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Timing of whole genome duplication is
associated with tumor-specific MHC-II
depletion in serous ovarian cancer

Nikki L. Burdett 1,2,3, MadelynneO.Willis 1, Ahwan Pandey 1, Laura Twomey1,
Sara Alaei1,4, Australian Ovarian Cancer Study Group*, David D. L. Bowtell1,2 &
Elizabeth L. Christie 1,2

Whole genomeduplication is frequently observed in cancer, and its prevalence
in our prior analysis of end-stage, homologous recombination deficient high
grade serous ovarian cancer (almost 80% of samples) supports the notion that
whole genome duplication provides a fitness advantage under the selection
pressure of therapy. Here, we therefore aim to identify potential therapeutic
vulnerabilities in primary high grade serous ovarian cancerwithwhole genome
duplication by assessing differentially expressed genes and pathways in 79
samples. We observe that MHC-II expression is lowest in tumors which have
acquired whole genome duplication early in tumor evolution, and further
demonstrate that reduced MHC-II expression occurs in subsets of tumor cells
rather than in canonical antigen-presenting cells. Early whole genome dupli-
cation is also associated with worse patient survival outcomes. Our results
suggest an association between the timing of whole genome duplication,
MHC-II expression and clinical outcome in high grade serous ovarian cancer
that warrants further investigation for therapeutic targeting.

Whole genome duplication (WGD) is frequently observed in many
cancer types, including high grade serous ovarian cancer (HGSC)1,2.
WGD serves as a buffer to tolerate acquisitionof deleteriousmutations
and consequently is positively selected for under certain conditions,
despite a fitness cost to cells3. WGD has been observed in 50–60% of
primary ovarian cancers4,5, yet we observed a higher proportion in our
study of end-stage homologous recombination (HR) deficient HGSC
(79.6% of tumours), suggesting that WGD continues to be acquired
after diagnosis6. There aremultiple genomicevents thatoccur inHGSC
which can predispose toward polyploidy and WGD such as TP53
mutations, and PIK3CA and CCNE1 alterations1,7–9. Both its frequency
and continued acquisition under the selection pressure of therapy
indicate that WGD is advantageous in HGSC1,4,10.

HGSC confers a poor prognosis, with a 5-year survival approach-
ing 50%11–13, and is rarely cured once diagnosed, even in those with a

good initial response to treatment. Our previous work starkly illu-
strated that the mechanisms of resistance are diverse6, and targeted
treatments do not exist for many of these in mainstream clinical
practice. New treatments have been sought for HGSC, however the
response to immune checkpoint inhibitor (ICI) therapy has been poor,
despite evidence that the immune milieu has an important role in
ovarian cancer control and survival14–16. This may be due to a lack of
tumour or stromal immune cell infiltration, and specific mechanisms
of immune escape17. While immune escape related to reduced neoan-
tigen presentation has been largely described with regard to MHC-I in
HGSC and other cancer types17–19, there is increasing suggestion that
MHC-II expression also plays a prominent role20. Canonical antigen
presenting cells, including macrophages, dendritic cells and B cells, as
well as cancer cells, can express MHC-II and present neoantigens20,21.
The presence of MHC-II on cancer cells can even predict response to
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ICI20,22. Additionally, across tumour types, aneuploidy and response to
ICI have been linked23.

We hypothesized that WGD might drive unique transcriptional
processes in HGSC that may contribute to disease recurrence and
treatment resistance. Therefore, if these could be targeted early in
cancer evolution, then development of resistance could be abrogated.

In this work, we aim to elucidate the characteristics of primary
HGSC which have undergone WGD that may represent therapeutic
vulnerabilities, and demonstrate here an association between the
timing of WGD andMHC-II expression in HGSC, as well as with clinical
outcomes.

Results
MHC-II pathway expression is reduced in tumours with WGD
Whole genome sequencing (WGS) data from seventy-nine primary
HGSC tumour samples in the International Cancer Genome Con-
sortium (ICGC) study, described previously by Patch et al.24, was ana-
lysed forwhole genomeduplication (WGD) status.WGDwas defined as
the tumour having >50% of the autosomal genome with a major copy
number (MCN) ≥ 21. Fifty of these tumourshadWGDand29did not. To
identify genes where expression differed between cases with and
without WGD, a differential gene expression (DGE) analysis was per-
formed using the matched RNA sequencing data and a generalised
linear model (GLM) (Fig. 1a). This included covariates of purity as well
as gene specific copy number inferred from FACETS25 for each sample,
since by definition tumours with WGD are likely to have a greater
number of copy number amplifications potentially affecting gene
expression. The coefficient estimate generatedby theGLMwas used as
the magnitude of difference in place of log fold change, since this
model needed to account for per gene, per sample covariates, unlike
standard DGE analysis tools, and log fold change is not determined by
themodel. Themedian tumour purity estimated by FACETSwas 68.7%
in tumours without WGD and 62% in tumours with WGD (Supple-
mentary Table 1). Of the 16,375 genes input into the model, 82 were
significantly upregulated and 593 significantly downregulated using a
coefficient estimate threshold of ±1.5 and a p value < 0.05. The higher
number of down-regulated compared to up-regulated genes in
tumours withWGD is likely due to the fact that themodel accounts for
copy number log ratio as a covariate, since by definition tumours with
WGD will have higher total copy number per gene.

