3). Afterwards, 
RANK (> 0 vs 0) and RANKL (> 0 vs 0) was added to the 
basic model to obtain a full model. Due to large proportions 
of zeroes in RANK and RANKL H scores, those variables 
were dichotomized in either negative or positive to perform 
further analyses.

The basic and the full model were compared using the F 
test. A significant result means that RANK or RANKL H 
score is associated with PMD. As sensitivity analysis we 
calculated Spearman rank correlations (ρ) between PMD 
and RANK or RANKL H score and tested their significance.

Subjects with missing values in RANK and RANKL H 
score and PMD were excluded from analysis. Missing values 
in other predictors were imputed as described in Salmen 
et al. [32]. The 15 (3.6%) values for BMI were substituted by 
the median of non-missing data. For the imputation of the 25 
(6.1%) values in parity, we calculated a multinomial logistic 
regression model with the predictors age, BMI, and PMD.

All of the tests were two-sided, and P < 0.05 was regarded 
as statistically significant. Calculations were carried out 
using the R system for statistical computing (version 3.4.0; 
R Development Core Team, Vienna, Austria, 2017).

Results

Patient and tumor characteristics

Overall, 412 female patients with primary breast cancer were 
included in the final analysis. Mean age at breast cancer 
diagnosis was 58.6 (standard deviation, SD 12.7) years, and 
median BMI was 25.2 (interquartile range, IQR 22.5–28.6) 
kg/m2. A majority of patients gave birth to two children 
(40.5%), while a minority was nulliparous (13.6%). Most 
patients had a pathological tumor size of T1 (n = 198, 48.1%) 
or T2 (n = 166, 40.3%), had no lymph node involvement 
(n = 219, 53.2%), and had either luminal A-like (n = 133, 
32.3%) or luminal B-like (n = 154, 37.4%) tumors (Table 1).

RANK and RANKL expression and correlation 
with PMD

The median PMD was 0.37 (IQR 0.24–0.53) (Table 1). The 
distribution of PMD is depicted in Fig. 2. In the majority of 
the cases, the H score for immunohistochemical assessment 
of RANK and RANKL was 0, while 143 patients (34.7%) 
showed an H score > 0 for RANK and 43 patients (10.4%) 

for RANKL (Table 1). The median H score of cases with 
a positive expression was 50 (IQR 10–100) for RANK 
and 30 (IQR 8–125) for RANKL. Concerning molecular 
subtypes, the frequency of positive RANK expression was 
lowest among patients with luminal A-like breast cancer 
(19.5%), increasing in those with luminal B-like breast 
cancer (26.0%), HER2-positive breast cancer (55.2%), and 
TNBC (67.2%). The median RANK H score among patients 
with detectable RANK expression increased in the same 
order across molecular subtypes. No subtype-specific pat-
tern could be seen for RANKL expression (Table 2). The 
distribution of RANK and RANKL H score is presented in 
Fig. 3a, b.

The linear regression analysis did not show an association 
of PMD with RANK and RANKL expression assessed by 
H score (F test, P = 0.68). Furthermore, sensitivity analysis 
revealed no significant correlation between PMD and RANK 
(Spearman’s ρ = 0.01, P = 0.87) or RANKL H score (Spear-
man’s ρ = 0.04, P = 0.41). Scatterplots for PMD and RANK 
or RANKL H score are shown in Fig. 4a, b.

Table 1   Patient and tumor characteristics

Mean (standard deviation, SD) or median (interquartile range, IQR), 
where appropriate, are shown for continuous characteristics and 
frequency (percentage) for categorical characteristics. *In patients 
undergoing neoadjuvant chemotherapy, the initial clinical tumor and/
or lymph node stage was used if the tumor was pathologically down-
staged under neoadjuvant chemotherapy. BMI body mass index, PMD 
percent mammographic density

Characteristic

Age at diagnosis (years) Mean (SD) 58.6 (12.7)
BMI at diagnosis Median (IQR) 25.2 (22.5–28.6)
Parity (children born) 0 56 (13.6%)

1 125 (30.3%)
2 167 (40.5%)
 ≥ 3 64 (15.5%)

PMD contralateral Median (IQR) 0.37 (0.24–0.53)
RANK H score 0 269 (65.3%)

 > 0 143 (34.7%)
RANKL H score 0 369 (89.6%)

 > 0 43 (10.4%)
Tumor stage* T1 198 (48.1%)

T2 166 (40.3%)
T3 21 (5.1%)
T4 27 (6.6%)

Lymph node status* N negative 219 (53.2%)
N positive 193 (46.8%)

Molecular subtype Luminal A-like 133 (32.3%)
Luminal B-like 154 (37.4%)
HER2-positive 58 (14.1%)
Triple-negative 67 (16.3%)
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Discussion

In this retrospectively conducted study of 412  female 
patients with primary breast cancer, we could not find an 
association of RANK and RANKL expression, as assessed 
by immunohistochemistry of FFPE tumor tissue samples, 
with PMD of the contralateral, non-diseased breast.

