Skip to main content
. 2024 Feb 28;15:1834. doi: 10.1038/s41467-024-45323-x

Table 1.

Test Case 3: metrics of methods comparison

NRMSE Number of trainable parameters Wall time (s)
training testing NNenc NNdec,NNrec RNNdyn total offline online
FOM 37.321
POD-DEIM (ds = 12) 4.05 ⋅ 10−1 3.92 ⋅ 10−1 797 5.839
POD-DEIM (ds = 24) 3.59 ⋅ 10−1 3.47 ⋅ 10−1 799 7.720
POD-DEIM (ds = 36) 1.71 ⋅ 10−1 1.62 ⋅ 10−1 861 7.442
POD-DEIM (ds = 48) 7.48 ⋅ 10−2 7.57 ⋅ 10−2 1124 7.976
POD-DEIM (ds = 60) 2.97 ⋅ 10−2 2.90 ⋅ 10−2 1242 8.408
AE/LSTM 1.90 ⋅ 10−1 1.98 ⋅ 10−1 8562 8651 720 17,933 11,009 0.005
AE/LSTM-e2e 2.05 ⋅ 10−2 5.87 ⋅ 10−2 8562 8651 720 17,933 33,851 0.005
AE/ODE 2.09 ⋅ 10−2 4.58 ⋅ 10−2 8562 8651 5484 22,697 23,982 0.017
AE/ODE-e2e 1.78 ⋅ 10−2 3.37 ⋅ 10−2 8562 8651 5484 22,697 97,821 0.017
LDNet 7.09 ⋅ 10−3 7.37 ⋅ 10−3 0 1480 228 1708 22,887 0.014

Training and test errors obtained with the different methods, number of trainable parameters, and wall time associated with the offline phase and online phase. Computational times are obtained on a Intel Xeon Processor E5-2640 2.4 GHz. The offline phase refers to the construction of the model: for POD/DEIM, this involves building the basis for the solution manifold and for DEIM, while for the other methods it is associated with the NN training. The online phase, instead, involves predicting the evolution of the system for a new sample once the model has been constructed. This timeframe is referred to a single sample and excludes the evaluation of the output field, given its dependence on the number of considered time and space points. Further details are provided in the main text.