Interestingly, we noted that 13 MHC-II genes had a statistically
significant coefficient estimate <−1.5 in tumours with WGD compared
to thosewithout. Despite these genes being locatedon chromosome6,
this did not appear to be driven by a consistent chromosomal arm loss
occurring in the tumours withWGD (Supplementary Fig. 1a). Similarly,
comparing the segment copy number there was no significant differ-
ence in the segment mean between MHC-II genes and other genes in
the same region (6p21.32–6p25.3; p =0.09; Supplementary Fig. 1b). In
addition, by comparing the coefficient estimates from themodel for all
genes within the region on 6p where these genes are located, we
observed that the low expression specifically affected the MHC-II
genes rather than being common to all genes in the region (p <0.001,
Wilcoxon’s test; Supplementary Fig. 1c). CD74, which encodes the
invariant chain that binds to the MHC alpha and beta chains and is
located on chromosome 5, also had significantly lower expression
(coeff. est. −1.95, p <0.001), supporting our observation that there is
specific downregulation of MHC-II-related genes in the tumours with
WGD and this is independent of chromosomal loci. Finally, we re-ran
our model without copy number as a covariate, producing similar
results (Supplementary Tables 2, 3). This indicates that the transcrip-
tional differences observed are independent of gene specific copy
number status.

We hypothesized that altered expression of a transcription factor
or upstream regulator may explain this MHC-II depletion. Consistent
with this notion, we found that the Class II Major Histocompatibility

Complex Transactivator (CIITA) gene, known as the master-regulator
of MHC-II activity26, was also significantly downregulated in tumours
with WGD (coeff. est. = −2.06, p < 0.001). These DGE results were then
verified in the independent TCGA dataset, specifically in a cohort of
166 HGSC tumours for which complete clinical information, copy
number, tumour purity and RNAseq data was available. The intersect
of genes between the 2 datasets that were differentially expressed at
any magnitude was assessed (n = 689 genes with copy number cov-
ariate, SupplementaryTable 2;n = 550without copy number covariate,
Supplementary Table 3). In this way,CIITA and 8 of the 13MHC-II genes
were also confirmed to be significantly more lowly expressed in the
WGD samples of the TCGA validation set, albeit by a smaller magni-
tude (Fig. 1b).

We sought determinants of the difference in CIITA expression
between samples with or without WGD. Though MHC-II is con-
stitutively expressed by canonical antigen-presenting cells, it can also
be inducibly expressed by other cells including tumour cells27–29. CIITA
expression is typically controlled by methylation of four context-
specific promoters21,30–32. Using our previously generated methylation
array data6,24 it was only possible to identify 1 probe likely to corre-
spond to a CIITA promoter region; however, no samples were hyper-
methylated at this probe. We also did not find evidence of CIITA
hypermethylation in the TCGA data. Upstream signalling factors
reported to regulate the expression of CIITA include IFNγ, JAK1, STAT1,
IRF1 and FBXO1121,33,34, however none of these were significantly dif-
ferentially expressed across both the discovery and validation data-
sets. There was however a moderate correlation between IRF1 (a
positive regulator of CIITA) and CIITA expression in both datasets
(ICGC R =0.53, p <0.001; TCGA R=0.51, p <0.001, Spearman’s test;
Supplementary Fig. 2a, b).

Pathway analysis reveals depletion of immune response inWGD
Pathwayenrichment analysis was conducted using themost highly and
lowly expressedgenes from theDGE results for the ICGCdiscovery and
TCGA validation cohorts using ActivePathways35, which integrates
results from multiple datasets, to identify significantly enriched Hall-
mark pathways. Seven downregulated and no upregulated pathways
were identified as being associated with presence of WGD (Fig. 1c).
Notably, the significantly depleted processes largely related to the
immune response. Downregulated pathways were similar to those
described in a pan-cancer analysis of differentially expressed pathways
between cancers with and without WGD, which found Allograft rejec-
tion, Inflammatory response and Interferon gamma response to be
downregulated in samples with WGD3.

Timing of WGD is associated with MHC-II gene expression
In pan-cancer studies, WGD has been described as occurring early in
tumorigenesis or comparatively ‘later’, around the time of
diagnosis2; WGD may also occur after diagnosis. We hypothesised
that MHC-II expression and other biological processes highlighted
by our pathway analysis might be affected by the timing of WGD
acquisition, and therefore used the method described by Dewhurst
et al. to categorise WGD as ‘early’ or ‘late’36. Their method uses
genomic regions with a total copy number of 2 to categorise
tumours with more heterozygous regions as having undergone
genome duplication before the majority of losses (early), and
tumours with more homozygous regions classified as having
undergone WGD after the majority of losses (late). While this is
acknowledged to be heuristic, our findings were concordant with
the previous analysis by Gerstung et al.2 for the 36 ICGC samples
with WGD analysed by both methods (Supplementary Fig. 2c).

Using the ICGC discovery dataset, we observed that Hallmark
pathwayenrichment scores clusteredby timingofWGD (Fig. 2a). Clade
1, with downregulation of pathways related to immune response
identified in the analysis by ActivePathways (Interferon Gamma
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response, InterferonAlpha response, Inflammatory response, Allograft
rejection, and TNF signalling via NF-KB), was enriched for tumours
with earlyWGD (p =0.04, Chi squared test). This patternof enrichment
was similar in the TCGA dataset but was not statistically significant
(p = 0.14, Chi squared test; Supplementary Table 4). As HGSC mole-
cular subtypes are associated with the extent of epithelial and stromal
immune cell infiltration and patient response to treatment37, we also

annotated each sample for these. Notably, C5 (proliferative) samples,
which are immune depleted38, exclusively fell into this clade. In keep-
ing with this we observed that LIN28B, which is highly expressed in C5
tumours39, was one of most significantly upregulated genes in WGD
samples (Supplementary Tables 2, 3). In contrast, the second and third
clades, enriched for tumourswith lateWGDand tumourswithoutWGD
respectively, generally displayed enrichment of immune related