In a recent observational study, we linked soluble 
RANKL and OPG expression to breast volume changes 
during pregnancy in healthy women, implicating an impact 
on breast proliferation [33]. Likewise, different in vitro and 
in vivo studies revealed a progesterone- and prolactin-driven 
induction of the RANK/RANKL/OPG pathway, triggering 
the development, growth, and migration of mammary epi-
thelial cells, and leading to tumorigenesis and metastasis [7, 

9–13]. An analysis of a subcohort of prospectively observed, 
initially healthy, postmenopausal women of the UKCTOCS 
study who developed breast cancer 12–24 months after sam-
ple collection, showed that high RANKL and progesterone 
serum levels led to a 5.3-fold increase of breast cancer risk 
[34]. Few studies also confirmed an inverse relationship 
of OPG serum levels with breast cancer risk in cohorts of 
primarily premenopausal patients with a BRCA1/2 muta-
tion (mean age 42 years) [35, 36] as well as in the general 
population for primarily postmenopausal women (mean age 
61 years) [37], while another investigation did not find an 
association in general premenopausal women (median age 
44 years) [38].

Data on the association of RANK, RANKL, and 
OPG expression with PMD is limited. An analysis of 

Fig. 2   Distribution of percent 
mammographic density (PMD) 
contralateral

Table 2   RANK and RANKL 
expression across molecular 
subtypes of breast cancer

Number and percentage of patients with RANK and RANKL H score > 0 is shown across molecular sub-
types of breast cancer. *Among the subset of patients with RANK and RANKL H score > 0, the median 
including interquartile range (IQR) is shown

Molecular subtype RANK H score > 0 RANKL H score > 0

Number Percentage Median* IQR* Number Percentage Median* IQR*

Luminal A-like 26/133 19.5% 15 5–50 12/133 9.0% 25 6–40
Luminal B-like 40/154 26.0% 30 10–80 20/154 13.0% 45 13.8–165
HER2-positive 32/58 55.2% 70 20–100 4/58 6.9% 15 5–81.3
Triple-negative 45/67 67.2% 80 30–150 7/67 10.4% 30 5.5–77.5
All subtypes 143/412 34.7% 50 10–100 43/412 10.4% 30 8–125
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Fig. 3   a Distribution of RANK 
H score. b Distribution of 
RANKL H score
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Fig. 4   a Scatterplot of RANK H 
score and PMD contralateral. b 
Scatterplot of RANKL H score 
and PMD contralateral
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365 cancer-free premenopausal women described RANK 
serum levels to be positively correlated with PMD. The 
same association was found for RANKL serum levels if 
progesterone levels were elevated [20]. A second study of 
368 postmenopausal women showed that an increase in 
RANK plasma gene expression led to higher volumetric 
percent density. Moreover, in patients with very high vs 
very low PMD, RANKL and surprisingly also OPG plasma 
gene expression were significantly upregulated, while 
RANKL and OPG plasma gene expression were not higher 
in women with heterogeneously dense breasts compared 
with those with almost entirely fatty breasts [18]. Another 
report on 43 postmenopausal confirmed higher mean PMD 
for those with lower serum OPG levels, and no associa-
tion was identified in 57 premenopausal women [19]. In 
summary, the few available studies on healthy individuals 
propose that elevated RANK or RANKL circulating pro-
tein levels or plasma gene expression are associated with 
increased PMD [18, 20], while data concerning the effect 
of OPG expression on PMD are inconsistent [18, 19].