Gene ICGC estimate ICGC adjusted p value TCGA estimate TCGA adjusted p value

CIITA -2.059 0.000153 -0.869 0.026
HLA-DMB -2.074 0.000018 -0.769 0.036
HLA-DRB1 -2.261 0.000112 - 1.058 0.010

HLA-DMA -2.321 0.000009 -0.946 0.011

HLA-DPB1 -2.451 0.000019 -1.024 0.005
HLA-DRA -2.472 0.000002 -1.037 0.010
HLA-DRB5 -2.648 0.000056 -1.072 0.015
HLA-DPA1 -2.685 0.000003 -1.077 0.011
HLA-DQA1 -2.772 0.000049 -0.911 0.041

Hallmark Pathway Adjusted p value Proportion genes in pathway

TNFA SIGNALING VIA NFKB 0.003248305 0.12 *
IL6 JAK STAT3 SIGNALING 0.016214264 0.138
INTERFERON ALPHA RESPONSE 0.000766204 0.186 *
INTERFERON GAMMA RESPONSE 0.00000031 0.19 *
APICAL SURFACE 0.028713988 0.227
INFLAMMATORY RESPONSE 0.00001499 0.17 *
ALLOGRAFT REJECTION 0.000000008 0.2 *

Fig. 1 | Differential gene expression analysis workflow and key results.
a Schematic demonstrating (top) case numbers for the International Cancer Gen-
omeConsortium (ICGC)discoveryandTheCancerGenomeAtlas (TCGA) validation
cohort and workflow, and (bottom) the differential gene expression (DGE) gen-
eralised linear model structure. *The TCGA validation cohort was processed in the
same manner, however batch correction was not possible since batch information
is not given. Whole genome duplication (WGD), homologous recombination defi-
ciency (HRD). Created with BioRender.com. b Key DGE results derived from

generalised linearmodel forCIITA andMHC-II relatedgeneswith significantly lower
expression in both the discovery and validation cohorts in WGD samples.
c Overrepresented pathways derived by integrating discovery and validation DGE
results through ActivePathways35 (ranked hypergeometric test) using the differ-
entially expressed geness with significantly lower expression in WGD samples.
Asterisks denote pathways involved in immune response. Source data are provided
as a Source Data file and Supplementary Table 2. P values are adjusted for multiple
comparisons.
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pathways. Clade 3 was notably enriched for the C1 (mesenchymal)
subtype.

Tumours with early WGD had significantly lower expression of
CIITA compared to those with late or noWGD (p =0.04, Kruskal-Wallis
test, ICGC dataset, Supplementary Fig. 2d). The same pattern was
observed for the 8 MHC-II genes that had been identified as sig-
nificantly differentially expressed across both the ICGC and TCGA
cohorts. Expression of these genes was lowest in the tumours with
early WGD, though only 4 of 8 genes were statistically significant after

adjustment for multiple testing (Supplementary Fig. 2d). Taken toge-
ther, reduced CIITA and MHC-II gene expression was more strongly
associated with early WGD, rather than just WGD generally. We
hypothesized then that reduced MHC-II expression might contribute
to immune evasion in patients with tumours which have undergone
early WGD, and that therefore patients with early WGD might have
poorer survival outcomes. In order to have sufficient power to detect
survival differences by WGD timing we examined patient survival in a
combined cohort (79 ICGC cases and 166 TCGA cases, plus 107

Fig. 2 | Differences in gene expression and clinical outcomesby timing ofWGD.
a Hierarchical clustering of Hallmark pathway enrichment scores in the discovery
ICGC cohort. n = 79. Heatmap is annotated by timing of whole genome duplication
(WGD), clinical response to first line therapy and molecular subtype (C1,C2,C4,C5).
b Two-sided Kaplan–Meier analysis of overall survival (top) and progression free
survival (bottom) by presence and timing of WGD in 352 patients (ICGC and TCGA

cohorts combined). c Top: Representative image of core stained with anti-HLA
DR +DP+DQ for each WGD category; scale bar is 200μm. Bottom: Waffle plots
depicting immunohistochemistry (IHC) results, coloured by zero (yellow) versus
any (lilac) staining with anti-HLA DR +DP +DQ, separated by WGD status. Early
WGD n = 23 cores; Late WGD n = 49 cores; No WGD n = 37 cores. Source data are
provided as a Source Data file.
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additional TCGA cases for which WGS and survival information were
accessible; total of 352 patients). Strikingly, both progression free
survival (PFS) and overall survival (OS) were significantly worse for
cases with early WGD, with little separation between those with late or
no WGD (Fig. 2b). This remained significant in multivariate analysis
with both age and stage at diagnosis, using Cox proportional hazards
for both OS (p = 0.002 late WGD, p =0.03 no WGD) and PFS (p = 0.01
late WGD, p = 0.003 no WGD; Supplementary Fig. 2e,f).

Tumour-specific CIITA and MHC-II gene expression
We next sought to determine whether the reduced MHC-II expression
seen in bulk sequencing data from tumour samples withWGDwas due
to altered expression by tumour or antigen-presenting cells. While
canonical antigen-presenting cells such as dendritic cells, macro-
phages and B cells are typically the source of MHC-II expression,
tumour cell specific MHC-II expression has been shown in ovarian
cancer aswell as other cancer types28,29,40, where it predicts response to
immune checkpoint inhibition22,41. Using CIBERSORTx immune cell
imputations, we did not observe a difference in proportion of B cells,
dendritic cells nor macrophages by timing of WGD (Supplementary
Tables 5, 6), hence we hypothesised that differences in MHC-II
expression were caused by inducible expression in tumour cells, as
has been suggested in other studies29,40. To ascertain the cell types
expressing MHC-II, we evaluated protein expression of MHC-II by
immunohistochemistry (IHC) using an anti-HLA DR+DP +DQ anti-
body. Sixty-one of the 79 ICGC tumours were tested (13 with early
WGD, 27 with late WGD and 21 without WGD). Review of the IHC by a
gynaecologicpathologist determined thatMHC-IIwas expressed in the
tumour cells as well as immune cells.MHC-II IHC staining intensity was
reduced in tumour cells fromcaseswith earlyWGDcompared to either
late or no WGD (p =0.049, glmm, Supplementary Fig. 3). In contrast,
neither tumour-infiltrating lymphocytes nor stromal lymphocytes
displayed a significant difference inMHC-II staining intensity by timing

of WGD. Overall, there were proportionally more tumours with a
complete absence of MHC-II expression in the group with early WGD,
yet this did not reach statistical significance (p =0.06, Chi squared
test, Fig. 2c).

To address which cells are expressing CIITA and to examine the
intercellular MHC-II signalling associated with this, we performed
single nuclei RNA sequencing (snRNAseq) of 5 patient samples each
with either early, or late or no WGD (n = 15, Supplementary Table 7).
For one sample, sufficient nuclei could not be extracted at the lysis
step and was not processed further, hence a total of 195,712 single
nuclei from tumour samples from 14 patients were sequenced and
passed quality control. Following filtering and transformation, princi-
pal component analysis and UMAP analysis generated 22 clusters from
177,801 nuclei. Cells were annotated using a consensus method of
cancer cell markers and marker-based annotation with ScType42, and
assessed for aneuploidy prediction using CopyKAT (Fig. 3a, b, Sup-
plementary Table 8).

Fifteen cancer cell clusters were identified through cell type
annotation. These were then re-clustered separately to assess can-
cer cell-specific differences (Fig. 3c, d). Annotated by WGD status,
this demonstrated a macro-cluster of cancer cells from tumours
with early WGD, separate from cancer cells with late or no
WGD (Fig. 3d).

We confirmed that CIITAwas expressed in proportionally fewer
cancer cells within each patient sample in tumours with early WGD,
compared to those with late or no WGD (p = 0.04, Fig. 4a). Com-
parison of the level of CIITA expression across all cancer cell clusters
confirmed that CIITA was also significantly more lowly expressed in
early WGD tumours (coeff. est. = 4.91 late WGD, p value < 0.001,
coeff. est. = 4.18 no WGD, p value < 0.001, glmm; Fig. 4b). This was
also reflected in the proportions of cancer cells expressing MHC-II
genes across and within cases (Fig. 4c, d, Supplementary Fig. 4).
Further analysis revealed that CIITA expression levels in cancer cells

Fig. 3 | Single nuclei RNA sequencing. aUMAPplots of all cells coloured by Seurat
clusters. b UMAP plots of all cells coloured by cell types. c UMAP of reclustered
cancer cells coloured by patient. d UMAP of reclustered cancer cells coloured by
whole genome duplication (WGD) timing (inferred per patient from bulk WGS).

Ellipse highlights early WGD clustering. For a and b: Early WGD n = 4 patients,
33,965 nuclei; Late WGD n = 5 patients, 63,156 nuclei; No WGD n = 5 patients,
80,680nuclei. c,d EarlyWGD n = 4 patients, 31,479 nuclei; LateWGD n = 5 patients,
48,685 nuclei; No WGD n = 5 patients, 60,602 nuclei.
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was not uniform; interrogating the individual clusters revealed that
CIITA was substantially expressed in only 5 of the 15 cancer cell
clusters (Fig. 4e). These 5 clusters were strongly enriched for cells
from tumours with late or no WGD (p = <0.001, Chi squared test),
with only 1.0% of cancer cells from patients with early WGD falling
into these 5 clusters, compared to 38.6% and 40.7% of late and no

WGD cancer cells respectively. Having seen a moderate correlation
between CIITA and IRF1 in the bulk RNAseq data, we examined this in
the snRNAseq, but found a more modest correlation between CIITA
and IRF1 expression within cancer cells (R = 0.26, p < 0.001, CS-
CORE, Supplementary Fig. 5a). All MHC-II genes which were statis-
tically significant in the bulk RNAseq DGE analysis also had a

p value 0.024 0.028 0.048 0.027 0.036 0.034 0.032 0.07
adjusted p 0.049 0.049 0.055 0.049 0.049 0.049 0.049 0.07

c

ea b

d

* ** * *

Fig. 4 | CIITA and MHC-II gene expression in snRNAseq. a Proportion of cancer
cells expressing CIITA. Each small dot represents an individual patient. Large dot
represents median for that category. Early WGD n = 4 patients; Late WGD n = 5
patients; No WGD n = 5 patients. Large dot represents median for that category.
p =0.036, Kruskal–Wallis test. b Feature UMAP plots of CIITA expression within
cancer cells only, split by whole genome duplication (WGD) status. Cells are
visualised in each plot from lowest to highest expression and numerical expression
depicted as a relative scale to enable visualisation. c Boxplots summarising the
proportion of cancer cells per patient expressing each MHC-II gene that was sig-
nificant in the bulk DGE analysis. P values (Kruskal–Wallis test) and adjusted p
values are depicted below. Early WGD n = 4 patients, 31,479 nuclei; Late WGD n = 5