Data on the breast tissue expression of RANK, RANKL, 
and OPG are even rarer. One report demonstrated that in 
48 healthy, premenopausal women, increasing RANKL 
gene expression in non-diseased FFPE breast tissue was 
associated with greater PMD [21]. In this context, it has to 
be noted that our study is the first one which investigated 
the expression of RANK and RANKL in breast cancer 
tissue with regard to PMD of the contralateral, healthy 
breast. Generally, it has been shown that tissue expression 
of RANK and RANKL is increased in healthy breast tissue 
compared with breast cancer tissue [39, 40], that tissue 
expression of RANKL varies with changing levels of sex 
hormones during the menstrual cycle [7, 41, 42], and that it 
is higher in premenopausal than in postmenopausal women 
[43, 44]. With a mean age of 58.6 years, our study collective 
represents primarily postmenopausal women, which could 
contribute to the relatively low tumor expression of RANK 
and RANKL.

Immunohistochemical staining of TMAs in the current 
study was performed with the same antibodies as has been 
reported in previous trials [29, 30, 45]. We detected a posi-
tive tumor expression of RANK and RANKL in 34.7% and 
10.4% of the patients, respectively, and most of these had a 
low expression. In line with these results, a study on TMAs 
of 601 breast cancer patients found a positive expression of 
RANK in 27% and of RANKL in 6% [30], and another large 
analysis of TMAs of 2299 breast cancer patients from four 
independent cohorts (of these 777 patients with ER-negative 
disease) showed even lower expression of RANK and RANKL 
in the tumor compartment [46]. In a trial exclusively on TNBC 
patients, similar expression rates as in our study were identified 
[47]. Some other breast cancer studies reported higher expres-
sion [43, 48–50], partly with greater rates for RANK than for 

RANKL [30, 46–49]. The differences could be explained 
by varying specificity of immunohistochemical reagents or 
methodologies, other scoring systems, and the distribution of 
patient cohorts, histological subtypes, and clinical stages.

In the current study, tumor expression of RANK and 
RANKL was quantified as H scores. Since expression was 
low with 65.3% negative cases for RANK and 89.6% nega-
tive cases for RANKL, we performed a dichotomization in 
either negative or positive expression. The cut-off for RANK 
H score is different to a previously used cut-off of ≥ 8.5, which 
was identified as optimal for the prediction of pathological 
complete response and survival in a group of patients who all 
underwent neoadjuvant chemotherapy [30]. In contrast to this 
study, we investigated the association of RANK and RANKL 
expression with PMD in breast cancer patients of whom 55.1% 
received neoadjuvant or adjuvant chemotherapy and whose 
breast cancers had more favorable tumor characteristics.

In our study, triple-negative and HER2-positive tumors 
had a greater number of RANK-positives and a stronger 
RANK expression compared with luminal B-like and lumi-
nal A-like tumors, while no subtype-specific expression of 
RANKL was detected. In line with this finding, other stud-
ies correlated tumor expression of RANK predominantly 
with worse prognostic molecular parameters such as ER-
negative, HR-negative, triple-negative, or basal-like breast 
cancer [30, 39, 45–49, 51], higher grading [30, 39, 46, 49, 
51], and higher Ki-67 [30, 39, 46, 51]. Tumor expression of 
RANKL was associated with HR-positive, luminal A-like, 
or non-basal-like breast cancer [39, 43, 48], lower grading 
[39, 49], and lower Ki-67 in some studies [39, 50].

One of the strengths of our work is the inclusion of all 
women with incident breast cancer from clinical routine 
work regardless of any other criteria, reducing the risk of 
bias in the selection of patients and of treatment effects on 
PMD. Patients were recruited from a tertiary referral center 
in a university hospital and not from a population-based 
screening facility, which generally detects earlier tumor 
stages. The semiautomated quantification of MD, with two 
experienced, independent readers for all images and a mean 
value for PMD being used, has been validated as a robust 
method in different previous studies [1, 6, 24–28]. A limi-
tation is the retrospective nature of the analysis with the 
potential of missing data. Several cases had to be excluded 
because of incomplete values in variables of interest such 
as PMD, RANK, and RANKL H score or due to techni-
cal issues of TMA evaluation (e.g., inadequate tumor tissue 
recognizable or tumor core washed off).
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Conclusion

Although a limited number of studies has described an asso-
ciation between RANK, RANKL, and OPG expression in 
serum, plasma, or healthy breast tissue with PMD, our study 
does not show a correlation between tumor-specific RANK 
and RANKL expression with PMD in patients with primary 
breast cancer. Since RANK/RANKL/OPG signaling appears 
to play a role in the development of breast cancer and since 
RANKL inhibition may be a novel chemoprevention strategy 
in women at an increased breast cancer risk, this pathway 
will remain under investigation of present and future trials.
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