patients, 48,685 nuclei; No WGD n = 5 patients, 60,602 nuclei. d Proportion of
cancer cells expressing each gene shown for each patient individually, grouped by
WGD timing. Mean expression denoted by size of circle (see legend). e Violin plots
overlaying boxplots of CIITA expression in cancer cells by original Seurat cluster
(top), annotated by proportion of cells from each WGD status category (bottom).
Asterisks denote clusters designated to have substantial expression. For all box-
plots: Left and right whiskers terminate at the minimum and maximum values no
further than 1.5× interquartile range; centre line represents median (50th percen-
tile); left and right boundaries of box represent the first (25th percentile) and third
(75th percentile) quartiles, respectively; outlying values are plotted as individual
points beyond whiskers. Source data are provided as a Source Data file.
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statistically significant correlation with CIITA expression within
cancer cells in the snRNAseq data (Supplementary Fig. 5a).

The tumour microenvironment and its interactions with
cancer cells
In the snRNAseq data immune cells were observed in lower propor-
tions in tumours with early WGD compared to those with late or no
WGD, but this did not reach statistical significance (p =0.07,
Kruskal–Wallis test, Supplementary Fig. 5b, Supplementary Table 9).

We conducted a non-comparative examination of intercellular
communications, identifying expression of statistically significant
ligand-receptor pairs in the snRNAseq data between the cell clusters
identified by Seurat using CellChat43; Supplementary Fig. 5c, Supple-
mentary Table 10). Similarities across the three WGD categories were
noted; for example, cancer-associated fibroblasts (Fibroblast_6) were
the source of strong outgoing communications with both immune and
cancer cells across all 3 WGD groups (Supplementary Fig. 5d), sug-
gesting that they are a substantial contributor to modulation of the
tumourmicroenvironment. Cancer cell_0, the largest cluster of cancer
cells (28%), had few outgoing signals, little inter-cluster communica-
tion, and multiple but weak incoming signals. Conversely, many other
cancer cell clusters such as Cancer cell_1 demonstrated multiple
incoming and outgoing communications. These differences suggest
that the individual cancer cell clusters represent unique populations of
cancer cells, whereby some are relatively autonomous and less affec-
ted by the surrounding environment, whereas others are strongly
modulatedby communicationwithmalignant andnon-malignant cells.

In a descriptive analysis of interactions between cell subsets in the
different WGD categories, tumours with early WGD had markedly low
MHC-II signalling (Fig. 5). Only macrophages displayed any MHC-II
signalling in tumours with early WGD; in contrast, extensive inter-
cellular MHC-II signalling between macrophages and both cancer and
non-malignant cells was observed in tumours with late or no WGD.
While this is a non-comparative observation, this was also reflected in
the per-gene pattern of MHC-II gene expression between WGD cate-
gories in cancer cells (Fig. 4c, d).

Discussion
WGD is a frequent event inHGSC, yet its impact on tumour evolution is
not well understood. Our findings suggest that early acquisition of
WGD sculpts the molecular landscape of the tumour, resulting in
decreased MHC-II expression compared to cancer cells with late or no
WGD. Separately, we identified an association between the timing of
WGD and patient survival outcomes. Together, these findings indicate
a possible relationship between timing ofWGD,MHC-II expression and
clinical outcome in HGSC. While prior work has suggested there are
worseoutcomes inHGSCandother tumour typeswithWGDcompared
to those without, including more advanced stage at diagnosis and
survival1,5,44, the clinical relevance of WGD timing in HGSC has not
previously been examined. Although we have not demonstrated a
causative link between MHC-II expression and survival, it is plausible
that they are directly related, given the strong association of immune
cell infiltration and survival in HGSC, which has been recognised for
many years14. We also identified cancer cell heterogeneity, with only a
subset of cancer cells expressing MHC-II, likely driven by inducible
CIITA expression, and that these cells are rare in cancers with
early WGD.

Neoantigen expression is required to generate anti-tumour CD8
and CD4 T cell responses. Though loss of MHC-class I expression has
been more strongly linked to cancer as a mechanism of immune
escape17,19, our findings demonstrate compelling evidence of tumour-
specific MHC-class II dependent activity in HGSC and a potential
pathway to immune escape in HGSC with early WGD. As cancer cells
with WGD are genomically unstable and generally have a higher
mutation burden than thosewithoutWGD45,46,WGD is likely to result in

No WGD

Early WGD

Late WGD

Fig. 5 | Ligand-receptor pair communication predictions between cell clusters.
Circle plots visualising the presence or absence of statistically significant interac-
tions between and within cell groups for MHC-II (KEGG pathway hsa04514). The
whole genome duplication (WGD) subgroups (early, late and no WGD) are indivi-
dually depicted and not directly compared. Source data are provided in Supple-
mentary Table 10.
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more immunogenicity due to a higher neoantigenburden and reduced
MHC-II expression may be especially advantageous for survival of
cancer cells with WGD. This is supported by observations of a rela-
tionship between aneuploidy or WGD and correlates of immune eva-
sion in patient cohorts3,23. Furthermore, Davoli et al. described lower
expression of pathways related to interferon gamma and immune
regulation in tumours with high somatic copy number alterations
across tumour types by GSEA analysis, including significantly lower
CIITA expression23. Importantly they identified a relationship between
high levels of aneuploidy and poor response to CTLA4 inhibition in
patients with melanoma.

We did not identify a definite determinant ofCIITA transcriptional
control in this study. This is a topic which has been studied extensively
in other tumour types26,30,32,47. It remains quite possible that hyper-
methylation of the pIV promoter of CIITA controls tumour-specific
MHC-II expression, however we could not demonstrate this here, due
to the limitations of genome-wide methylation arrays used in the
included studies. Other limitations of this study include the inability to
accurately evaluate tumours for their MHC-II specific neoantigen
expression. In contrast toMHC-I, currentmethods of bioinformatically
assessing neoantigens are suboptimal for MHC-II, in part due to the
promiscuity of MHC-II molecules48. Additionally, it is unclear whether
early acquisition of WGD occurs via a different mechanism to WGD
acquired later and that this might explain the differences in patient
survival and expression of CIITA and MHC class II genes between the
groups. Alternatively, early WGDmay simply reflect more time for the
evolution of immune escape between WGD and the timing of sam-
pling. Our findings illuminate an important gap in our knowledge of
the immune response in HGSC.

Since the presence of tumour-specific MHC-II-expressing cancer
cells is a predictor of ICI response in melanoma and triple negative
breast cancer20,22,49, our findingsmay have implications for therapeutic
intervention in HGSC. Modest responses to ICI have been observed to
date in ovarian cancer, but this may be due to the unselected nature of
the ICI trials, and that they were used in later lines of treatment, by
which time tumours have often evolved to become immune
depleted5,44. The possibility of successful immune targeting agents
with more MHC-II ligand specificity, such as LAG3 or TIM3, may be
more fruitful in HGSC27,50,51. Since inducible CIITA expression is con-
trolled epigenetically, hypomethylating agents may be able to reverse
hypermethylation and abrogate the reduced CIITA and MHC-II
expression in early WGD HGSC tumours40,52. It is clear from our pre-
vious work6 that targeting resistancemechanisms earlier in the clinical
course is vital to stem the development of a heterogenous cancer
landscape with numerous resistance mechanisms that cannot all be
plausibly targeted. Identifying early features of HGSC which are ther-
apeutically targetable such as this is therefore clearly attractive and
warrants further investigation.

Methods
This research study was approved by the Peter MacCallum Cancer
Centre Human Research Ethics Committee (15/84).

Patient cohorts
ICGC discovery cohort. Copy number from WGS, bulk RNA sequen-
cing (RNAseq), methylation arrays and clinical data from 79 primary
HGSC samples from the ICGC dataset, which are described in Patch
et al.24, were utilised.

Single nuclei RNAseq was performed on 15 of the snap frozen
primary tumour samples that were part of the ICGC study, described
further below. Patients had previously given written informed consent
through the AustralianOvarian Cancer Study (AOCS), approved by the
Peter MacCallum Cancer Centre HREC (01/60). The samples were

chosen based on the WGD timing determined from the WGS, the
availability of tissue and tumour cellularity. All participants in this
study were female, and participants in AOCS were not provided with
compensation.

TCGA validation cohort. TCGA data used in this paper, generated by
the TCGA Research Network53, was downloaded using the R package
TCGAbiolinks (RRID:SCR_017683) v2.20.0 for RNA and copy number
data, and v2.31.2 for Illumina Infinium HumanMethylation27 array
data. ABSOLUTE purity estimates were downloaded directly from
supplementary information from Aran et al., and copy number sig-
natures from Steele et al.54,55.

Bulk RNAseq analysis
HTseq values from both cohorts were processed using edgeR
(RRID:SCR_012802) v3.34.0 to generate trimmed mean of M values
(TMM)56,57. Limma::voom (RRID:SCR_010943) v3.50.358 was used to
generate normalised and log-transformed values for input into dif-
ferential gene expression.

Copy number and whole genome duplication analysis
Tumour purity and copy number log ratiowere inferred from the ICGC
WGS data by FACETS25. Whole genome duplication (WGD), defined
by percentage of the autosomal genome with a major copy number of
2 ormore, was calculated as per themethoddescribed by Bielski et al.1.
The median tumour purity was 62% and 68.7% in those with and
without WGD respectively, however we noted that cases excluded by
our purity thresholdof0.3were preferentially thosewithoutWGD. It is
possible that this may therefore result in a proportionally higher fre-
quency of WGD in our cohort, but does not bias the classification or
analysis itself. Both copy number andRNAseqdata had been aligned to
reference genome GRCh37 for ICGC. TCGA harmonised GRCh38 data
was downloaded as using TCGAbiolinks v2.20.0. and gene expression
annotated to GRCh38. Timing of WGD was inferred using the method
described by Dewhurst et al.36.

Differential gene expression analysis
Covariates. Gene expression can be affected by a number of technical
factors, which should reasonably be considered in RNAseq analysis3.
Technical factors, library preparation batch and sequencing run
were considered as potential effects however these contributed
little to bias and were not included. Accounting for copy number was
particularly important, because, by definition, the genome-doubled
samples were expected to have on average higher copy number and
therefore gene expression, and this was done using the copy number
log ratio.

Homologous recombination (HR) status can be quantified in a
number of ways: HR gene annotation (BRCA1/2 annotation of somatic
and germline variants), COSMIC SBS signature 3, HRDsum,Classifier of
Homologous Recombination Deficiency (CHORD) and copy number
signature 17 (associated with HRD)55,59–61. Having tested models
encompassing each of these classifiers on a subset of genes spanning
all chromosomes for efficient comparison, all models were found to fit
better with a HR covariate than without, and there was little difference
between Akaike Information Criterion (AIC) and F statistics between
models. The model was therefore run with copy number signature 17,
as the HR-deficiency covariate as complete information was available
for both datasets.

Model. In order to account for copy number in theDGE analysis, which
is a per-gene and per-sample value, standard tools such as edgeR or
limma::voomcould not be used forDGE analysis. Therefore, aGLMwas
used, using HR status, copy number at that gene segment and tumour
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purity as covariates, with a gaussian distribution, using the R packages
foreach v1.5.2 and doParallel v1.0.1762 in the format:

Normalised log-transformedvoomvalue∼WGD+HRcovariate+purity

+ copynumber log ratio

P values were adjusted for multiple hypothesis testing using the
Benjami–Hochberg method. The coefficient estimate was used as the
measure of magnitude of effect.

Because the models were run iteratively per gene, rather than as
one, diagnostics could not be applied to the entire model. As an
alternative, three geneswere randomly picked (genes falling at tertiles)
and their individual models assessed using DHARMa63. Model fit was
assessed using DHARMa (RRID:SCR_022136) v0.4.5, specifically asses-
sing for Kolmogorov-Smirnov goodness-of-fit test, outliers and
dispersion.

Pathway analysis. ActivePathways v1.1.1, which detects over-
representation of genes using a ranked hypergeometric test, was used
for pathway analysis, due to its advantage of being able to integrate a
discovery and validation dataset35. A coefficient estimate of >±1 was
used for the ICGC dataset, but a less stringent threshold of ±0.5 for the
TCGA dataset, to enable inclusion of a sufficient number of genes.

CIBERSORTx. The CIBERSORTx web-based pipeline
(RRID:SCR_016955) was previously used to infer immune cell estima-
tions from RNA sequencing, described in Burdett et al.6,64. Briefly, this
was performed with batch correction enabled, B-mode, quantile nor-
malisation was disabled, absolute mode and 500 permutations, and
the LM22 signature matrix was employed for immune cell deconvo-
lution. No further processing was performed.

Methylation data
Methylation array data was generated in our previous work6,24. This
included all 79 cases described here and no further processing was
done6. Probes corresponding to promoter regions were identified as
per our previous work, assessing for probes within 2000bp of the
transcription start site and an inverse spearman correlation of ≤−0.3.
Beta values of ≥0.8 were considered to be hypermethylated.

Single nuclei RNA sequencing
RNA pre-processing. Single nuclei were isolated from snap frozen
tumour samples using the protocol established by Martelotto et al.65,
with minor modification as summarised: snap frozen samples were
sectioned at 100μm and chilled salty EZ lysis buffer (supplemented
with RNase inhibitor) was added. The samples were homogenised
using a douncer then filtered using a 70μm strainer mesh, to remove
the undigested and fatty tissues. The nuclei were then centrifuged at
500 × g for 5min at 4 °C. To clean up the nuclei suspension, gradient
solution was used and centrifuged 3200× g, for 20min at 4 °C. The
nuclei were washed in Wash Buffer 2 (10mM Tris-HCl pH 7.5, 10mM
NaCl, 3mM MgCl2, 1% BSA, 0.2–1 U/uL Protector RNAse Inhibitor
(Roche; cat# 3335399001) and passed through 40μm strainer mesh.
The nuclei were resuspended inWash Buffer 1 (1× PBS, 1%BSA, 0.2–1 U/
μL Protector RNAse Inhibitor).

The 10× Chromium platform was used to generate single nuclei
RNAseq (snRNAseq) libraries using the 10x Genomics single cells 3‘
reagent kit v3.1 (cat# 1000123). Libraries were sequenced on the Illu-
mina NovaSeq6000 (paired end 150 bp reads, 40,000 reads per cell).

Data andprocessing. snRNAseqdata for 14 sampleswas aligned to the
reference genome GRCh38 using CellRanger (RRID:SCR_023221)66.
Seurat (RRID:SCR_016341) v4.1.1 was used to process, scale and nor-
malise the data, with default filters (min.cells = 3, min.features = 200).
More advanced filtering removed low quality cells, multiplets, dead

cells and those with a high mitochondrial RNA content (filtered
to <15%).

Further transformation and downstream analyses were per-
formed using Seurat v4.3.0.1. Threshold based filtering was applied, to
remove the most extreme (and improbable) values, so that Seurat
nFeature and nCount parameters more than ±2.5 standard deviations
from the mean were excluded.

Data was then processed using SCTransform on individual sam-
ples, scaled and then batch-corrected using Harmony
(RRID:SCR_022206) v0.1.067,68. Correction factors used were proces-
sing batch and sequencing run. Seuratwas alsoused to runUMAP,with
25 dimensions.

Cell annotation, copy number variation and cell-cell communica-
tion. Choice of cell annotation methods may have a strong impact
on results and subsequent conclusions. A consensus method was
therefore used: first, ScType was used with two separate datasets
chosen for their respective strengths. The internally curated set of
immune markers within ScType performed well to annotate non-
cancer cells, and the markers relevant to an ovarian cancer context
identified by69. performed well to identify cancer cells and provide
further weight to in-built ScType annotations. Independently,
expression of marker genes for both cancer and non-malignant cell
types (such as EPCAM, PAX8, MUC16, WT1 for cancer cells and
COL1A1 for fibroblasts) were examined per cluster to assess the
fidelity of these calls. A consensus based on the 3 annotations was
then taken.

Cells were further classified using predictions of whether the cells
were diploid or aneuploid using an integrative Bayesian segmentation
approach via CopyKAT (RRID:SCR_024512)70. Specifically, cell clusters
annotated as cancer or non-malignant cells were assessed for the
proportion of cells predicted to be aneuploid or diploid, with cells
classified as ‘not defined’ excluded. Cancer cells were then repro-
cessed, using the NormalizeData function with Seurat, since we found
that SCTransform is valuable for cell type inference but yields data
which has a continuous yet binned structure which is difficult for
downstream statistical analyses on gene expression. Data was then
batch-corrected for processing and sequencing batch with Harmony
and UMAP rerun with 18 dimensions.

CellChat (RRID:SCR_021946) was used to analyse ligand-receptor
pairs and predict incoming and outgoing signals between cell
subsets43.

Statistics
All analysis and statistics were performed in RStudio
(RRID:SCR_000432, v4.1.0). The type of numeric statistical tests used
are indicated in text. Analyses were run with ggpubr
(RRID:SCR_021139, v0.4.0) for data which did not include multiple
samples/cells from the same patient. All comparisons of means are
two-sided. For statistical analysis of gene expression in cancer cells in
snRNAseq data, a generalised linear mixed model with the ‘tweedie’
distribution was used71,72.

Mixed models were conducted using glmmTMB (v1.1.3) and fit
assessed with DHARMa (v0.4.5). Categorical tests were run using Chi
square test (stats v4.1.0). To address the issue of sparse matrices,
correlations on snRNAseq were performed with CS-CORE73 (v1.0.1).

The threshold for statistical significance across all analyses was
p <0.05. For CellChat, the default number of permutations (M= 100)
was used, with a p value of <0.05 considered significant. CellChat
internally uses bonferonni correction for multiple testing correction
for differential interaction analysis. The final p values are not corrected
again after the permutation as per the authors’ documentation.

All other multiple testing corrections were performed using
Benjamini–Hochberg method. Joint p values from glmms were calcu-
lated using emmeans package (v1.7.5).

Article https://doi.org/10.1038/s41467-024-50137-y

Nature Communications |         (2024) 15:6069 9



Immunohistochemistry
Immunohistochemistry (IHC) was performed using the anti-HLA DR+
DP +DQ antibody [clone CR3/43] (Abcam Cat# ab7856 lot#
GR3434335-1; RRID:AB_306142). Following optimization on ovarian
tumour tissue and non-malignant tonsil sections, the IHC was per-
formed on 2 tissue microarrays (TMAs) comprising two cores per
primary tumour from 82 patients from the ICGC study.

TMAs were incubated at 56 °C for 30min to deparaffinize them.
Slides were dewaxed in histolene, then passed through 100% ethanol,
and then passed through 70% ethanol for 1min, and finally deionized
water for 5min. Slides were transferred to a pressure cooker to
undergoheat-mediated antigen retrieval, byheating to 125 °C for 3min
in sodiumcitrate buffer (pH6.0). Slideswere thenwashed indeionized
water. Endogenous peroxidase activity was quenched by submerging
slides in 3%hydrogenperoxide anddeionizedwater. Slideswere rinsed
in Tris-buffered saline with 0.1% Tween 20 detergent (TBST), then
blocked using 1X Antibody Diluent/Block (Akoya Biosciences,
ARD1001) for 5min at room temperature. The primary antibody was
used at a dilution of 1:150. 100 µL of the prepareddilutionwas added to
each slide and incubated for 60min at room temperature. Slides were
then washed three times for 2min in TBST. Slides were then incubated
for 30min with the secondary antibody (Anti-Mouse Immunoglobulin
Anti-HLA, Vector Laboratories, catalogue number MP-7401-15), then
rinsed three times for 2min with TBST at room temperature. Next,
slides were incubated in chromagen substrate solution (25 µL/1 drop
3,3’-Diaminobenzidine (DAB) (Agilent, K3467) with 1mL substrate
K3468), until desired stain intensity developed, at <1min. Slides were
rinsed in deionized water and counterstained with haematoxylin.

Reporting of slides was performed by an external pathologist
trained in gynaecological oncology, with scoring parameters sum-
marised in Table 1.

Each tumour sample was represented on a TMA in duplicate; after
staining only 45 of the cases had 2 cores (one had been sampled twice
resulting in 46 pairs, with a total of 109 cores).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All bulkRNAseq,wholegenome sequencing andmethylationdata used
in this study has previously been published. The ICGC publicly avail-
able data24,74 used in this study are available in the European Genome-
Phenome archive under accession code EGAD00001000877. The
TCGA publicly available data53 used in this study are available from
https://portal.gdc.cancer.gov/. Due to the sensitive nature of these
patient datasets, access is subject to approval from the ICGC Data
Access Compliance Office (https://docs.icgc.org/download/data-
access/). ICGC methylation data sets have been deposited into the
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)
under accession code GSE65821, without access restrictions. ICGC
gene count level transcriptomic data has been deposited into the GEO
under accession code GSE209964. ABSOLUTE purity estimates and
copy number signatures were downloaded directly from supplemen-
tary information54,55. The snRNAseq raw data generated in this study

have been deposited in the EuropeanGenome-Phenomearchive under
the accession code EGAD50000000364. Due to the sensitive nature of
these patient datasets, the data is available under restricted access,
which can be obtained by contacting DGO@petermac.org. Responses
to data requests aim to be provided within two weeks. Access will be
granted for appropriate researchuse, whichare in linewith the original
consent provided throughAOCS.Duration of data access oncegranted
is not restricted. Processed data are available in SupplementaryTables.
The remaining data are available within the Article, Supplementary
Information or Source Data file. Source data are provided with
this paper.

Code availability
This study uses existing R packages for all analyses and no novel/
custom code was developed. The code to generate figures and GLM
has been uploaded to synapse.org at https://www.synapse.org/
Synapse:syn52673607 (free Synapse account is required) and is avail-
able on request to corresponding author.
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